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Abstract
Neurons in the cerebral cortex stratify on the basis of their time of origin, axonal terminations

and the molecular identities assigned during early development. Olfactory cortices share

many feature with the neocortex, including clear lamination and similar cell types. The pres-

ent study demonstrates that the markers differentially expressed in the projection neurons

of the cerebral cortex are also found in olfactory areas. Three of the four regions examined

(pars principalis of the anterior olfactory nucleus: AONpP, anterior and posterior piriform

cortices: APC, PPC, and the olfactory tubercle) expressed transcription factors found in

deep or superficial neurons in the developing neocortex, though large differences were

found between areas. For example, while the AONpP, APC and PPC all broadly expressed

the deep cortical marker CTIP2, NOR1 (NR4a3) levels were higher in AONpP and DAARP-

32 was more prevalent in the APC and PPC. Similar findings were encountered for superfi-

cial cortical markers: all three regions broadly expressed CUX1, but CART was only

observed in the APC and PPC. Furthermore, regional variations were observed even within

single structures (e.g., NOR1 was found primarily in in the dorsal region of AONpP and

CART expression was observed in a discrete band in the middle of layer 2 of both the APC

and PPC). Experiments using the mitotic marker EDU verified that the olfactory cortices and

neocortex share similar patterns of neuronal production: olfactory cells that express mark-

ers found in the deep neocortex are produced earlier than those that express superficial

makers. Projection neurons were filled by retrograde tracers injected into the olfactory bulb

to see if olfactory neurons with deep and superficial markers had different axonal targets.

Unlike the cerebral cortex, no specificity was observed: neurons with each of the transcrip-

tion factors examined were found to be labelled. Together the results indicate that olfactory

cortices are complex: they differ from each other and each is formed from a variable mosaic

of neurons. The results suggest that the olfactory cortices are not merely a remnant archi-

type of the primordial forebrain but varied and independent regions.
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Introduction
The development of the cerebral cortex has been actively investigated for decades. The deep
ventricular and subventricular layers of the early telencephalon produce several kinds of pro-
genitor cells. The earliest neurons arising from these precursors come to reside within a struc-
ture known as the preplate that emerges by about embryonic day 10.5 in the mouse. About a
day later the cortical plate begins to form within the preplate; subsequent maturation yields the
six layers of the mature structure. The production of projection neurons (pyramidal cells) des-
tined for the neocortex follows a strict sequence over a period of about 6 days in mice. Neurons
occupying the deepest layers are formed first with successive divisions populating increasingly
superficial layers. Each neocortical layer has characteristic neuronal types. For example, the
deepest layer, layer 6, houses most of the corticofugal cells forming feedback connections to
thalamic nuclei. Most of the neurons projecting to a variety of non-thalamic targets, including
the pons, superior colliculus and the spinal cord, are found in layer 5. Intra-cortical projection
neurons preferentially reside in the superficial layers 2–3 [1–6].

The progressive changes in the precursor cells that allow the formation of these different
classes of projection neurons have been extensively examined. Dozens of transcription factors
have been identified that are characteristically expressed by both germinal cells and by neurons
residing in specific cortical layers (Fig 1; [5, 7–10]). For example, some preplate progenitors
and neurons express Nurr1 (also known as NR4A2 [11–12]). Most glutamatergic pyramidal
cells express TBR1 [13–17]. Early-born cells that become neurons residing in layers 5 and 6
express markers such as FOXP2 [18], CTIP2 [19], DARPP-32 [20, 21] and NOR1 (also known
as NR4A3 [7]). BRN2 labeling is associated with neurons found in layers 2/3 and a small cohort
of cells in layer 5 [1, 22, 23]. Other markers have been discovered that are associated primarily
with cortico-cortical projection neurons found in superficial layers (e.g., CUX1 in layers 2–4
[24] and CART in layer 3 [25, 26]). Thus, different populations of cortical neurons can be iden-
tified by their time of origin, laminar location, projection pattern, and molecular signatures.

Germinal zones that form neocortical projection cells (e.g., the “cortico-striatal junction”
[27, 28]; broad regions of the developing telencephalon; [29]) also produce cells that migrate
into regions of the olfactory cortex. Olfactory cortex is often defined as those areas receiving a
direct projection from the olfactory bulb (OB: e.g., [30, 31]). These regions are, like the cerebral
cortex, clearly laminated with a cell-poor outer molecular layer. However, they contain fewer
layers [e.g., pars principalis of the anterior olfactory nucleus (AONpP) has 2 layers, while the
anterior and posterior piriform cortices (APC, PPC) and olfactory tubercle (OT) have 3, Fig 2].
The AONpP, APC and PPC contain stereotypical pyramidal neurons but the OT does not [32,
33]. The purpose of the present work was to determine a) if neurons in olfactory cortical
regions express the same transcription factors as cells in neocortical layers, b) if both superficial
and deep markers are apparent and c) if the markers are uniformly distributed in all the
regions. The presence of the markers would suggest that similar developmental and evolution-
ary processes shaped the different cortices.

Materials and Methods

Animals
These studies were carried out in strict accordance with the recommendations in the Guide for
the Care and Use of Laboratory Animals of the National Institutes of Health. All protocols
were approved by the University of Virginia’s Institutional Animal Care and Use Committee
(PHS service assurance number #A3245-01; USDA registration #: 52-R-0011). All surgery was
performed in aseptic conditions with isoflurane anesthesia, and all efforts were made to
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Fig 1. Staining patterns for each of the probes used in the present study in the frontal neocortex. Panel A shows staining for NURR1 labeled cells in
the preplate; the deepest region of the cortex. TBR1 (panel B) labeled all projection neurons in the cortex, including those found in layers 2, 3, 5 and 6. Panels
c and d depict four markers for deep (5 and 6) layers: NOR1 (Nr4A3), DAARP-32; FOXP2 and CTIP2. BRN2 identified cells in layers 2 and 3 as well as a
small number of cells in layer 5 (panel E). The superficial markers used included CUX1 (Layer 2–4, Panel F) and CART (Layer 3, Panel G). Scale
bar = 200μm. Numbers in panel A delineate cortical layers. See text for details.

doi:10.1371/journal.pone.0138541.g001

Fig 2. Nissl section depicting the regions studied. The low power micrographs in panels A, C and E show
the regions from which sections were selected to examine pars principalis of the anterior olfactory nucleus
(AONpP, Panel A), anterior piriform cortex (APC) and olfactory tubercle (OT, Panel C) and posterior piriform
cortex (PPC, Panel E). The boxed regions in each panel are the zones depicted in Figs 3–6. OB = olfactory
bulb, TT = tenia tecta. Panels B, D, and F are higher magnification views of the laminar structure of the areas.
All zones have an outer molecular layer (layer 1). The AONpP has one cellular zone (layer 2), while the
piriform cortices and OT have two (layers 2 and 3). Scale bar for B, D, and F = 200μm. See text for details.

doi:10.1371/journal.pone.0138541.g002
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minimize suffering. Animals were euthanized by deep anesthesia with sodium pentobarbital
(Euthasol, 0.39mg drug/gm body weight). All mice (C57Bl/6J Jackson Labs; Bar Harbor, ME)
were housed in standard polypropylene cages with food (8604, Harlan, Frederick, MD) and
water ad libitum. The colony was maintained on a 12:12 light:dark cycle in a temperature- and
humidity-controlled room.

