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ABSTRACT: The microbial fermentation process often involves various
biological metabolic reactions and chemical processes. The mixed bacterial
culture process of 2-keto-L-gulonic acid has strong nonlinear and time-varying
characteristics. In this study, a probabilistic Bayesian deep learning approach
is proposed to obtain a highly accurate and robust prediction of product
formation. The Bayesian optimized deep neural network (BODNN) is
utilized as basic model for prediction, the structural parameters of which are
optimized. Then, the training datasets are classified into different categories
according to the prior evaluation of prediction error. The final forecasting is a
weighted combination of BODNN models based on the Bayesian hybrid
method. The weights can be interpreted as Bayesian posterior probabilities and are computed recursively. The validation of 95
industrial batches is carried out, and the average root mean square errors are 1.51 and 2.01% for 4 and 8 h ahead prediction,
respectively. The results illustrate that the proposed approach can capture the dynamics of fermentation batches and is suitable for
online process monitoring.

■ INTRODUCTION
Fed-batch fermentation is a typical production mode in
chemical process industries such as pharmaceutical and food
processing, with flexible production operations that can adapt to
changing market conditions. For instance, L-ascorbic acid, also
known as vitamin C, is mainly produced through a two-step
fermentation process.1 In the first fermentation stage, L-sorbose
is produced from D-sorbitol by batch culture of Acetobacter
melanogenum with a high molar yield. In the second stage, the
mixed culture of Ketogulonicigenium vulgare (K. vulgare) and
Bacillus megaterium (B. megaterium) is practiced to produce 2-
keto-L-gulonic acid (2-KGA) with L-sorbose as substrate. 2-KGA
is then converted to L-ascorbic acid by catalytic reactions.
Great attention has been paid to batch process optimiza-

tion,2,3 which is motivated by the increasing pressure to improve
process efficiency with reduced operating costs. The optimiza-
tion objective may take many forms, such as cutting down the
time to market, maximizing profit, or minimizing production
costs.4 An online monitoring and optimization approach for a 2-
KGA fermentation workshop is essential to increase the
economic efficiency of the process. The accurate prediction of
the product formation is the critical factor in process monitoring
and optimization, which influences the scheduling strategy for
improving the allocation of L-sorbose resources with the aim of
profit maximization in a multi-bioreactor workshop.5,6

With the widespread use of computer control systems in the
fermentation industry, stored online measurement and offline
assay data are growing rapidly. The process data implies
information on the operation status of the fermentation process.

Therefore, using data-drivenmodeling techniques to predict and
control key variables in the fermentation process can effectively
improve plant productivity.7−9 Deep learning has been an
important research area in machine learning and artificial
intelligence research in recent years. Deep learning methods are
composed of multiple layers to learn nonlinear features of data
with multiple levels of abstraction,10 which have been widely
used for supervised or unsupervised feature learning and
representation, classification, and pattern recognition.
As the performance of deep learningmodels depends critically

on a good set of hyperparameters, several approaches for
hyperparameter optimization have been proposed.11,12 A deep
neural network-based hybrid model is developed by integrating
the kinetic model with a DNN trained with time-series process
data to predict sensitive and uncertain model parameters.13 Bose
et al. proposed a trustworthy hybrid model by cascading
multivariate adaptive regression splines and deep neural network
to predict closing prices of stock.14 Among them, the most
commonly used approach is Bayesian optimization.15 To further
enhance the performance of a single deep model, a series of
hybrid models has been proposed.16−20 Grover et al. studied
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specifically the power of making predictions via a hybrid
approach that combines discriminatively trained predictive
models with a deep neural network that models the joint
statistics of a set of weather-related variables.21 Guo et al.
propose a novel locally supervised deep hybrid model (LS-
DHM) that effectively enhances and explores the convolutional
features for scene recognition.22 A hybrid model is proposed
based on RNNs and CNNs to extract biomedical relation.23 A
hybrid model-based emotion contextual recognition approach
for cognitive assistance services in ubiquitous environments is
proposed.24 Likewise, Bayesian approaches play an important
role in the hybrid models. Hao et al. present a hybrid
optimization methodology with Bayesian inference for the
probabilistic finite element model updating of structural
systems.25 Zhang et al. proposed a Bayesian hybrid collaborative
filtering-based electricity plan recommender system (BHCF-
EPRS), which is constructed in a two-stage model integrated
with model-based and memory-based collaborative filtering
methods.26 Lessan et al. developed a hybrid Bayesian network
model to tackle delays in train operations.27

