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Abstract: Belowground interactions of plants with other organisms in the rhizosphere rely on
extensive small-molecule communication. Chemical signals released from host plant roots ensure the
development of beneficial arbuscular mycorrhizal (AM) fungi which in turn modulate host plant
growth and stress tolerance. However, parasitic plants have adopted the capacity to sense the same
signaling molecules and to trigger their own seed germination in the immediate vicinity of host
roots. The contribution of AM fungi and parasitic plants to the regulation of phytohormone levels in
host plant roots and root exudates remains largely obscure. Here, we studied the hormonome in the
model system comprising tobacco as a host plant, Phelipanche spp. as a holoparasitic plant, and the
AM fungus Rhizophagus irregularis. Co-cultivation of tobacco with broomrape and AM fungi alone or
in combination led to characteristic changes in the levels of endogenous and exuded abscisic acid,
indole-3-acetic acid, cytokinins, salicylic acid, and orobanchol-type strigolactones. The hormonal
content in exudates of broomrape-infested mycorrhizal roots resembled that in exudates of infested
non-mycorrhizal roots and differed from that observed in exudates of non-infested mycorrhizal
roots. Moreover, we observed a significant reduction in AM colonization of infested tobacco plants,
pointing to a dominant role of the holoparasite within the tripartite system.

Keywords: parasitic plants; mycorrhizal fungi; plant hormones; root exudates; rhizosphere; small-
molecule communication; strigolactones

1. Introduction

Rhizosphere is a dynamic platform for complex interactions of plants with the other
biotic and abiotic components of the soil ecosystem. The exchange of organic and inorganic
matter varies throughout the ontogenesis, and ultimately leads to better adaptation of
plants to the fluctuating environment. The chemical composition of root exudates largely
shapes the plant-associated microbial communities [1]. The selective enrichment of bac-
terial species in the rhizosphere is based on their specific substrate preferences secured
by the plant species [2]. In general, root exudates contain a variety of primary and sec-
ondary metabolites of low molecular weight, as well as macromolecules like proteins and
polysaccharides. The exuded chemical components have been shown to be functionally
implicated in diverse biological processes such as symbiosis, pathogenesis, allelopathy, and
mineral nutrition [3,4]. Importantly, all other biotic factors jointly contribute to the chemical
composition in the rhizosphere, and their metabolic activities are subjected to feedback
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regulation. The rhizosphere microbiome modulates root metabolism and exudation by
driving long-distance signaling and systemic transcriptional reprogramming in plants [5].

Beneficial symbiotic interactions between arbuscular mycorrhizal (AM) fungi of the
phylum Glomeromycota and land plants nicely illustrate the metabolic synchronization
and mutual regulation of the processes of growth and stress adaptation. AM fungi gain
from host plants photoassimilates and lipids, and in turn supply the plants with mineral
nutrients via an extraradical mycelium network [6]. Mineral deficiency, such as phosphate
limitation, triggers changes in the root exudate composition that positively influence
the AM development for better phosphate acquisition [7]. These precisely orchestrated
metabolic readjustments rely on extensive bidirectional small-molecule signaling that
underlies all stages of AM symbiosis, including the presymbiotic communication [8].

In the course of land plant evolution, parasitic weeds have abused the chemical com-
munication between host plant roots and beneficial AM fungi to ensure parasitic seed
germination. Strigolactones (SLs) are the best studied class of germination stimulants for
seeds of holoparasites, such as broomrapes [9,10]. Apart from being phytohormones, SLs
are exuded by the host plant to facilitate root colonization with AM fungi via induction
of hyphal branching. The core chemical structure of canonical SLs comprises a methyl
butenolide ring attached to a hydrophobic tricyclic scaffold via an enol ether bridge. Be-
sides canonical SLs, non-canonical SLs lacking the typical tricyclic scaffold [11], as well
as sesquiterpene lactones [12], have also been implicated in broomrape seed germination.
Based on their stereochemistry, canonical SLs are subdivided into orobanchol- and strigol-
type molecules with species-specific occurrence [9,13,14]. Variations in the levels of the
two SL types in the root exudate determine the differential susceptibility of host plants to
infestation. For instance, sorghum genotypes with reduced levels of 5-deoxystrigol and
increased exudation of orobanchol display Striga resistance [15]. In addition, different com-
binations of SL species in the exudate have unequal efficiency of boosting AM symbiosis
and parasitic seed germination, and such uncoupling of the two processes has potential
practical applications [16]. In contrast to parasitic plants, SL signaling in autotrophic plants
does not seem to be directly related to induction of seed germination. SLs interact with
protein receptors with α/β hydrolase activity to initiate a signaling cascade in responsive
cells (reviewed in [10,17,18]). In the course of convergent evolution with photosynthetic
plants, in holoparasites a subset of karrikin receptors have acquired specificity for recog-
nition of host-derived SL signals [19]. Broadened susceptibility for perception of diverse
SL classes is presumably the cause for the recently observed expansion of the plant host
preferences of Orobanche cumana [20]. Unlike plant systems, the mechanisms of SL sensing
by AM fungi are so far unclear.