Immunostaining and analysis
Fluorescence immunohistochemistry was used to stain free-floating 60 μm-thick vibratome
sections. Mice (20–25 days old) were perfused with freshly prepared paraformaldehyde and
allowed to postfix for 2 hrs at 4°C. The sections were rinsed 4 times in 0.01 M phosphate buff-
ered saline (PBS pH 7.4). Next, the tissue was incubated in 0.01 M citrate buffer pH 8.5 at 80°C
(2 X 15 min, [34]). After cooling at room temperature for 5 min, the sections were washed in
PBS (2 X 2.5 min), permeablized in 0.03% Triton in PBS (TW: 4 X 5 min), and placed into
blocking solution (0.5% normal donkey serum in TW; Jackson ImmunoResearch,West Grove
PA) for one hr. Sections were then placed into primary antibody (Table 1) at least overnight at
4°C. They were then washed (PBS 4X5 minutes) and incubated in secondary antibody (1/250
to 1/450 in TW: Jackson ImmunoResearch donkey anti-rabbit: catalog number 711-165-152 or
711-545-152; donkey anti-goat: 705-165-147 or 705-545-147; donkey anti-mouse: 715-485-150
or 715-545-151; donkey anti-rat: 712-165-153) for 1 hr, washed again (PBS 4 X 5 min) and
mounted on slides with SlowFade mounting media (Invitrogen: S36937). To observe tissue
organization some sections were also Nissl-stained (640 nm Neurotrace; Invitrogen: N-21483).
In each case, deletion of the primary antibody resulted in no staining.

Cell Birthdating
To examine differences in the time of origins of neuronal classes pregnant mice were injected
with 5-ethynyl-2'-deoxyuridine (EDU: Carbosynth, San Diego CA; 50 mg/kg). Two injections
were administered separated by 2 hrs during the first hours of the lights-on period of either
E12 or E16 (day of mating = E0). Brains from P20 subjects were sectioned and stained as above
and EDU-containing cells visualized with ClickIt assay kits from Life Technologies (Grand
Island, NY).

Retrograde neuronal labeling
Iontophoretic injections of biotinylated dextran amines (BDA, 3000MW, Invitrogen, Carlsbad
CA: D7135, Lot 57319A) were used to visualize the somas of identified projection neurons.
Young (20–25 day old) mice were anesthetized with isoflurane and craniotomized under asep-
tic conditions. Glass micropipettes (tip size 20–50 μm) were lowered into the rostral half of the
OB to ensure that injections would not overlap with the AON. BDA iontophoresed for 10 min-
utes (10% solution in citrate buffer: 10–30 μA positive current, 7 second duty cycle). After a 5
min incorporation period pipettes were slowly withdrawn and the wounds closed with surgical
adhesive. Four to seven days later mice were deeply anesthetized with sodium pentobarbital
(Euthasol, 0.39mg drug/gm body weight) and perfused transcardially with PBS followed by 4%
buffered formaldehyde freshly depolymerized from paraformaldehyde. Vibratome sections of
the brains were treated as above to assess the transcription factors expressed in BDA labeled
cells in the AONpP, APC and PPC. Inspection of the injection sites indicated that the method
labeled about 20–40% of the OB and verified that BDA did not encroach on structures in the
peduncle
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Data Acquisition
In order to facilitate comparisons coronal sections were selected from standardized locations
(Fig 2). The same area of the AON used in previous work [35, 36] was chosen: the region in the
caudal olfactory peduncle where AONpP completely encircles the SVZ/ALAC core and layer 2
is still separate from the overlying cerebral cortex. The OT and APC were examined in rostral
sections where the corpus callosum had thinned into a flat band dorsally and surrounded the
anterior extent of the caudate/putamen. Sections of the PPC approximately 100 μm caudal to
the crossing of the anterior commissure were selected. A series of horizontal sections were also
examined for most of the antigens. Several sections from at least two subjects were examined
for each of the markers and analyses outlined below. Images were collected at 20X with an
Olympus confocal microscope. For each image two optical sections separated by 3 μmwere
combined, and montages were produced by tiling the images. Figures were produced by mini-
mally adjusting the brightness and contrast of the images with Adobe Photoshop (San Jose,
CA).

Results
Fig 1a–1g shows the staining patterns for each of the probes used in the present study in the
dorsal frontal neocortex. While the antibody to NURR1 marked cells in the neocortical sub-
plate (Fig 1a; {11,12]), no staining was observed in any of the olfactory cortical regions, findings
consistent with others suggesting no preplate exists in piriform regions during early life [30].
Immunostaining for TBR1 reliably marked both deep and superficial layer glutamatergic pro-
jection neurons (Fig 1b). Antibodies to NOR1, DAARP-32, FOXP2 and CTIP2 (Fig 1c and 1d)
preferentially labeled deep (layers 5–6) pyramidal cells. BRN2 identified projection neurons in
layers 2 and 3 as well as a small number of cells in layer 5 (Fig 1e). The superficial markers used
included CUX1 (layer 2–4, Fig 1f) and CART (layer 3, Fig 1g). Patterns of staining with these
markers in the four olfactory areas examined are detailed below.

AONpP
AONpP is often divided into subregions (pars dorsalis, pars lateralis, pars ventroposterior and
pars medialis) based on differences in organization and projections [37–38]. The cellular layer
(layer 2) of AONpP encircles the central white matter of the olfactory peduncle and the sub-
ventricular region/rostral migratory stream (Fig 2a). The superficial plexiform region (layer 1,
Fig 2b) envelopes layer 2 and underlies the LOT which is found on the lateral side of the
peduncle. Layer 1 can be divided into layer 1a, containing axon collaterals from OB projection
neurons and the apical dendrites of layer 2 neurons, and layer 1b, containing association axons
from olfactory cortical regions and sparse interneurons. TBR1 immunopositive cells were
widely spread throughout layer II as well as in the ventral tenia tecta (Fig 3a). The marker was
absent from the internal granule cell layer in the OB, a region densely populated by GABAergic
granule cells.

While all four of the deep cortical markers were found in AONpP, each was distributed dif-
ferently. For example, layer 2 exhibited dense and evenly-distributed CTIP2-positive cells (Fig
3b), while NOR1 was found primarily in dorso-medial regions (pars dorsalis; Fig 3c) Only
occasional, scattered DARRP-32 cells were observed in AONpP, though dense staining was
observed in the glomerular layer of the OB, an area containing large numbers of dopaminergic
interneurons (Fig 3c; [39]). In layer 1 scattered FOXP2 and CTIP2 (Fig 3b) positive cells were
observed although never in the same cells. FOXP2 cells were most often found near the OB,
while the sparse CTIP2 cells were more evenly distributed.

Olfactory Cortex Development
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Fig 3. Patterns of neocortical layer markers in the AONpP. A). TBR1-labelled cells were found throughout
Layer 2 of the AONpP as well as in the tenia tecta and mitral cell layer of the OB. B, C) Deep markers were
differentially distributed in the region. Layer 2 exhibited dense and evenly-spread CTIP2-positive cells (Fig
3b), while NOR1 was found primarily in the dorsal portion of the structure (Fig 3c, top) Cells expressing the
other two marker were rare and found primarily in layer 1: DARRP-32 (note dense staining in the glomerular
layer of the OB at left, an area containing large numbers of dopaminergic interneurons, Fig 3c; Liu et al, 2013)
and FOXP2 (most often found near the OB, Fig 3b). CTIP2 stained cells were also found in layer 1 but never
in cells that expressed one of the other markers. The superficial markers were also differentially distributed.
Both BRN2 (Fig 3d) and CUX1 (Fig 3e) were observed primarily in deep cells (except in pars medialis, where
CUX1-labeled cells spanned the entire region) with highest densities in the region under the LOT (pars
lateralis). All CUX1 cells also expressed BRN2, and over 90% of CUX1 and BRN2 cells also expressed
CTIP2. The anti-BRN2 antibody also labeled the LOT (right) and RMS (core of the olfactory peduncle). Scale
bar = 200μm. Dorsal to top, lateral to right.

doi:10.1371/journal.pone.0138541.g003
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Superficial markers were also observed to have a differential distribution. Both BRN2 (Fig
3d) and CUX1 (Fig 3e) were observed primarily in deep cells (except in pars medialis, where
CUX1-labeled cells spanned the entire region) with highest densities in the region under the
LOT (pars lateralis). All CUX1 cells also expressed BRN2, and over 90% of CUX1 and BRN2
cells also expressed CTIP2. No CART staining was observed. The anti-BRN2 antibody also
labeled the LOT and the rostral migratory stream/subventricular zone in the center of the
olfactory peduncle [35].