In biological fermentation, the production process is affected
by the uncertainty of the fermentation cycle, contaminated
bacteria, and other factors. Moreover, process variables in the
fermentation process (e.g., the concentrations of the product,
substrate, and biomass) are challenging to measure directly.
During the 2-KGA fermentation process, only K. vulgare
converts L-sorbose to 2-KGA, while the concomitant bacteria
B. megaterium stimulates the growth of K. vulgare.28 The co-
cultured relationships between cells in synthetic microbial
consortia are dynamically balanced, leading to greater
adaptability and stability to variable environments.29 Xu et al.
proposed an integrated approach for VFA production prediction
in an anaerobic fermentation process,30 which learns nonlinear
process information and consequently enlarges the application
range of DNN models. However, for the 2-KGA industrial
fermentation, the data labels are noisy since some key process
variables are manually assayed offline. Furthermore, the mixed
culture process increases the time-variability and uncertainty of
industrial production.31 Therefore, it is necessary to construct a
data-driven model of the 2-KGA fermentation process using
both Bayesian-optimized deep learning models and hybrid
modeling.
This study proposes an approach for obtaining highly accurate

and robust prediction of 2-KGA product formation. The
fermentation batch data are processed with a moving window
technique and put into a Bayesian optimized deep neural
network (BODNN). The optimal parameters of the BODNN
model are searched for during the model’s training process. The
fermentation batches are then classified based on the model’s
prediction results. Batches with high prediction accuracy are
classified into one category. Other batches with a high degree of
nonlinearity that a single model could not accurately predict are
classified into another category.
Based on a large amount of process data collected over a long

period, different categories of fermentation batch data are used
to train separate BODNN models. The output of BODNN
models represents the characteristics of the corresponding batch
category. Due to the highly time-varying and nonlinear nature of
the mixed culture process, the status of the current batch under
online monitoring needs to be re-evaluated at each sampling
time point. Finally, a hybridmodel is constructed by dynamically
adjusting the combination weights of each BODNNmodel. This
approach has effectively improved the results of 4 and 8 h ahead

forecasting of product formation in the 2-KGA mixed culture
process.

■ MATERIALS AND METHODS
Process Description. The industrial fermentation data in

this study come from a Chinese pharmaceutical factory. The
critical precursor of Vitamin C, 2-KGA, is produced by a mixed
culture ofK. vulgare and B. megaterium in air-lift bioreactors. The
maintenance of a stable pH value of approximately 7.0 during 2-
KGA cultivation is achieved through the automatic addition of
alkali solution. The distributed control system (DCS) online
continuously monitors and regulates process variables, including
temperature, pH, aeration rate, and liquid level. Nevertheless,
crucial parameters such as the concentration of product 2-KGA
and substrate L-sorbose require manual, offline assaying. The
fermentation process ceases when the residual L-sorbose
concentration falls below 1 kg/m3.
Preprocessing of Training Data Pair. To forecast the 2-

KGA product formation P in advance, relevant process variables
were screened. A correlation between the consumption of alkali
solution (Alk) and P was identified through statistical analysis of
historical data. This relationship is potentially attributed to the
DCS system’s ongoing addition of alkali during fermentation to
regulate medium pH at approximately 7.0.
A potential correlation between substrate consumption and 2-

KGA production has also been noted. However, in current
industrial production, the concentration of critical substrate L-
sorbose, is solely assayed manually during the latter stages of
cultivation and the data obtained is used to determine the
termination time of the current batch.
As a result, solely the time series of P and AlK serve as input

variables for the deep learning model. To produce the input−
output data pairs required for model training, the moving data
window method is employed,32 as depicted in Figure 1.