Plant host interactions with the other biotic factors are mediated by extensive phyto-
hormonal crosstalk. Different hormone signaling pathways share common components to
fine-tune the plant response to the changing environment. The latest advances in the stud-
ies on hormonal regulation in host plants in the course of root colonization with AM fungi
have revealed the complex interplay of growth- and stress-related hormones (reviewed
in [21–23]). For instance, the host DELLA proteins, negative regulators in the gibberellin
(GA) signaling pathway, have been shown to play an essential role for promoting AM de-
velopment [24]. GAs trigger DELLA polyubiquitination and proteasomal degradation, but
other hormones such as abscisic acid (ABA) positively affect DELLA protein functions [25].
Another aspect of the hormonal crosstalk during AM colonization deals with regulation of
hormone biosynthesis. The expression of SL biosynthesis-related genes is auxin-dependent,
and SL exudation is reduced in conditions of low auxin content, which in turn impairs
mycorrhizal colonization [26]. Furthermore, it has been demonstrated that ABA deficiency
leads to an increase in the ethylene levels, thus restricting mycorrhization [27]. Hormone
partitioning in shoots and roots also appears to be an important determinant for coor-
dinated metabolic interactions between host plants and AM fungi, as has already been
shown in experiments with organ-specific cytokinin (CK) depletion [28]. In contrast to
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mycorrhizal plant systems, much less is known about the influence of obligate parasitic
plants on the hormone homeostasis in host plants.

The hormone composition of root exudates is not only a result of the host plant
metabolic activity. Recent findings prove that AM fungi produce phytohormones, such
as auxins, cytokinins, ethylene, and GA, that might influence both fungal and host plant
development [29]. In turn, plant parasites also use hormonal signals for growth regulation.
Genetic approaches have elucidated the importance of auxin and ethylene signaling path-
ways for proper haustorium formation during parasite invasion [30,31]. It is still elusive as
to whether parasitic plants exude metabolites with hormonal activity into the rhizosphere.

Here, we used the model AM fungal species Rhizophagus irregularis (former name
Glomus intraradices) and branched broomrape to explore their impact, alone or in combina-
tion, on the phytohormone levels in roots and root exudates of a host plant (i.e., oriental
tobacco). We found a dominant effect of the parasitic plant on the hormonome in the tripar-
tite system compared to that of the AM fungus. Accordingly, we observed suppressed AM
colonization in broomrape-infested tobacco plants. The antagonistic broomrape-tobacco
interaction was correlated with diminished levels of exuded SL signals at the tubercle stage
of development.

2. Results

In our growth assays comprising co-cultivation of tobacco plants with AM spores
and/or broomrape seeds, we used perlite as solid substrate, as well as 1/8 strength
Murashige and Skoog (MS) medium for irrigation. Such diluted nutrient solution ensured
low levels of macronutrients which is essential to enhance the activity of host root exudates
for induction of broomrape seed germination and AM hyphal branching [32–34]. To better
understand the mechanisms of chemical communication within the system host plant –
holoparasite – AM fungi, we performed comparative analysis of plant hormone levels
in tobacco roots and root exudates. The exudates were collected through incubation of
intact roots of individual plants in water for two days (Figure S1). Besides active hormonal
species, the applied methodology allowed us to quantify their precursors, catabolites,
and conjugated forms [35]. With the exception of ethylene, gibberellins, jasmonates and
brassinosteroids, we could detect the presence of the main plant hormone classes in both
sample types, i.e., root tissues and exudates. To compare the trends of changes in the
different biological repeats irrespective of the natural variation in the absolute amounts of
metabolites, the levels of active hormones and their derivatives were calculated relative
to those in non-infested and non-inoculated controls. The actual concentrations of all
analyzed metabolites are provided in Dataset S1.

2.1. Phytohormone Profiling in Infested and Mycorrhizal Host Roots and Exudates
2.1.1. ABA and Related Metabolites

In our LC-MS analyses, we detected ABA and its catabolites phaseic acid (PA) and
dihydrophaseic acid (DPA) in both tobacco root tissues and root exudates, plus 9′-OH ABA
in exudate samples. Broomrape infestation of tobacco plants led to a significant increase
in the ABA levels in root tissues (Figure 1a). The concentrations of PA, a degradation
product with ABA-like biological activity [36], were also elevated in infested roots with
or without AM colonization (Figure 1a). PA is generated through ABA oxidation, and
is subsequently converted to DPA. Such a rise in the ABA and PA concentrations in
infested root samples is in line with recent observations in a similar pathosystem including
tomato and Phelipanche ramosa [37]. The accumulation of ABA and PA in roots of infested
tobacco plants correlated with an increased content of the two metabolites in the growth
medium (Figure 1b). Conversely, mycorrhizal roots did not show enhanced accumulation
of ABA, and the higher PA amounts in root tissues were not translated into pronounced PA
exudation (Figure 1a,b).
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Figure 1. Levels of abscisic acid (ABA) and its catabolites dihydrophaseic acid (DPA) and phaseic acid (PA) in roots (a) and
exudates (b) of tobacco plants upon broomrape infestation and/or colonization with arbuscular mycorrhizal fungi (AMF).
The total ABA content represents the sum of all detected ABA-related metabolites in roots and root exudates, respectively
(see Section 2.1.1). Values are relative to the non-infested and non-inoculated control (dashed line), and are means of four
biological repeats (i.e., independent experiments), with three plants per variant analyzed within each repeat. Error bars
indicate standard error of the mean (SE). *** p < 0.001, ** p < 0.01, and * p < 0.05 (Student’s t-test).