APC/PPC
Three layers are generally recognized in the piriform cortex (PC; Fig 2c and 2e). Like AONpP it
contains a similarly-organized superficial plexiform region (layer 1) encircling the LOT (Fig
2d). Layers 2 and 3 are both cellular regions. Layer 2 is thin and densely packed while layer 3 is
broader with more scattered cells; both areas contain pyramidal neurons that were visualized
with antibodies to TBR1 (Figs 4a and 5a). All three layers contain a variety of interneurons
[40–43]. The APC has been subdivided into several different zones [31, 44] and differs from
the PPC both on the basis of anatomy (e.g., APC provides more commissural projections, has a
thinner layer 3 and receives a stronger input from the OB, [40,44] and function (e.g., the APC
is considered to be more involved in odor identification, and the PPC in judging odor impor-
tance [45,46].

While both deep and superficial neocortical markers were found in the two regions, patterns
differed both between the two areas and between these regions and the AONpP. All four deep
markers were expressed. CTIP2-labeled cells were found throughout layer 2 in the PPC (Fig
5b), but were absent from the deep border of the region in the APC (Fig 4b). The other three
markers were only sparsely observed and showed regional differences. For example, very small
numbers of NOR1 cells were observed primarily in ventral portions layer 1 in both APC and
PPC (Figs 4c and 5c). FOXP2 cells were only observed in APC sections, where they were most
numerous in layer 1 and occasionally observed in layer 2. DARRP32 cells were found in layers
2 and 3 in both the APC and PPC. In sections of the PPC the marker was strongly expressed in
the lateral OT; the sharp difference in staining delineated a clear boundary between the two
regions (Figs 4c and 5c).

All three superficial markers were also observed in both regions. In the APCmost cell bodies
expressing BRN2 were observed in the ventral portion of the structure near the OT (Fig 4d). In
the remaining portion of the APC, BRN2+ cells were concentrated in the superficial regions of
both layer 2 and 3. In the PPC, BRN2 cells were evenly scattered though the structure in both
layers 2 and 3 (Fig 4d). CUX1 positive cells were observed in the deep portions of both layers 2
and 3 of the APC (Fig 4e). In the PPC they were found predominately in deep layer 2, but were
more widely scatted in Layer 3 (Fig 5e). In both regions, many though not all CUX1 positive
cells in layer 2 colocalized with CTIP2, but only a subpopulation of those in layer 3 exhibited
both markers. Not all CTIP2 cells expressed CUX1 though, especially in the superficial portion
of layer 2. CART immunoreactivity was observed in a discrete band in the middle of layer 2 in
both the APC and PPC (Figs 4f and 5f).

Olfactory Tubercle
Found adjacent to the APC on the ventromedial side of the brain (Fig 2c), the OT has a thin
layer 1 (Fig 2f). The OT has a dense layer 2 that forms a series of gyrations: the apical peaks of
these gyrations contain small sets of granule cells. The deep layer 3 includes several kinds of
projection and intrinsic neurons [32], the island of Calleja [47] and elements of the ventral pal-
lidum and nucleus accumbens [32, 33, 48].
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TBR1 immunoreactive cells were not observed in the region (Fig 6a). Both CTIP2 and
FOXP2 cells were broadly present in layer 2 and scattered in layer 3 (Fig 6b). On the medial
side most FOXP2 cells coexpressed CTIP2 but the percentage of cells with both markers was
reduced laterally. DARRP-32 cells were dense on the lateral side near the APC and in deep
regions of the OT, while NOR1 cells were found in layer 2 in the medial OT (Fig 6c). Sparse

Fig 4. Patterns of neocortical layer markers in the APC. A) TBR-1 heavily labeled cells in Layer 2 as well as scattered cells in Layer 3. Of the 4 deep layer
markers (B,C), only CTIP2 exhibited dense staining. The other three (FOXP2, NOR1 and DAARP32) labeled sparse number in Layers 1–3. The dense
staining for FOXP2 and DAARP32 seen at the bottom of the figures sharply demarcates the APC from the more ventral OT. The other three makers exhibited
very different patterns: BRN2 staining was found more in the ventral APC (D), CUX 1 in the deeper portions of both Layer 2 and 3 (E), and CART in the middle
of Layer 2(F). Scale bar = 200μm. Dorsal to top, lateral to right.

doi:10.1371/journal.pone.0138541.g004
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Fig 5. Patterns of neocortical layer markers in the PPC. A) TBR-1 heavily labeled cells in Layer 2 as well
as scattered cells in Layer 3. As in the APCmany cells in layers 2 and 3 exhibited the deep marker CTIP2 (B).
Only widely scattered cells exhibited FOXP2 and DAARP 32 and NOR1 (B,C). The other three makers
exhibited very different patterns: CUX 1 staining (E) was strong throughout layers 2 and 3, BRN2 staining
much more modest in the same regions, CART was restricted to the middle of layer 2 (F). Scale bar = 200μm.
Dorsal to top, lateral to right.

doi:10.1371/journal.pone.0138541.g005
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cells exhibiting the superficial markers BRN2 and CART were found in the very deep portions
of the region (Fig 6d and 6e).

Cell Birthdating
In order to determine if olfactory cortical cells expressing different markers have birthdays sim-
ilar to those in the neocortex, the mitotic marker EDU was injected in pregnant dams on either
E12 or E16 (during the period of deep or superficial neocortical cell production, respectively:
[1,2,9]) and subsequently tissue from labeled P20 pups was examined. Fig 7 demonstrates that
these injections did indeed target different neocortical markers. For example, after E12 injec-
tions, cells labeled with EDU were found primarily in the deep cerebral cortex and preferen-
tially in cells expressing the deep marker CTIP2 compared to the superficial marker CUX1 (Fig
7a). E16 treatment tagged cells in the layer 2–3 of the cerebral cortex including cells that
expressed CART (Fig 7b). It is important to note that since E12 is very early in cortical matura-
tion, labelled precursor cells at this stage will undergo more subsequent mitotic cycles and thus
produce a larger and more diverse cohort of labeled cells that than cells incorporating EDU at
E16. In addition, the marker labels all proliferating cells, including glial and perivascular cells.

In the AONpP of animals labeled at E12, EDU was observed throughout layer 2 with
approximately twice as many labeled cells found in the outer half of the cellular zone as in the
inner region. By E16 the difference reversed: the number of labeled cell observed in the deeper
portion of the layer was double that of the superficial zone (compare Fig 8a and 8c with 8b and
8d). These findings are consistent with previous observations of an “outside-in” pattern of

Fig 6. Patterns of neocortical layer markers in the OT. A) TBR-1 (A), BRN2 (D) and CART (E) were only found scattered in the very deepest regions of the
OT. All four of the deep laminar markers heavily labeled the region. Both CTIP2 and FOXP2 cells were broadly present in Layer 2 and scattered in Layer 3
(Fig 6b). On the medial side most FOXP2 cells coexpressed CTIP2 but the percentage of cells with both markers was reduced laterally. DARRP-32 cells
were dense on the lateral side near the APC and in deep regions of the OT, while NOR1 cells were found in Layer 2 in the medial OT (Fig 6c). Scale
bar = 200μm. Dorsal to top, lateral to right.

doi:10.1371/journal.pone.0138541.g006
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histogenesis in the region [49]. In the E12 samples both CUX1/CTIP2 and CTIP2 alone cells
were found co-labeled with EDU (Fig 8a) and a small number of BRN2/EDU-positive cell were
also observed (Fig 8c), mostly in the deep portion of layer 2. By E16, a) EDU was never found
in CTIP2 single-labeled cells (Fig 8b) and b) BRN2/EDU cells were much more abundant (Fig
8d). Taken together, the findings suggest that the pattern of cell birth is consistent with that
seen in the cerebral cortex in that cells with cortical “deep markers” were labelled early while
those with “superficial”markers were produced on E16.