The initiation of product formation prediction commences at
T1 when the minimal required data quantity is obtained. The
input window’s width, TD, and the practical prediction window
width, TP, determine the time frame for the forecasts. A TP of 4
or 8 h signifies a prediction for a 4 or 8 h lead-time, respectively.
The data pair of the kth data window {X(Tk), Y(Tk)} is

presented with eqs 1−3. The input vector X(Tk) consists of the
normalized sampling time Tk and all the sampling process data
located within the corresponding input window TD. The

Figure 1. Moving data window method (the data have been
normalized).
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temporal resolution of the discrete-time system is represented
by τ.

= [ ]······X T T x x x( )k k T T T X
T

k k k Tk TD2 (1)

= [ ]x P T Alk T( ) ( )T k k
T

k (2)

= +Y T P T T( ) ( )k k P (3)

BODNN: Bayesian Optimized Deep Neural Network.
Deep neural network (DNN), as one of the deep learning
approaches, is mainly composed of neurons and connections.
The architectures of DNN usually have many hidden layers,
which can be used to extract features from the inputs and
compute complex functions. With the emergence of large-scale
datasets, DNN has exhibited impressive performance in
numerous machine learning tasks. To obtain better model
performance, the hyperparameters of the DNN model, such as
the number of layers, neurons in each layer, and the learning rate,
are considered for exploration and optimization. Therefore,
Bayesian optimized deep neural network (BODNN) is
proposed to predict the 2-KGA product formation.
In the typical DNN model, the weighted combination of

neurons in one layer is calculated and then used as input to
another neuron in a subsequent layer. Assuming that there arem
neurons in layers l-1, the output Oj

lfor the jth neuron in layer l is
defined in eq 4, where w and b are the corresponding weight and
bias.
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The nonlinear activation function σ is applied to the weighted
sum of neurons to catch the nonlinearity of the data. The
exponential linear unit (ELU) function is utilized here since it
alleviates the vanishing gradient problem via the identity for
positive values and improves learning characteristics compared
to other activation functions of the deep neural network.33 The
ELU function is shown in eq 5, where parameter β is a constant
that is generally set to 1.0.

=
>l

moo
noo

x
x x

x x
( )

if 0

(exp( ) 1) if 0 (5)

The gradient descent learning process is expressed in eq 6,
where η, t, and H are the learning rate, number of epochs, and
loss function, respectively.

+ =W t W t
H t
W t

( 1) ( )
( )
( ) (6)

Considering the continuous optimization of the 2-KGA
fermentation techniques and the dynamic changes in the
production environment, the BODNN model needs to be
retrained periodically. Therefore, the maximum number of
layers is limited to 6, and neurons for each layer are 50 during the
model structural optimization. Table 1 illustrates the hyper-
parameters with their corresponding range values under
concern.
Bayesian optimization (BO) is one of the gradient-free

optimization algorithms, which wants to obtain the optimal
global solution of the optimization proposition with as few trials
as possible.

The input−output data pairs of all batches are split into
training set and validation set. Each DNN model constructed
from hyperparameters a is trained with the training set. The
structural optimization problem is defined in eq 7, whereA is the
search space, and f(a) denotes the objective metric aimed at
minimizing the error rate as assessed on the validation set.

*=a minf aarg ( )
a A (7)

The BO process has two key ingredients: surrogate model and
acquisition function. The surrogate model is used to
approximate f. Gaussian processes are chosen to be the surrogate
model here,34 for their expressiveness and well-calibrated. A
Gaussian process m k( ( ), ( , )) is fully specified by a mean
m(λ) and a covariance function k(λ, λ′).
The mean function is assumed to be constant, and then the

quality of the Gaussian process depends solely on the covariance
function. The Mateŕn 5/2 function is used as covariance
function here, as shown in eq 8.
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where σl is the characteristic length scale, σf is the signal standard
deviation, and parameter r is the Euclidean distance between αi
and αj.
In each iteration of the BO process, the surrogate model is

fitted to all observations of f(a)made so far. Then, an acquisition
function determines the sequence of possible points and
performs the exploration and exploitation. The expected
improvement (EI) is used as the acquisition function, which is
a common choice for its lower computational complexity and
better performance.35 After running an n number of trials, based
on the values of the sampled points, the probability distribution
of f(a) is calculated, and the mathematical expectation of the
improved values of next step can be obtained. The expected
improvement function is defined in eq 9.