2.1.2. Auxins

Our hormonal profiling of tobacco root samples led to the identification of free indole-
3-acetic acid (IAA), the inactive conjugate of IAA with aspartate (IAA-Asp), the catabolite
oxindole-3-IAA (oxIAA), as well as the IAA precursor indole-3-acetamide (IAM). Myc-
orrhizal roots as well as roots co-cultivated with parasitic seeds were characterized by
increased content of IAA (Figure 2a). The levels of IAA-Asp and IAM were similar to those
in control root samples except for the reduced IAM content measured in mycorrhizal roots
with broomrape infestation (Figure 2a).
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Figure 2. Levels of auxin-related metabolites in roots (a) and exudates (b) of tobacco plants upon broomrape infestation
and/or colonization with arbuscular mycorrhizal fungi (AMF). The total auxin content represents the sum of all detected
IAA-related metabolites in roots and root exudates, respectively (see Section 2.1.2). Values are relative to the non-infested
and non-inoculated control (dashed line), and are means of four biological repeats (i.e., independent experiments), with
three plants per variant analyzed within each repeat. Error bars indicate standard error of the mean (SE). *** p < 0.001 and *
p < 0.05 (Student’s t-test). Abbreviations: indole-3-acetic acid (IAA), IAA-aspartate (IAA-Asp), indole-3-acetamide (IAM),
oxindole-3-IAA (oxIAA), indole-3-carboxaldehyde (IAD).



Int. J. Mol. Sci. 2021, 22, 13677 5 of 17

Furthermore, we detected the presence of three auxin-related metabolites in root
exudates: free IAA, oxIAA, and indole-3-carboxaldehyde (IAD), an intermediate in one
of the biosynthetic pathways of IAA (reviewed in [38]). It should be noted that the
data variation in the concentrations of IAA-related species in all four biological repeats
was unusually high. Nevertheless, we observed a clear reduction in the IAA levels in
samples with exudates of mycorrhizal plants (Figure 2b). In spite of the higher content of
IAA in broomrape-infested roots, their exudates were not significantly enriched in auxin
(Figure 2b). There were also no noticeable differences in the amounts of released oxIAA
and IAD in all studied samples.

2.1.3. Cytokinins (CKs)

In tobacco root tissues, we detected a number of CK-related metabolites falling into the
groups of CK bases (trans-zeatin, cis-zeatin, dihydrozeatin), CK ribosides (trans-zeatin ribo-
side, cis-zeatin riboside, dihydrozeatin riboside, isopentenyladenosine), CK N-glucosides
(N7- and N9-glucosides of trans-zeatin, cis-zeatin, dihydrozeatin, and isopentenyladenine),
CK O-glucosides (trans-zeatin-O-glucoside, cis-zeatin-O-glucoside, cis-zeatin riboside-O-
glucoside), and CK phosphates (trans-zeatin riboside monophosphate; cis-zeatin riboside
monophosphate, isopentenyladenosine monophosphate).

Among the CK metabolites, the free nucleobases are the only high-affinity ligands for
CK receptors in plants [39]. It is now accepted that both trans- and cis-zeatin forms pos-
sess biological activity, the cis-isomer role being more pronounced under growth-limiting
conditions [40]. CK phosphates are precursors in the CK biosynthetic pathways [41]. CK
ribosylation is a reversible modification, and CK nucleosides are the predominant trans-
portation form in plant vascular tissues [41]. In turn, O-glucosides are CK storage forms
that can also be converted back to active CKs [41]. N-glucosides seem to be the prevailing
metabolites within the CK pool [42]. Recent findings have revealed that N-glucosylation
of isopentenyladenine leads to irreversible inactivation, while the N-glucosides of trans-
zeatin can be cleaved back to the active CK nucleobase [43]. As already observed in earlier
studies [21,44], the total CK content in mycorrhizal roots was higher compared to that in
non-mycorrhizal controls (Figure 3a). In AM colonized roots, we found an increase in the
levels of bioactive CK bases, while the amount of CK ribosides and N-glucosides remained
unaffected. Likewise, the roots of broomrape-infested plants were characterized by higher
concentrations of CK bases, but were also enriched in CK nucleosides (Figure 3a).