In the APC of mice labeled at E12, EDU-positive cells were widely distributed across layers
2 and 3 (Fig 9a). CTIP2/EDU and BRN2/EDU double-labelled cells were apparent but few
CUX1 or CART cells also contained EDU. Labeled cells in subjects from the E16 EDU group
were relative rare in the region (Fig 9b) though BRN2, CUX1 and CART cells with EDU were
occasionally observed. The PPC sections examined exhibited obvious deep-to-superficial pat-
tern of development consistent with previous reports [50]: in E12 labelled subjects more EDU-
positive cells were found in deep areas while in E 16 they were mostly in superficial layer 2 (Fig
10a and 10b). E12 subjects exhibited many CTIP2/EDU cells but only a few CTIP2/CUX1/
EDU. By E16 more CTIP2/CUX1/EDU cells were observed as well as cells labeled with the
CART antibody. Taken together, these finding suggest that markers found early or late in the
cerebral cortex appear in a similar sequence the APC and PPC.

Fig 7. Patterns of staining in the frontal cerebral cortex of pups receiving the mitotic marker EDU on
either E12 (A) or E16 (B). Note the age-related differences in EDU (red) staining: at E12 EDU is found
primarily deep in the cortex (bottom of panel), while at E16 it is found in superficial layers (top). In the E12
tissue (A) substantial numbers of cells expressing the deep marker CTIP2 co-labelled with EDU (pink) while
only a few of the cells labelled with CUX also have the maker (yellow). E16 injections (B) labeled cells in layer
3 expressing the superficial marker CART as wells as more superficial cells. The marker labels all
proliferating cells, including glial and perivascular cells. Scale bar = 200μm.

doi:10.1371/journal.pone.0138541.g007
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The OT was not examined as closely as most of these markers were not observed in the
region. General gradients of cell proliferation described by Bayer [51] were observed (e.g., E12
subjects had more labeled figures both deep and laterally than those from the E16 subjects),
and more EDU positive cells that expressed either CTIP2 or FOXP2 were observed in the ear-
lier injection group.

Fig 8. Patterns of staining in the AONpP of pups that receiving the mitotic marker EDU either on E12
(A-D) or E16 (E-H). Panels B, D, F and H provide higher power views of the cellular regions of the figures to
their left. A gradient of EDU labeling was observed with more cells in the superficial half of layer 2 labeled at
E12 and more in the deep portion at E16. In the E12 samples both CUX1/CTIP2 (light blue; CUX1/CTIP2
+EDU are depicted in white) and CTIP2 alone cells (CTIP2+EDU depicted as pink) were found co-labeled
with EDU (Fig 8A and 8B) and a small number of BRN2/EDU-positive cells (yellow) were also observed (Fig
8C and 8D), mostly in the superficial portion of layer 2. By E16, a) EDU was rarely found in CTIP2 single-
labeled cells (Fig 8E and 8F) and b) BRN2/EDU cells were much more abundant (Fig 8G and 8H). Taken
together, the findings suggest that the pattern of cell birth is consistent with that seen in the cerebral cortex in
that cells with cortical “deep markers” were labelled early while those with “superficial”markers were
produced on E16. Scale bar = 200μm.

doi:10.1371/journal.pone.0138541.g008
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BDA Injections
As mentioned, the antigens examined above mark neocortical neurons with different synaptic
targets; for example, deep cells project out of the cerebral cortex while superficial cells make
predominately intracortical connections. Each of the olfactory regions studied in the present
work also innervate numerous regions [31]. The differential staining observed above might
therefore represent different classes of projection neurons. In order to gauge this possibility a
retrograde tracer was injected into the OB as each area except the OT has back-projections to
the bulb. Retrogradely-labeled cells expressing all of the deep or superficial markers observed
in each of the three region (AON: CTIP2, NOR1, BRN2, and CUX1; APC and PPC: CTIP2,
DARPP32, BRN2, CUX1, and CART, Fig 11) except for FOXP2. The latter result is under-
standable as FOXP2 cells were rarely observed in the main, pyramidal cell containing layers of
the areas studied.

Fig 9. Patterns of staining in the APC of pups that receiving the mitotic marker EDU either on E12 (A,
B) or E16 (C,D). Panels B and D provide higher power views of the cellular regions of the figures to their left.
E12 injections labeled many cells in Layer 3 and in the deep portion of Layer 2. CUX1/CTIP2 (light blue;
CUX1/CTIP2+EDU are depicted in white) and CTIP2+EDU (pink) were observed. Few labelled cells were
observed in layers 2 and 3 after E16 EDU treatment. Scale bar = 200μm.

doi:10.1371/journal.pone.0138541.g009
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Fig 10. Patterns of staining in the PPC of mice that receiving the mitotic marker EDU either on E12 (A,
B) or E16 (C,D). Panels B and D provide higher power views of the cellular regions of the figures to their left.
The E12 injection labeled many CTIP2 cells (CTIP2+EDU depicted as pink) in layer 3 and in the deep portion
of Layer 2. Relatively few CUX1 +EDU (yellow) or CUX1/CTIP2+EDU (white) were observed. Scattered
labelled cells were seen in layer 2 after EDU injection on E16; most were CUX1+EDU (yellow) positive.
Numbers and lines on the left margin of A and C delineate cortical layers. Scale bar = 200μm.

doi:10.1371/journal.pone.0138541.g010
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Discussion
The results outlined above indicate that cells in all of the olfactory regions examined express
transcription factors that are found both deep and superficially in the developing neocortex.
The pattern of expression of markers was complicated and varied both between and within the
areas studied as indicated in Table 2.

Fig 11. Retrograde tracer (BDA, red) injections into the OB labelled cell bodies expressing each of the deep and superficial markers tested. This
figure depicts examples for each structure projects to the OB. A, B: AONpP sections exhibiting double labeled cells (yellow) containing BDA and BRN2 (A)
and NOR1 (B). Piriform cortices: double labeling for CART (APC: C, PPC: D, yellow), CUX1 (APC: E, PPC:F yellow) and CTIP2 (APC: E, PPC:F pink). White
cells in panels E and F are triple labeled for BDA, CUX1 and CTIP2. Scale bars = 200μm.

doi:10.1371/journal.pone.0138541.g011
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The cerebral cortex is formed from cells arising from both the early cortical subplate and
the later cortical plate. Nissl studies have not found evidence of a subplate in olfactory regions
[30], and results described above indicate that none of the areas examined above had cells
immunoreactive to the subplate marker NURR1. However, since NURR1 is only expressed in a
subset of preplate neurons [12], the existence of a subplate contribution cannot be ruled out.

TBR1 is a marker for the projection neurons derived from the pallium, including neocorti-
cal, hippocampal, AONpP, APC and PPC pyramidal cells (Figs 1b, 3a, 4a and 5a). The marker,
however, was not observed in the OT. Though formally listed as an as a portion of the “olfac-
tory cortex” (e.g., [30]), the OT does not derive from the pallium but from the subpallium (e.g.,
[52–54]) and is both embyrologically and functionally related to the ventral striatum. Several
lines of evidence suggest that the OT is organized differently from other “cortical” structures: it
does not have pyramidal shaped output neurons [32] and it lacks both the radial organization
[55, 56] and the association fiber system seen in other cortices [33]. Bayer [51] reported that
patterns of early cell proliferation in the OT are not deep-to-superficial as seen in the neocortex
but more similar to the gradients seen in the globus pallidus and substantia innominata, and
indeed a large literature indicates that the region is an extension of the basal ganglia [48,57].

Table 2. Regional distribution of neocortical markers in olfactory cortex.

NURR1 TBR1 FOXP2 CTIP2 DARRP-32 NOR1 BRN2 CUX1 CART
Subplate Plate DEEP Superficial

AONpP

Layer 1
rare scattered dorsomedial,

ventromedial
scattered rare + scattered rare

Layer 2
+++ rare +++ ++ higher

dorsally
deep: low
medially

deep except
medially

APC

Layer 1
rare scattered scattered rare

Layer 2
+++ ++

+ superficial
scattered + higher

ventral
deep middle

Layer 3
++ rare ++ rare rare scattered ++

PPC

Layer 1
rare scattered rare rare scattered

Layer 2
+++ +++ scattered + +++ middle

Layer 3
+++ rare +++ rare + +++

OT

Layer 1
scattered rare +++ near APC

Layer 2
+++ ++ occasional

island

Layer 3
++ + rare scattered scattered

+++: very dense;

++: dense;

+ light;

cell empty: absent

doi:10.1371/journal.pone.0138541.t002
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The results presented above add more evidence: few markers seen in the neocortex were
observed in the OT and those that were highly expressed (e.g., CTIP2 and FOXP2) seamlessly
merged with similar cells in the overlying striatum.