= [[ *] ]+f fEI ( ) E ( )n n n (9)

where f n* is the minimal value of the function in all trials, and the
best α is chosen for the next step. It is usually assumed that f(a)
follows a normal distribution.
Combining eqs 4−9, the Bayesian optimization method is

established, with which the hyperparameters are optimized for
better performance. With an AMD Ryzen 3700X 3.6 GHz
computer, 172 min is needed for this optimization process.
Batch Classification. After the optimized hyperparameters

are found, both the batches in training set and validation set
together constitute a batch dataset. This dataset is utilized to
retrain a single BODNN model for the batch classification,
which acts as a batch classifier. The prediction error of each
batch is evaluated with this model, and the root mean square
error (RMSE) is utilized as the index of prediction error. All
batches in the dataset are sorted in ascending order by RMSE
metrics, and the data of top 70% batches are used to construct
subset θ1. The data of the remaining batches are used to
construct subset θ2, which holds the nonlinear characteristics

Table 1. Hyperparameters Ranges for Exploration and
Optimization

hyperparameter number of layers number of neurons learning rate

range [ ]2, 6 [ ]5, 50 [ ]10 , 101 6
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that cannot be modeled very well with the single BODNN
model.
BCDNN: Bayesian Combination of BODNN Models.

With the divided subsets θ1and θ2, two new BODNN
models are trained separately as the basic predictors. Both
models make use of the hyperparameters obtained by
Bayesian optimization in BODNN: Bayesian Optimized
Deep Neural Network, which means that their network
structures are identical and the only difference is the
training dataset.

When the data of a new online batch is collected at cultivation
time Tk, the Bayesian combined prediction of the two models at
time Tk + TP can be obtained, as shown in eq 10.

+ = + =
=

P T T p P T T r( ) ( ) 1, 2k P
r

T
r

r k P
1

2

k (10)

P̂r(Tk + TP) is the output of rth BODNN predictor at Tk. The
dynamic weight pTdk

r denotes the posterior probability of selecting
the rth output as the hybrid output. The calculation of pTdk

r can be
determined utilizing eq 11, with the stochastic process Z’s
definition as follows: Z is equivalent to r at Tk when the rth
BODNN model is selected to execute the prediction.

= = | ···p p Z r P T P T P T( ( ), ( ), , ( ))T
r

k k 1 1
k (11)

The following equations can be obtained based on the Bayes
rule.
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= |
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The prediction error between the measured value and the
output of rth BODNN model is defined as eTdk

r , which obeys a
Gaussian distribution (eTdk

r ∼ N(μr, σr2)), and then eq 14 is
obtained.
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r
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2

k (14)

The distribution parameters μr and σr can be estimated from
the prediction errors of the rth predictor, using the
corresponding batch subset. Combining eqs 10−14, the iterative
process of posterior probability pTdk

r is shown in eq 15.

=

[ ]

[ ]

=

= =
i
k
jjj y

{
zzz

( )
( )

( )

p

e

e

exp ( )/ 2

exp ( )/ 2

T
r

k

i
k

T
r

r r

j

k

i
k

T
j

j j

1
2

1

0
1 2

1
2 1

2

1

0
1 2

k

r k

j k

1

1

(15)

The recursive calculation of hybrid forecasting can be
performed at each sampled time. As the industrial data is
constantly being collected, the fermentation database will be
periodically updated with data from recent batches, requiring
the entire Bayesian optimization process to be conducted anew.
Figure 2 displays the block diagram of the proposed method-
ology.

Figure 2. Block diagram of the Bayesian hybrid approach.
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■ RESULTS
To validate the performance of the proposed approach, the
industrial data of 95 online batches are used tomake comparison
tests. During the data preprocessing, the input window TD is set
to 12 h. Prediction window TP values are set to 4 and 8 h, which
means 4 and 8 h ahead forecasting, respectively. The
performance of the single BODNN model, Bayesian combined
model (BCDNN), and other soft sensor modeling methods are
compared.
Support vector machine (SVM) is a widely used method for

the fermentation process, which can approximate the nonlinear
process.36 The polynomial K(Xi, X) = (XiTX + 1)3 is used as the
kernel function, while C and ε are set to 100 and 0.001,
respectively.
The long short-termmemory (LSTM),37 gated recurrent unit

(GRU),38 and bidirectional LSTM(Bi-LSTM)39 have been
shown to achieve state-of-the-art results in many applications
with time series or sequential data.40,41 These algorithms can
capture long-term temporal dependencies and variable-length
observations. For training of these models, the ADAM algorithm
is used as the gradient-based optimizer,42 the number of neurons
is 50 for the hidden layer, and the batch size is 32.
As the index of the prediction error, the average RMSE of 95

online batches using the methods mentioned above are
compared in Table 2. Both 4 and 8 h forecasting errors are
evaluated.