Regarding the CK profile of root exudates, we detected the presence of CK bases
(isopentenyladenine, cis-zeatin), CK ribosides (cis-zeatin riboside, isopentenyladenosine),
CK N-glucosides (N7-glucosides of cis-zeatin and isopentenyladenine), as well as cis-zeatin
riboside-O-glucoside. In contrast to the augmented levels of CK bases detected in mycor-
rhizal and/or broomrape-infested roots, the corresponding exudates were characterized
by diminished presence of these bioactive CK forms (Figure 3b). As a whole, exudates of
AM-colonized roots contained considerably less CK-related species, including CK ribosides
and N-glucosides (Figure 3b).

2.1.4. Phenolic Compounds

Out of the metabolites with phenolic moiety in tobacco root tissues, we analyzed
phenylacetic acid (PAA), salicylic acid (SA), and benzoic acid (BzA). The same compounds
were found in the medium with exudates where phenylacetamide was also present. PAA
has weak auxin activity and, unlike IAA, the PAA concentration gradient along the plant
tissues is established by local differences in its biosynthesis rather than polar transport [45].
In turn, BzA is one of the biosynthetic precursors of SA, a key hormone involved in plant
defense responses [46,47]. In our hormone profiling assays, we did not observe differential
accumulation of PAA in tobacco roots and root exudates as a result of AM colonization
and/or broomrape development (Figure 4a,b). Interestingly, the roots of infested plants
were characterized by lower SA levels, and co-cultivation with AM spores and broomrape
seeds led to reduction in the BzA concentration (Figure 4a). Besides, mycorrhizal roots
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were found to release significantly less SA into the medium compared to non-inoculated
controls (Figure 4b).
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Figure 3. Levels of cytokinin (CK)-related metabolites in roots (a) and exudates (b) of tobacco plants upon broomrape
infestation and/or colonization with arbuscular mycorrhizal fungi (AMF). The total CK content represents the sum of
all detected CK-related metabolites in roots and root exudates, respectively (see Section 2.1.3). Values are relative to
the non-infested and non-inoculated control (dashed line), and are means of four biological repeats (i.e., independent
experiments), with three plants per variant analyzed within each repeat. Error bars indicate standard error of the mean (SE).
*** p < 0.001, ** p < 0.01, and * p < 0.05 (Student’s t-test).
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Figure 4. Levels of phenylacetic acid (PAA), salicylic acid (SA), and benzoic acid (BzA) in roots (a) and exudates (b) of
tobacco plants upon broomrape infestation and/or colonization with arbuscular mycorrhizal fungi (AMF). Values are relative
to the non-infested and non-inoculated control (dashed line), and are means of four biological repeats (i.e., independent
experiments), with three plants per variant analyzed within each repeat. Error bars indicate standard error of the mean (SE).
*** p < 0.001 and ** p < 0.01 (Student’s t-test).

2.2. Strigolactone (SL) Levels in Root Exudates

SLs are synthesized in extremely low amounts and, in spite of the significant progress
in the last few years [48,49], their detection in root tissues is still challenging. Here, we
adapted a protocol for purification and quantitative determination of SLs in root exudates
of oriental tobacco plants which are known for the very high abundance of secondary
metabolites [50] that hamper the efficient detection of poorly represented molecules in
the complex exudate matrix. For concentration and purification of the analytes of interest
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through solid phase extraction (SPE), we first tested the capacity of reversed phase columns
with silica-based C18 sorbent to retain SLs. Water solution containing two SL standards, i.e.,
2′-epi-orobanchol (2′-epi-ORB) and 5-deoxystrigol, was applied to preconditioned Sep-Pak®

Plus cartridges. Following elution with acetone, aliquots from the loading solution, the
flow-through fraction, and the eluate were analyzed by LC-MS/MS (Figure S2). Loss of
the methyl butenolide ring upon fragmentation of the protonated molecular ion [M + H]+

is associated with the generation of a product ion at m/z 97 in the mass spectra which is
a characteristic feature of all canonical strigolactones subjected to LC-MS/MS analysis.
The absence of detectable SL signals in the flow-through fraction demonstrated efficient
retention of the molecules of interest on the column. Peak area quantifications of the amount
of 2′-epi-ORB and 5-deoxystrigol before SPE and in the final eluate revealed acceptable
recovery of 2′-epi-ORB (65 %) and 5-deoxystrigol (85 %), albeit lower than recently reported
data with polymer-based sorbents with dual retention mode of action [49].

One-step elution of SPE-purified compounds from complex metabolite mixtures, such
as root exudates, leads to significant ion suppression during the LC-MS analysis. Hence,
stepwise elution with a range of concentrations of the eluting solvent has already been pro-
posed to substantially decrease sample complexity through elimination of highly abundant
interfering compounds from the sample matrix [51]. Here, we performed four-step elution
of SPE-purified SL standards 2′-epi-ORB and GR24 with 25 %, 50 %, 75 %, and 100 % acetone
in order to determine the acetone fraction with maximal recovery of the two SL species. The
LC-MS analysis of all fractions showed that most of the retained molecules were efficiently
eluted with 50 % acetone (Figure S3), a fraction that had previously been shown to have
the highest activity in broomrape seed germination and AM hyphal branching assays [52].
Thus, that concentration was chosen for elution of SPE-purified root exudates following a
washing step with 25 % acetone for removal of background compounds from the sample.