There are several views as to the developmental origins of the remaining areas. Studies
examining patterns of very early gene expression suggest that the regions arise differently. In
this view pyramidal neurons that reside in the AONpP originate in the ventral pallium, which
also produces the TBR1-expressing mitral/tufted cells of the OB (and may contribute cells in
ventral portions of the piriform cortex and claustrum, as well as in portions of the lateral amyg-
dala [15, 52, 53, 58]. In contrast, the lateral pallium sources neurons to the piriform cortices
through germinal zones found near the cortico-striatal junction (and may also contribute cells
to the dorsal claustrum and the basolateral amygdala [15, 28, 52, 53, 59]. However, Garcia-
Moreno et al. [29], tracing the movement of cells in labeled in young embryos, did not observe
this specificity. They reported that many broad regions of the developing telencephalon con-
tribute cells to both the PC and OT, though they did not specifically examine the cellular ori-
gins of the AONpP. Nevertheless, the data described above indicates that there are differences
in the expression of cortical markers between the AONpP and PC. For example, all three
regions expressed the deep cortical marker CTIP2, but NOR1 was expressed much more in the
AONpP, while there were more DAARP32 cells in the APC and PPC. In all regions the superfi-
cial markers BRN2 and CUX1 were expressed, but CART was only observed in the APC and
PPC. Taken together, these observations highlight the fact the AON is a not just a simpler or
less laminated version of the piriform cortex, but a distinct neural region [38].

Along with differences between these regions, variations within the structures were also
observed (Table 2). For example, the deep layer marker CTIP2 was found throughout the cell
layer of the AONpP while NOR1 was found primarily in dorsal regions. CTIP2-labeled cells
were found throughout layer 2 in the PPC, but were absent from the deep border of the region
in the APC. Superficial markers exhibited the same diversity. In the AONpP, CUX1 positive
cells were observed primarily in deep cells except in the ventromedial region, where they
spanned layer 2. In the APC, BRN2-expressing neurons were observed in the ventral portion of
the structure or in the superficial portions of both layer 2 and 3, while in the PPC BRN2 cells
were evenly scattered though the structure in both layers 2 and 3. CART immunoreactivity was
observed in a discrete band in the middle of Layer 2 in both the APC and PPC. These results
suggest that the cellular layers of the olfactory cortex consist of a variable mosaic of neurons of
different origins, and as such that they are more complicated than often portrayed.

Neocortical neurons found in different layers arise on different days. For example, in mice,
cells destined for layer 6 are born about E12 while layer 2–3 neurons emerge 3–4 days later [1,
2, 9]. It was important to determine whether the cells in the olfactory cortices that express
superficial vs deep markers exhibited similar patterns of development. Cell proliferation
sequences vary dramatically across the olfactory regions. For example, Sarma et al. [60]
reported that cell production in the piriform cortex of mice is similar to that of the neocortex,
with the bulk of pyramidal cells forming from E12–14 and continued cell production through
E16. Bayer [50] indicated cells destined for the piriform cortex are generated before those for
the AON in rats and that both regions exhibit caudal-to-rostral gradients, but that the PC
forms from deep-to-superficially, while in the AONpP the gradient is reversed with superficial
cells added before deep ones. Results presented above are consistent these observations: a deep-
to-superficial pattern of labeled cells was observed in the APC and PPC (Figs 9 and 10) and a
superficial-to-deep pattern in the AONpP (Fig 8). The expression of deep and superficial neo-
cortical laminar markers within these gradients was similar to those seen in the cerebral cortex.
For example, cells expressing CTIP2 alone, a deep maker, were labeled only after early (E12)
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EDU injections, while markers found in regions of the superficial neocortex (e.g., CUX1, and
CART) were more abundant after injections at E16.

Harris and Shepherd [61] have suggested that one way to view commonalties across the
cerebral cortex is to focus on the developmental precursor populations. They argued that cells
with similar backgrounds follow homologous genetic programs resulting in the cells assuming
similar synaptic connectivity even in different circuits. Neocortical neurons expressing differ-
ent transcription factors project to different targets. For example, layer 6 cells preferentially
innervate thalamic targets while layer 2–3 cells form mostly intracortical connections. Perhaps
a similar pattern exists in the areas examined here: neurons expressing the same transcription
factors in different regions may play similar roles in different olfactory circuits. The areas
examined are widely interconnected and have synaptic relations with many other targets as
well (e.g., [31]). An exhaustive catalog would difficult to produce, so we began by looking at a
target to which three of the four regions (AONpP, APC and PPC) project, the backprojection
to the OB. Injections of retrograde tracers into the OB labeled cells that expressed each of the
markers examined in all three structures, indicating that all species of neurons participate in
the pathway, and perhaps suggesting little specificity. Nevertheless, it is possible that different
cells projecting to the same target might provide different inputs: for example, subpopulations
of axons might target different neuronal elements within the OB or relay different channels of
information to the same neurons [43, 62].

While the data presented above suggests that similar rules govern the development of the
neocortex and olfactory cortex, several caveats are apparent. The first revolves around defining
a “labeled cell”. The fluorescent immunostaining methods employed resulted in a continuum
of labeling from very light to quite intense. Since setting a criterion level solely on the basis of
fluorescence intensity without other information would be arbitrary, in the present work any
signal detected was considered above threshold. Second, some of the laminar markers are
expressed in many regions other than the developing neocortex so their presence in a tissue
does not definitively define a cell’s developmental origins. For example, both DAARRP-32 and
CART are expressed in brain regions involved in reward pathways (the striatum, [63] and
hypothalamus; [64] respectively). Examples of this phenomenon are also apparent in the pres-
ent work. BRN2 was observed both the rostral migratory stream/subventricular layer and in
the lateral olfactory tract (Fig 3d); regions with very few mature neurons or synapses, and the
markers seen in the OT (Fig 6) are expressed both in striatal and cortical tissues. Therefore,
while the results presented above are consistent with the notion that olfactory and neocortical
projection neurons arise in a similar fashion, more detailed work examining the exact points of
origin and routes of migration of the olfactory projection neurons might prove otherwise.

The results presented above indicate that the neocortex, AONpP, APC, and PPC exhibit
similar temporal changes in cell genesis and that in each area neurons establish their residence
in gradients based on their time of origin. How many other ways are the tissues similar? Com-
parisons of the structure and evolution of forebrain cortices has prompted decades of research
and theorizing (e.g., [65–67]). According to classical evolutionary theory the cerebral and olfac-
tory cortices derive from different portions of the developing dorsal telencephalon. One view is
that originally their organization was similar and that they have diverged as they evolved. Evi-
dence for the hypothesis includes observations that, like most of the olfactory regions, the rep-
tilian cerebral cortex has three layers (outer and inner plexiform layers sandwiching a cellular
layer), and pyramidal shaped projection neurons (e.g., [66, 68, 69]). With the emergence of
mammals, the neocortex elaborated to include more superficial layers due to the addition of
intermediate progenitor cells in the subventricular zone (e.g., [70,71]). However, another view
suggests that the basic cell types and circuitry has been around for a very long time, that the
synaptic circuits of all the cortices are fundamentally similar (e.g., [72]), and that in mammals
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this same organization has been simply elaborated by lamination (e.g., [67, 73,74]). The data
presented above suggests that olfactory cortices do not simply contain elements found in the
deep layers of the cerebral cortex, as CART and CUX1, markers found in superficial neocortical
zones, were observed in the AONpP, AC and PPC. Furthermore, the findings indicate that the
AONpP, APC and PPC of mice are different from each other and differ in local patterns even
within structures. The findings suggest that the olfactory cortices are not merely remnant
architypes of the primordial forebrain but varied, independent regions. Further research com-
paring the regions should lend insight into both the evolutionary and developmental sequence
by which forebrain cortices arise.