Table 2 demonstrates that the proposed BCDNN method
gets better results for these fermentation batches compared to
other mentioned models. To further compare the performance
between the BODNN and BCDNN models, forecasting errors
for the 95 batches are demonstrated separately.
Figures 3 and 4 show the RMSE of 4 and 8 h ahead prediction

for each batch, respectively. The BCDNN method not only

outperforms BODNN on average but also outperforms it on
individual batches (with a few exceptions). The variance of 8 h
ahead prediction error is more significant than 4 h due to the
larger prediction window and uncertainty of the fermentation
process.

■ DISCUSSION
The dynamics of different fermentation batches during
cultivation are illustrated here. Figures 5 and 6 present the 4 h

ahead predicted and measured product formation for two
batches. The measurements sampled at 4 h intervals are
represented by dotted lines. Batch no. 68 terminated in 52 h
when residual L-sorbose was less than 1 kg/m3, whereas batch
no. 63 is an abnormal batch that terminated early. The BCDNN
method can dynamically adjust the weights of the combined
models according to the prediction error of the previous
sampling point, thus achieving better results than a single
BODNN predictor in the following time.
Figures 7 and 8 present the 8 h ahead measurements and

prediction results of representative batches. Because the
prediction window is larger than that of the 4 h task, there is
an increased difficulty for a single BODNN model to obtain
accurate 8 h ahead perdition results. In the early stages of batch

Table 2. Average RMSE of 95 Batches withDifferentMethods

model SVM LSTM GRU Bi-LSTM BODNN BCDNN

+4 h (%) 2.71 2.27 2.38 2.15 2.17 1.51
+8 h (%) 3.26 2.98 3.11 2.83 2.59 2.01

Figure 3. Prediction error distribution of industrial batches, 4 h ahead
results.

Figure 4. Prediction error distribution of industrial batches, 8 h ahead
results.

Figure 5. Actual and 4 h ahead predicted of batch no. 68.

Figure 6. Actual and 4 h ahead prediction of batch no. 63.
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nos. 38 and 79, BODNN2 had a better performance. However,
during the middle and late stages of the fermentation process,
the prediction results of BODNN1 were getting closer to the
measurements, and its weights in the BCDNN predictor became
larger.
Specifically, in batch no. 79, the prediction accuracy of the

BODNN1 at 32 h became significantly higher than that of the
BODNN2. The larger weights of BODNN2 in the BCDNN
predictor led to a large prediction error at this sampling time.
The source of this sudden variation was mainly the disturbance
of the dynamic process in the mixed culture of B. megaterium and
K. vulgare. However, at the next sampling time 36 h, the weights
of BODNN1 immediately became larger after the Bayesian
iterative calculation, which led to a rapid reduction in the
prediction error of the BCDNN predictor and maintained it
until the end of the batch. Therefore, the proposed BCDNN
method can produce more accurate predictions than a single
BODNN model through adaptively changing posterior
probabilities of different models.

■ CONCLUSIONS
This study proposes a probabilistic Bayesian deep learning
approach for obtaining highly accurate and robust prediction of
2-KGA product formation. First, the input−output data pairs for
predictor training are generated with the moving data window
technique. The structural parameters such as neurons and
connections of BODNN model are optimized by the Bayesian
approach. Then, the process data of historical batches are
classified into different categories, according to the prediction
error. Each predictor is trained with the data of corresponding
category. The final forecasting is a weighted combination of
predictors based on the Bayesian hybrid approach. The weights
can be interpreted as Bayesian posterior probabilities and are
computed recursively. The validation results illustrate that the

dynamic and iterative calculation makes this approach more
suitable for online process monitoring.
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