In total, four different batches of plants grown in different seasons were used for
collection of root exudates. The presence of tobacco-specific SL species [13] in the exudates
was assessed by means of LC-MS/MS in multiple reaction monitoring (MRM) mode. Out
of the monitored SLs, we were able to detect clear peaks above the threshold corresponding
to orobanchol/2′-epi-orobanchol (ORB) based on retention time and characteristic m/z
transitions 347 > 97 and 347 > 233 (Figure 5a). To take into account the variations due
to ion suppression throughout the samples, we added GR24 as internal standard to each
of the root exudates prior to SPE. The peak areas of ORB and GR24 in the exudate were
normalized to those of the two SLs dissolved in water and processed in the same manner.
The quantitative analysis revealed a drastic decrease in the ORB levels measured in root
exudates of plants infested with broomrape irrespective of the presence of developing
AM fungi in the system (Figure 5b). The amount of ORB in exudates from non-infested
mycorrhizal roots was slightly lower than that in non-inoculated controls, the difference
being of no statistical significance (Figure 5b).

2.3. Impact of Phelipanche on the Germination Stimulant Activity of Root Exudates
and AM Development

As mentioned above, plant hosts, parasitic plants, and AM fungi jointly contribute
to the composition of phytohormones and signaling molecules in the rhizosphere, thus
influencing each other’s development. To dissect the impact of every partner in this tri-
partite model system, we first tested the potential of root exudates from infested and/or
mycorrhizal tobacco plants to induce germination of Phelipanche seeds in in vitro condi-
tions. Treatments with crude exudates from infested plants with and without colonization
with R. irregularis triggered weaker broomrape seed germination (Figure 6a). This lower
potential for stimulation of parasitic seed sprouting is in accordance with the reduced
levels of ORB in exudates of infested plants (Figure 5b). The germination stimulant activity
of root exudates from mycorrhizal non-infested plants was also lower compared to the
non-inoculated controls (Figure 6a) which is in line with earlier observations dealing with
similar model systems [53,54].
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Figure 5. Levels of orobanchol/2′-epi-orobanchol (ORB) in exudates of tobacco plants upon broomrape infestation and/or
colonization with arbuscular mycorrhizal fungi (AMF). (a) Multiple reaction monitoring (MRM) chromatograms showing
the ORB-specific transitions of m/z 347 > 97 (green) and 347 > 233 (magenta). The retention time and transitions of
2′-epi-orobanchol (2′-epi-ORB) standard in water solution are also presented (bottom). (b) Quantification of the ORB levels
expressed as pmol compound that a plant exudes for 48 h. Values are means of four biological repeats, (i.e., independent
experiments), with four plants per variant analyzed within each repeat. Error bars indicate standard error of the mean (SE).
** p < 0.01 (Student’s t-test) relative to the non-infested and non-inoculated control.
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Figure 6. Antagonistic interactions within the system of host plants, parasitic plants, and AM fungi. (a) Germination
stimulation activity of exudates from infested and/or inoculated tobacco plants on broomrape seeds in in vitro conditions.
Treatments with water and the synthetic strigolactone GR24 (1.67 µM) were used as negative and positive controls,
respectively. (b) Extent of mycorrhization of infested vs. non-infested tobacco roots. (c) Extent of broomrape infestation of
mycorrhizal vs. non-mycorrhizal tobacco roots expressed as percentage of plants with at least one visible tubercle. Values
are means of five biological repeats, i.e., independent plant cultivations and exudate collections. Error bars indicate standard
error of the mean (SE). *** p < 0.001 and * p < 0.05 (Student’s t-test).

Next, we analyzed the extent of tobacco root colonization with R. irregularis with or
without broomrape infestation. We observed a strong reduction in mycorrhization when
host plants were co-cultivated with seeds of Phelipanche (Figure 6b). Hence, the parasitic
plant interferes with AM development. Regarding broomrape development, we could not
notice clearly distinguishable changes in the number of host plants with visible tubercles
when the root system was inoculated with AM spores (Figure 6c). Nevertheless, an impact
of mycorrhizal colonization on tubercle development cannot be ruled out completely
as previous studies with a similar pathosystem have revealed a mild decrease in the
number of tubercles per plant in case of co-cultivation with AM fungi [53]. Overall, our
results revealed the dominant role of Phelipanche in the antagonistic interactions within the
tripartite system of host plant - parasitic plant - AM fungi.