Author Contributions
Conceived and designed the experiments: PCB. Performed the experiments: PCB SKO. Ana-
lyzed the data: PCB SKO. Contributed reagents/materials/analysis tools: PCB SKO. Wrote the
paper: PCB.

References
1. Hevner RF, Daza RA, Rubenstein JL, Stunnenberg H, Olavarria JF, Englund C. Beyond laminar fate:

toward a molecular classification of cortical projection/pyramidal neurons. Dev Neurosci. 2003; 25:
139–51. PMID: 12966212

2. Takahashi T, Goto T, Miyama S, Nowakowski RS, Caviness VS Jr. Sequence of neuron origin and neo-
cortical laminar fate: relation to cell cycle of origin in the developing murine cerebral wall. J Neurosci.
1999; 19: 10357–10371. PMID: 10575033

3. Franco SJ, Müller U. Shaping our minds: stem and progenitor cell diversity in the mammalian neocor-
tex. Neuron. 2013; 77: 19–34. doi: 10.1016/j.neuron.2012.12.022 PMID: 23312513

4. Huang ZJ. Toward a genetic dissection of cortical circuits in the mouse. Neuron. 2014; 83: 1284–1302.
doi: 10.1016/j.neuron.2014.08.041 PMID: 25233312

5. MacDonald JL, Fame RM, Azim E, Shnider SJ, Molyneaux BJ, Arlotta P, et al. Specification of cortical
projection neurons. In: Rubenstein JLR, Rakic P. (eds.) Comprehensive developmental neuroscience:
patterning and cell type specification in the developing CNS and PNS, 2013; Vol. 1, pp. 475–502
Amsterdam: Elsevier.

6. Petrof I, Viaene AN, Sherman S. Two populations of corticothalamic and interareal corticocortical cells
in the subgranular layers of the mouse primary sensory cortices. J Comp Neurol. 2012; 520: 1678–
1686. doi: 10.1002/cne.23006 PMID: 22120996

7. Gray PA, Fu H, Luo P, Zhao Q, Yu J, Ferrari A, et al. Mouse brain organization revealed through direct
genome-scale TF expression analysis. Science. 2004; 306: 2255–2257. PMID: 15618518

8. Lodato S, Ashwin SS, Arlotta P. Cerebral cortex assembly: generating and reprogramming projection
neuron diversity. TINS. 2015; 38: 117–125. doi: 10.1016/j.tins.2014.11.003 PMID: 25529141

9. Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD. Neuronal subtype specification in the cerebral cor-
tex. Nat Rev Neurosci. 2007; 8: 427–37. PMID: 17514196

10. Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD. Molecular logic of neocortical pro-
jection neuron specification, development and diversity. Nat Rev Neurosci. 2013; 14: 755–769. doi: 10.
1038/nrn3586 PMID: 24105342

11. Watakabe A, Ichinohe N, Ohsawa S, Hashikawa T, Komatsu Y, Rockland KS, et al. Comparative analy-
sis of layer-specific genes in mammalian neocortex. Cereb Cortex. 2007; 17: 1918–1933. PMID:
17065549

12. Hoerder-Suabedissen A, Molnár Z. Molecular diversity of early-born subplate neurons. Cereb Cortex.
2013; 23: 1473–1483. doi: 10.1093/cercor/bhs137 PMID: 22628460

13. Hevner RF, Shi L, Justice N, Hsueh Y, ShengM, Smiga S, et al. Tbr1 regulates differentiation of the pre-
plate and layer 6. Neuron. 2001; 29: 353–366. PMID: 11239428

14. Englund C, Fink A, Lau C, Pham D, Daza R, Bulfone A, et al. Pax6, Tbr2, and Tbr1 are expressed
sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocor-
tex. J Neurosci. 2005; 25: 247–251. PMID: 15634788

15. Ceci ML, Pedraza M, de Carlos JA. The embryonic septum and ventral pallium, new sources of olfac-
tory cortex cells. PLoS One. 2012; 7(9):e44716. doi: 10.1371/journal.pone.0044716 PMID: 22984546

Olfactory Cortex Development

PLOS ONE | DOI:10.1371/journal.pone.0138541 September 25, 2015 20 / 23

http://www.ncbi.nlm.nih.gov/pubmed/12966212
http://www.ncbi.nlm.nih.gov/pubmed/10575033
http://dx.doi.org/10.1016/j.neuron.2012.12.022
http://www.ncbi.nlm.nih.gov/pubmed/23312513
http://dx.doi.org/10.1016/j.neuron.2014.08.041
http://www.ncbi.nlm.nih.gov/pubmed/25233312
http://dx.doi.org/10.1002/cne.23006
http://www.ncbi.nlm.nih.gov/pubmed/22120996
http://www.ncbi.nlm.nih.gov/pubmed/15618518
http://dx.doi.org/10.1016/j.tins.2014.11.003
http://www.ncbi.nlm.nih.gov/pubmed/25529141
http://www.ncbi.nlm.nih.gov/pubmed/17514196
http://dx.doi.org/10.1038/nrn3586
http://dx.doi.org/10.1038/nrn3586
http://www.ncbi.nlm.nih.gov/pubmed/24105342
http://www.ncbi.nlm.nih.gov/pubmed/17065549
http://dx.doi.org/10.1093/cercor/bhs137
http://www.ncbi.nlm.nih.gov/pubmed/22628460
http://www.ncbi.nlm.nih.gov/pubmed/11239428
http://www.ncbi.nlm.nih.gov/pubmed/15634788
http://dx.doi.org/10.1371/journal.pone.0044716
http://www.ncbi.nlm.nih.gov/pubmed/22984546


16. Vasistha NA, García-Moreno F, Arora S, Cheung AF, Arnold SJ, Robertson EJ, et al. Cortical and
clonal contribution of Tbr2 expressing progenitors in the developing mouse brain. Cereb Cortex. 2014;
doi: 10.1093/cercor/bhu125

17. Bedogni F, Hodge RD, Elsen GE, Nelson BR, Daza RA, Beyer RP, et al. Tbr1 regulates regional and
laminar identity of postmitotic neurons in developing neocortex. Proc Natl Acad Sci USA. 2010; 107:
13129–13134. doi: 10.1073/pnas.1002285107 PMID: 20615956

18. Ferland RJ, Cherry TJ, Preware PO, Morrisey EE, Walsh CA. Characterization of Foxp2 and FoxP1
mRNA and protein in the developing and mature brain. J Comp Neurol. 2003; 460: 266–279. PMID:
12687690

19. Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD. Neuronal subtype-specific genes
that control corticospinal motor neuron development in vivo. Neuron. 2005; 45: 207–225. PMID:
15664173

20. Hemmings HC Jr, Greengard P, Tung HY, Cohen P. DARPP-32, a dopamine-regulated neuronal phos-
phoprotein, is a potent inhibitor of protein phosphatase-1. Nature. 1984; 310: 503–5. PMID: 6087160

21. Ouimet CC, Miller PE, Hemmings HC Jr, Walaas SI, Greengard P. DARPP-32, a dopamine- and aden-
osine 3’:5’-monophosphate regulated phosphoprotein enriched in dopamine-innervated brain regions.
III. Immunocytochemical localization. J Neurosci. 1984; 4: 111–124. PMID: 6319625

22. McEvilly RJ, de Diaz MO, Schonemann MD, Hooshmand F, Rosenfeld MG. Transcriptional regulation
of cortical neuron migration by POU domain factors. Science. 2002; 295: 1528–1532. PMID: 11859196

23. Sugitani Y, Nakai S, Minowa O, Nishi M, Jishage K, Kawano H, et al. Brn-1 and Brn-2 share crucial
roles in the production and positioning of mouse neocortical neurons. Genes Dev. 2002; 16: 1760–
1765. PMID: 12130536

24. Nieto M, Monuki ES, Tang H, Imitola J, Haubst N, Khoury SJ, et al. Expression of CUX1-1 and CUX1-2
in the subventricular zone and upper layers II–IV of the cerebral cortex. J Comp Neurol. 2004; 479;
168–180. PMID: 15452856

25. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene
expression in the adult mouse brain. Nature. 2007; 445: 168–76. PMID: 17151600

26. Smith Y, Kieval J, Couceyro PR, Kuhar MJ. CART peptide-immunoreactive neurones in the nucleus
accumbens in monkeys: ultrastructural analysis, colocalization studies, and synaptic interactions with
dopaminergic afferents. J Comp Neurol. 1999; 407: 491–511. PMID: 10235641

27. Misson JP, Austin CP, Takahashi T, Cepko CL, Caviness VS Jr. The alignment of migrating neural
cells in relation to the murine neopallial radial glial fiber system. Cereb Cortex. 1991; 3: 221–9.

28. Molnár Z, Butler AB. The corticostriatal junction: a crucial region for forebrain development and evolu-
tion. Bioessays. 2002; 24: 530–41. PMID: 12111736

29. García-Moreno F, López-Mascaraque L, de Carlos JA. Early telencephalic migration topographically
converging in the olfactory cortex. Cereb Cortex. 2008; 18: 1239–1252. PMID: 17878174

30. Schwob JE, Price JL. The development of axonal connections in the central olfactory system of rats. J
Comp Neurol. 1984; 223: 177–202. PMID: 6200518

31. Mori K, Manabe H. Unique characteristics of the olfactory system. In Mori K. K. (ed.), The olfactory sys-
tem: from odor molecules to motivational behaviors, Springer Japan. 2004; pp. 1–18.

32. Millhouse OE, Heimer L. Cell configurations in the olfactory tubercle of the rat. J Comp Neurol.1984;
228: 571–97. PMID: 6490970

33. Wesson DW,Wilson DA. Sniffing out the contributions of the olfactory tubercle to the sense of smell:
hedonics, sensory integration, and more? Neurosci Biobehav Rev. 2011; 35: 655–668. doi: 10.1016/j.
neubiorev.2010.08.004 PMID: 20800615

34. Jiao Y, Sun Z, Lee T, Fusco FR, Kimble TD, Meade CA, et al. A simple and sensitive antigen retrieval
method for free-floating and slide-mounted tissue sections. Neurosci Meth. 1999; 93: 149–162.

35. Brunjes PC. The mouse olfactory peduncle. 2. The anterior limb of the anterior commissure. Front Neu-
roanat. 2013; 6: 51. doi: 10.3389/fnana.2012.00051 PMID: 23355812

36. Brunjes PC, Collins LN, Osterberg SK, Phillips AM. The mouse olfactory peduncle. 3. Development of
neurons, glia and centrifugal afferents. Front Neuroanat. 2014; 8:44. doi: 10.3389/fnana.2014.00044
PMID: 24926238

37. Haberly LB, Price JL. Association and commissural fiber systems of the olfactory cortex of the rat. II.
Systems originating in the olfactory peduncle. J Comp Neurol. 1978; 181: 781–807. PMID: 690285

38. Brunjes PC, Illig KR, Meyer EA. A field guide to the anterior olfactory nucleus/cortex. Brain Res Rev.
2005; 50: 305–335. PMID: 16229895

Olfactory Cortex Development

PLOS ONE | DOI:10.1371/journal.pone.0138541 September 25, 2015 21 / 23

http://dx.doi.org/10.1093/cercor/bhu125
http://dx.doi.org/10.1073/pnas.1002285107
http://www.ncbi.nlm.nih.gov/pubmed/20615956
http://www.ncbi.nlm.nih.gov/pubmed/12687690
http://www.ncbi.nlm.nih.gov/pubmed/15664173
http://www.ncbi.nlm.nih.gov/pubmed/6087160
http://www.ncbi.nlm.nih.gov/pubmed/6319625
http://www.ncbi.nlm.nih.gov/pubmed/11859196
http://www.ncbi.nlm.nih.gov/pubmed/12130536
http://www.ncbi.nlm.nih.gov/pubmed/15452856
http://www.ncbi.nlm.nih.gov/pubmed/17151600
http://www.ncbi.nlm.nih.gov/pubmed/10235641
http://www.ncbi.nlm.nih.gov/pubmed/12111736
http://www.ncbi.nlm.nih.gov/pubmed/17878174
http://www.ncbi.nlm.nih.gov/pubmed/6200518
http://www.ncbi.nlm.nih.gov/pubmed/6490970
http://dx.doi.org/10.1016/j.neubiorev.2010.08.004
http://dx.doi.org/10.1016/j.neubiorev.2010.08.004
http://www.ncbi.nlm.nih.gov/pubmed/20800615
http://dx.doi.org/10.3389/fnana.2012.00051
http://www.ncbi.nlm.nih.gov/pubmed/23355812
http://dx.doi.org/10.3389/fnana.2014.00044
http://www.ncbi.nlm.nih.gov/pubmed/24926238
http://www.ncbi.nlm.nih.gov/pubmed/690285
http://www.ncbi.nlm.nih.gov/pubmed/16229895


39. Liu S, Plachez C, Shao Z, Puche A, Shipley MT. Olfactory bulb short axon cell release of GABA and
dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells. J Neu-
rosci. 2013; 33: 2916–2926. doi: 10.1523/JNEUROSCI.3607-12.2013 PMID: 23407950

40. Haberly LB, Price JL. Association and commissural fiber systems of the olfactory cortex of the rat. J
Comp Neurol. 1978; 178: 711–740. PMID: 632378

41. Haberly LB. Parallel-distributed processing in olfactory cortex: new insights frommorphological and
physiological analysis of neuronal circuitry. Chem Senses. 2001; 26: 551–557. PMID: 11418502

42. Wilson DA, Sullivan RM. Cortical processing of odor objects. Neuron. 2011; 72: 506–519. doi: 10.1016/
j.neuron.2011.10.027 PMID: 22099455

43. Bekkers JM, Suzuki N. Neurons and circuits for odor processing in the piriform cortex. Trends Neurosci.
2013; 36: 429–38. doi: 10.1016/j.tins.2013.04.005 PMID: 23648377

44. Ekstrand JJ, Domroese ME, Johnson DM, Feig SL, Knodel SM, Behan M, et al. A new subdivision of
anterior piriform cortex and associated deep nucleus with novel features of interest for olfaction and epi-
lepsy. J Comp Neurol. 2001; 434: 289–307. PMID: 11331530

45. Gottfried JA. Central mechanisms of odour object perception. Nat Rev Neurosci. 2010; 11: 628–641.
doi: 10.1038/nrn2883 PMID: 20700142

46. Kadohisa M, Wilson DA. Separate encoding of identity and similarity of complex familiar odors in piri-
form cortex. Proc Natl Acad Sci USA. 2006; 103: 15206–15211. PMID: 17005727

47. Adjei S, Wesson DW. Laminar and spatial localization of the islands of Calleja in mice. Neurosci. 2011;
287: 137–43.

48. Heimer L. The olfactory cortex and the ventral striatum. In Livingston K.E. and Hornykiewicz o. (eds):
Limbic Mechanisms. New York: Plenum Press,1987; pp. 95–187.