3. Discussion

Since most of the land plants are involved in symbiotic interactions with AM fungi [8],
the chemical communication within pathosystems of plant hosts and holoparasites in
nature is performed in the context of AM development. Based on carbon costs, host plants
regulate the extent of mycorrhization to maintain the balance between beneficial AM sym-
biosis and AM parasitism [55]. Here, we observed broomrape-induced suppression of AM
colonization, suggesting that the holoparasite might disturb the establishment of beneficial
plant host-AMF interactions through competition with R. irregularis for host-derived pho-
tosynthates. Direct physical connections in the tripartite system ensure multidirectional
exchange of water and nutrients, but also of small-molecule signals that concomitantly
shape the metabolic activity of all partners. SLs are such key chemical signals with a central
role for the autoregulation within the system. Their synthesis and exudation by the hosts
are finely modulated by other biotic factors and in response to the changing environmental
conditions [56,57]. It has already been demonstrated that plants with established AM
symbiosis release less SLs in the rhizosphere [54]. Our data revealed a substantial decrease
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in ORB exudation by broomrape-infested tobacco plants. Like the autoregulation in condi-
tions of excessive AM colonization, the reduced SL release by infested host roots might be
an adaptive strategy to suppress further parasitic seed germination. The latter is supported
by the lower germination stimulation activity of root exudates from broomrape-infested
tobacco plants.

Although the molecular mechanisms underlying the aforementioned feedback in-
hibition are yet to be explored, the crosstalk with plant defense phytohormones seems
to be essential for the adjustment of SL levels. In addition to its prominent role in plant
adaptation to abiotic stress conditions, ABA turns out to be intrinsically involved in plant
host interactions with AM fungi and holoparasitic plants [21,37,58]. As part of a common
module for defense response, JA-, SA-, and ABA-related tomato genes have been shown
to be upregulated at the initial stages of interaction of tomato plants with Phelipanche
ramosa [59]. Interestingly, their upregulation is accompanied by an increase in the expres-
sion of SL biosynthetic genes [59]. Moreover, SL-deficient tomato mutants are characterized
by reduced levels of JA, SA, and ABA, which renders them more susceptible to fungal
pathogens [60]. Like SLs, ABA is synthesized from carotenoid precursors, and the levels
of the two signaling molecules are a result of interdependent regulation [61]. It should be
noted that the trends of accumulation of endogenous SL hormones and those of exuded
SLs might not correlate in the course of broomrape infestation. The latter reflects the dual
role of SLs depending on their localization, i.e., growth regulators within plant tissues as
well as small-molecule signals with an impact on other organisms in the rhizosphere.

The auxin IAA has also been found to be involved in the regulation of SL exudation.
Reduction in the auxin content in an IAA-deficient mutant or after stem girdling leads to a
corresponding decrease in the amount of orobanchol and orobanchyl acetate in exudates of
pea plants which in turn negatively influences the extent of AM symbiosis [26]. However,
plants with non-impaired IAA metabolism and transport show different dynamics of IAA
and SL accumulation. In tobacco mycorrhizal roots, we registered higher amounts of
IAA, while the ORB levels in the root exudates were slightly lower than those in the non-
colonized controls. The same trends were observed in infested versus non-infested roots
and root exudates. An increase in auxin content in mycorrhizal roots has been documented
in several plant species except for tobacco [62,63]. The absence of an effect of R. irregularis
on tobacco root auxin content reported in [63] might be due to age-dependent specificities
in host plant response to AM colonization, as the hormonal analyses have been done with
young tobacco plants at an early stage of AM symbiosis.

The AM-induced accumulation of auxin in roots appears to induce local responses
essential for AM development. Such cell type-specific reprogramming triggered by auxin
has been demonstrated for arbuscule-containing host root cortical cells [62]. Likewise,
auxin-mediated reprogramming possibly takes place at the site of broomrape attachment
to the host root in the course of infestation. Cytokinins are another class of plant hormones
that act in concert with auxins to shape plant development in optimal and suboptimal
conditions [64]. Analogously to IAA, we detected an increase in the content of bioactive
CK bases in root tissues of mycorrhizal plants as well as in broomrape-infested samples.
The rise in CK levels might confer limitation of excessive mycorrhization and might also
restrict the further spread of broomrape infestation. Such a hypothesis is supported by
previous findings demonstrating that CKs play a central role in coordinating the extent of
AM colonization with the shoot and root growth of host plants through regulation of the
exchange of carbon and phosphate between the two partners [28].

Interestingly, the increased abundance of IAA and CK bases in host roots co-cultivated
with Phelipanche and/or R. irregularis did not result in respective enrichment of those
hormonal species in the root exudates. Moreover, the levels of IAA and all studied CKs
were consistently lower in exudates of AM colonized roots, a trend that was partially
reverted when broomrape was also present in the system. The functional significance
of exuded auxins and CKs has yet to be elucidated. Recent studies have demonstrated
that host-derived CKs can be released into the growth medium to serve as molecular
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signals for induction of haustorium formation of P. ramosa [65]. Besides, R. irregularis
also contributes to the CK composition of the growth medium as germinated spores have
been shown to release at least one CK metabolite (i.e., isopentenyladenosine) [29]. In
turn, all three partners in the system host-parasite-AM fungus produce auxin and possibly
contribute to the auxin levels measured in the medium [29,31]. In Phelipanche, the processes
of hormone production and exudation are poorly explored. Whole-genome sequencing of
representatives of the Orobanchaceae family should shed light on which of the conventional
pathways for phytohormone biosynthesis are functional in broomrapes.