49. Bayer SA. Neurogenesis in the anterior olfactory nucleus and its associated transition areas in the rat
brain. Int J Dev Neurosci. 1986; 4: 225–249. PMID: 3455588

50. Bayer SA. Neurogenesis in the rat primary olfactory cortex. Int J Dev Neurosci. 1986; 4: 251–271.
PMID: 3455589

51. Bayer SA. Neurogenesis in the olfactory tubercle and islands of Calleja in the rat. Int J Dev Neurosci.
1985; 3: 135–147. doi: 10.1016/0736-5748(85)90004-8 PMID: 24874595

52. Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, et al. Pallial and subpallial deriva-
tives in the embryonic chick and mouse telencephalon traced by the expression of the genes Dlx-2,
Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol. 2000; 424: 409–38. PMID: 10906711

53. Brox A, Puelles L, Ferreiro B, Medina L. Expression of the genes Emx1, Tbr1, and Eomes (Tbr2) in the
telencephalon of Xenopus laevis confirms the existence of a ventral pallial division in all tetrapods. J
Comp Neurol. 2004; 474: 562–577. PMID: 15174073

54. Medina L, Abellán A. Development and evolution of the pallium. Semin Cell Dev Biol. 2009; 20: 698–
711. doi: 10.1016/j.semcdb.2009.04.008 PMID: 19393324

55. Blackstad T. Cortical gray matter. A correlation of light and electron microscopic data. In. Hyden H.
(Ed.), The neuron. Amsterdam; Elsevier, 1976; pp. 49–118.

56. Pigache RM. The anatomy of “paleocortex.” A critical review. Ergebn.Anat. Entwickl. Gesch. 1970; 43:
3–62.

57. Root DH, Melendez RI, Zaborszky L, Napier TC. The ventral pallidum: subregion-specific functional
anatomy. and roles in motivated behaviors. Prog Neurobiol. 2015; 130: 29–70. doi: 10.1016/j.
pneurobio.2015.03.005 PMID: 25857550

58. Bulfone A, Wang F, Hevner R, Anderson S, Cutforth T, Chen S, et al. An olfactory sensory map devel-
ops in the absence of normal projection neurons or GABAergic interneurons. Neuron. 1998; 2: 1273–
82.

59. Vyas A, Saha B, Lai E, Tole S. Paleocortex is specified in mice in which dorsal telencephalic patterning
is severely disrupted. J Comp Neurol. 2003; 466: 545–553. PMID: 14566948

60. Sarma AA, Richard MB, Greer CA. Developmental dynamics of piriform cortex. Cereb Cortex. 2001;
21: 1231–45.

61. Harris KD, Shepherd GM. The neocortical circuit: themes and variations. Nat Neurosci. 2015; 18: 170–
81. doi: 10.1038/nn.3917 PMID: 25622573

62. Kay RB, Brunjes PC. Diversity among principal and GABAergic neurons of the anterior olfactory
nucleus. Front Cell Neurosci. 2014; 8: 111. doi: 10.3389/fncel.2014.00111 PMID: 24808826

63. Valjent E, Pascoli V, Svenningsson P, Paul S, Enslen H, Corvol JC, et al. Regulation of a protein phos-
phatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum.
Proc Natl Acad Sci USA. 2005; 102: 491–496. PMID: 15608059

Olfactory Cortex Development

PLOS ONE | DOI:10.1371/journal.pone.0138541 September 25, 2015 22 / 23

http://dx.doi.org/10.1523/JNEUROSCI.3607-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23407950
http://www.ncbi.nlm.nih.gov/pubmed/632378
http://www.ncbi.nlm.nih.gov/pubmed/11418502
http://dx.doi.org/10.1016/j.neuron.2011.10.027
http://dx.doi.org/10.1016/j.neuron.2011.10.027
http://www.ncbi.nlm.nih.gov/pubmed/22099455
http://dx.doi.org/10.1016/j.tins.2013.04.005
http://www.ncbi.nlm.nih.gov/pubmed/23648377
http://www.ncbi.nlm.nih.gov/pubmed/11331530
http://dx.doi.org/10.1038/nrn2883
http://www.ncbi.nlm.nih.gov/pubmed/20700142
http://www.ncbi.nlm.nih.gov/pubmed/17005727
http://www.ncbi.nlm.nih.gov/pubmed/3455588
http://www.ncbi.nlm.nih.gov/pubmed/3455589
http://dx.doi.org/10.1016/0736-5748(85)90004-8
http://www.ncbi.nlm.nih.gov/pubmed/24874595
http://www.ncbi.nlm.nih.gov/pubmed/10906711
http://www.ncbi.nlm.nih.gov/pubmed/15174073
http://dx.doi.org/10.1016/j.semcdb.2009.04.008
http://www.ncbi.nlm.nih.gov/pubmed/19393324
http://dx.doi.org/10.1016/j.pneurobio.2015.03.005
http://dx.doi.org/10.1016/j.pneurobio.2015.03.005
http://www.ncbi.nlm.nih.gov/pubmed/25857550
http://www.ncbi.nlm.nih.gov/pubmed/14566948
http://dx.doi.org/10.1038/nn.3917
http://www.ncbi.nlm.nih.gov/pubmed/25622573
http://dx.doi.org/10.3389/fncel.2014.00111
http://www.ncbi.nlm.nih.gov/pubmed/24808826
http://www.ncbi.nlm.nih.gov/pubmed/15608059


64. Elias CF, Lee CE, Kelly JF, Ahima RS, Kuhar M, Saper CB, et al. Characterization of CART neurons in
the rat and human hypothalamus. J Comp Neurol. 2001; 432: 1–19. PMID: 11241374

65. Luzzati F. A hypothesis for the evolution of the upper layers of the neocortex through co-option of the
olfactory cortex developmental program. Front Neurosci. 2015; 9, doi: 10.3389/fnins.2015.00162

66. Nieuwenhuys R, ten Donkelaar HJ, Nicholson C. The central nervous system of vertebrates: volume 3.
Berlin: Springer, 1998; pp. 1932–2008.

67. Striedter GF. Principles of Brain Evolution. Sunderland MA: Sinaeur. 2005; pp. 259–294

68. Kriegstein AR, Connors BW. Cellular physiology of the turtle visual cortex: synaptic properties and
intrinsic circuitry. J Neurosci. 1986; 6: 178–191. PMID: 2868076

69. Molnár Z. Evolution of cerebral cortical development. Brain Behav Evol. 2011; 78: 94–107. doi: 10.
1159/000327325 PMID: 21691047

70. Pontious A, Kowalczyk T, Englund C, Hevner RF. Role of intermediate progenitor cells in cerebral cor-
tex development. Dev Neurosci. 2008; 30: 24–32. PMID: 18075251

71. Dehay C, Kennedy H, Kosik KS. The outer subventricular zone and primate-specific cortical complexifi-
cation. Neuron. 2015; 85: 683–694. doi: 10.1016/j.neuron.2014.12.060 PMID: 25695268

72. Shepherd GM. The microcircuit concept applied to cortical evolution: from three-layer to six-layer cor-
tex. Front Neuroanat., 2011 doi: 10.3389/fnana.2011.00030

73. Dugas-Ford J, Ragsdale C. Levels of homology and the problem of neocortex. Ann Rev Neurosci.
2015; 38: 351–368. doi: 10.1146/annurev-neuro-071714-033911 PMID: 26154980

74. Karten HJ. Neocortical evolution: neuronal circuits arise independently of lamination. Curr Biol. 2013;
23: R12–5. doi: 10.1016/j.cub.2012.11.013 PMID: 23305661

Olfactory Cortex Development

PLOS ONE | DOI:10.1371/journal.pone.0138541 September 25, 2015 23 / 23

http://www.ncbi.nlm.nih.gov/pubmed/11241374
http://dx.doi.org/10.3389/fnins.2015.00162
http://www.ncbi.nlm.nih.gov/pubmed/2868076
http://dx.doi.org/10.1159/000327325
http://dx.doi.org/10.1159/000327325
http://www.ncbi.nlm.nih.gov/pubmed/21691047
http://www.ncbi.nlm.nih.gov/pubmed/18075251
http://dx.doi.org/10.1016/j.neuron.2014.12.060
http://www.ncbi.nlm.nih.gov/pubmed/25695268
http://dx.doi.org/10.3389/fnana.2011.00030
http://dx.doi.org/10.1146/annurev-neuro-071714-033911
http://www.ncbi.nlm.nih.gov/pubmed/26154980
http://dx.doi.org/10.1016/j.cub.2012.11.013
http://www.ncbi.nlm.nih.gov/pubmed/23305661