In conclusion, we managed to identify previously undescribed hormone-related
metabolites present in tobacco root exudates. The comparative analysis in roots and
root exudates revealed characteristic hormonal profiles associated with the impact of myc-
orrhization as well as with broomrape development. For most of the studied metabolites,
the trends detected upon co-cultivation of tobacco concomitantly with AM spores and
broomrape seeds resembled those registered in samples from broomrape-infested non-
inoculated plants, an observation pointing to a dominant effect of broomrape over the
AM fungus within the tripartite system. A schematic summary of the most characteristic
changes in the plant hormonome identified in this study is provided in Figure 7. In the
long term, these findings might expand the possibilities for modulating the communication
in the host plant-parasitic plant-AM fungi system in search for advanced strategies for
improvement of host plant tolerance to Phelipanche infestation.
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with R. irregularis in broomrape-infested tobacco plants.
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4. Materials and Methods
4.1. Plant and Fungal Material

Seeds of oriental tobacco (Nicotiana tabacum L., cultivar Krumovgrad 90) were sourced
from the collection of the Tobacco and Tobacco Products Institute. Broomrape seeds were
harvested from infested tobacco fields in the region of Plovdiv, Bulgaria (42◦04′55.2′′ N,
24◦42′16.8′′ E), and were a mixed population of Phelipanche ramosa (L.) Pomel and Pheli-
panche mutelii (Schultz) Pomel [66]. Spores of the AM fungus Rhizophagus irregularis (also
known as Glomus intraradices) were purchased as ready-to-use MycoPlant® inoculant from
Tratamientos Bio-Ecológicos, S.A (San Javier, Spain).

4.2. Growth Conditions and Preparation of Root Exudates

Tobacco seeds were sown on water-soaked perlite and germinated for three weeks in a
growth chamber at 22◦C and 60% relative humidity under a 16-h light/8-h dark cycle (white
light emitted by fluorescent lamps with intensity of 130 µmol m−2 s−1) followed by transfer
to individual pots with diameter 5.5 cm filled with perlite that was prewetted with 1/8
strength Murashige and Skoog (MS) medium (pH 5.7). At that stage, seeds of Phelipanche
spp. and/or spores of R. irregularis were added to the growth substrate proximal to the roots
of the transplanted seedlings. The plants were further grown under the aforementioned
conditions for 40 to 50 days and watered weekly with 1/8 MS medium. In total, 35 plants
per treatment were cultivated within each biological repeat to ensure enough material for
all metabolomic and phenotyping assays described below. For collection of root exudates
from individual plants, the perlite was removed and the intact plants with rinsed roots
were transferred to glass beakers where the root system was covered with 100 mL of
distilled water. After 48-hour incubation in the same growth chamber, the water solution
was passed through paper filters (2 µm pore size) and further processed for purification of
plant hormones.

4.3. Determination of Plant Hormones in Root Exudates

The endogenous phytohormones in crude root exudates were determined accord-
ing to Prerostova et al. [67]. In brief, 50 uL aliquots of root exudates were spiked with
stable isotope-labeled internal standards (1 pmol/sample) and directly used for LC/MS.
The phytohormonal metabolites were separated on Kinetex EVO C18 column (2.6 µm,
150 × 2.1 mm, Phenomenex, Torrance, CA, USA). The mobile phase A contained 5 mM
ammonium acetate and 2 µM medronic acid in water, while phase B consisted of 95 % (v/v)
acetonitrile in water. The following gradient was used: 5% B in 0 min, 5–7% B (0.1–5 min),
10–35% B (5.1–12 min) and 35–100% B (12–13 min), followed by a 1 min hold at 100%
B (13–14 min) and return to 5% B. Hormone analysis was done with an LC/MS system
consisting of UHPLC 1290 Infinity II (Agilent, Santa Clara, CA, USA) coupled to 6495 Triple
Quadrupole Mass Spectrometer (Agilent, Santa Clara, CA, USA), operating in multiple
reaction monitoring (MRM) mode, with quantification by the isotope dilution method.
Data acquisition and processing was performed with Mass Hunter software B.08 (Agilent,
Santa Clara, CA, USA).

4.4. Strigolactone Purification and Quantification in Root Exudates

SL content determination was done in freshly collected root exudates from individual
plants. To each sample, racemic GR24 (Chiralix, Nijmegen, Netherlands) was added as
internal reference at a final concentration of 100 nM. The exudates were then subjected to
solid phase extraction (SPE) using Sep-Pak Plus Short tC18 columns with 400 mg sorbent
(Waters). To reduce the matrix effect, stepwise elution with 25 % and 50 % acetone was
undertaken, and the 50 % acetone fraction was further used for SL analysis. A standard
water solution containing GR24 (100 nM) and 2′-epi-orobanchol (500 nM, OlChemIm s.r.o.,
Olomouc, Czech Republic) was processed in the same way as the root exudates. The acetone
was evaporated, and the dry matter in the samples was re-dissolved in 50 % acetonitrile in
water prior to loading for LC-MS/MS. The chromatographic separation was performed on
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Kinetex C18 column (2.6 µm, 100 × 3 mm, Phenomenex) at a rate of 0.3 mL/min. Mobile
phases consisted of A: 50 mM acetic acid in water, B: water, and C: acetonitrile:water
(95:5, v/v). Mobile phase A at 5% was kept constant throughout the run. The gradient
program was as follows: 25–95% C in 7 min, followed by 2 min hold at 95% C, and return
to 25% C for 1 min with a total cycle time of 14 min. The MS was set up in positive
electrospray ionization mode. SL content was analyzed in MRM mode. The retention times
and MRM transitions from root exudates were compared to those of synthetic SL standards
(OlChemIm): 2′-epi-orobanchol (diagnostic MRM m/z transitions 347 > 97 and 347 > 233),
orobanchyl acetate (389 > 97, 389 > 233), and 5-deoxystrigol (331 > 97 and 331 > 217). The
most intense MRM transition was used for quantitative assessment of SL levels.

4.5. Plant Hormone Profiling in Tobacco Roots

Within each biological repeat, part of the plants not used for root exudate collection
were cleaned from perlite, and the distal end of the root system was sectioned, weighed,
and immediately frozen in liquid nitrogen (approximately 150 mg fresh weight/sample).
The root material was homogenized with zirconium oxide beads (5 mm diameter) in
TissueLyser LT (Qiagen) for 2 min at 50 Hz. Plant hormone extraction and purifica-
tion was performed as described before [68,69]. In brief, cold extraction solvent consist-
ing of methanol/water/formic acid in a 15:4:1 (v/v/v) ratio was added to the homoge-
nized root material together with a mixture of stable isotope-labeled internal standards
(10 pmol/sample). SPE was performed using Oasis MCX columns (Waters) with mixed-
mode polymeric sorbent (30 mg) and yielded two fractions: the first one eluted with
methanol containing metabolites of acidic and neutral character (incl. auxins, ABA, SA, JA),
and the second one eluted with 0.35 M ammonium hydroxide in 70 % methanol containing
basic compounds (incl. CKs). Following evaporation, the first fraction was redissolved
in 15 % acetonitrile in water, while the basic fraction was redissolved in 5 % methanol in
water. Fractions were analyzed by HPLC (Ultimate 3000, Dionex, Sunnyvale, CA, USA)
coupled to the 3200 Q TRAP hybrid triple quadrupole/linear ion trap mass spectrometer
(Applied Biosystems, Waltham, MA, USA). The LC-MS conditions were set as described
previously [69]. The hormones were quantified by the isotope dilution method with mul-
tilevel calibration curves (r2 > 0.99). Data processing was carried out with Analyst 1.5
software (Applied Biosystems).

4.6. Phelipanche Seed Germination Tests

Broomrape seeds were surface-sterilized by incubation for 10 min in a solution of
absolute ethanol and sodium hypochlorite (12 % Cl) mixed in a 4:1 (v/v) ratio followed by
3 rinses with absolute ethanol. The air-dried sterilized seeds were sown on a Whatman
GF/C filter (1 x1 cm size) soaked with autoclaved water and then covered with another
GF/C filter of the same size. Six to seven of the seed-containing stacks were placed in
a 9 cm round Petri dish, sealed with parafilm and incubated for seven days at 24 ◦C in
the dark for seed conditioning. At the end of the seed imbibition period, the stacks were
transferred to a new Petri dish, the water was left to evaporate for 15 to 20 min in a clean
bench, and replaced by a solution of root exudates (200 µL solution per stack). The Petri
dish was again sealed with parafilm and incubated for another 7 days at 24 ◦C in the dark.
The seeds were then separated from the filter paper and distributed in small portions in
water drops to facilitate the subsequent counting of the percentage of germinated seeds out
of the total number of sown seeds. Treatment with distilled water was done as negative
control. Positive control experiments were done with racemic GR24 prepared as 1.67 µM
solution in 0.05 % acetone. The germination of at least 200 broomrape seeds per treatment
was inspected within each of the five biological repeats.

4.7. Mycorrhization Analysis

After perlite removal, the roots were cleared and stained with 0.05 % trypan blue as
described previously [70]. Tobacco root colonization by R. irregularis was quantified by
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means of the gridline intersect method [71]. The roots of 10 plants were analyzed within
each of the five biological repeats.

4.8. Statistical Analysis

P values were calculated with a two-tailed Student’s t-test using Excel software. The
sample size and number of independent biological repeats for each type of analysis are
provided above.
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