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A core-scale reconstructing method 
for shale
Lili Ji1, Mian Lin1,2, Gaohui Cao1,2 & Wenbin Jiang   1

Characterization of shale cores with low and anisotropic permeability is complicated, due to the 
presence of multiscale pore structure and thin layers, and defies conventional methods. To accurately 
reproduce the morphology of multiscale pore structure of the shale core, a novel core-scale 
reconstructing method is proposed to reconstruct 3D digital-experimental models by means of the 
combination of SEM, EDS images, nitrogen adsorption and pressure pulse decay experiment result. 
In this method, the multiscale and multicomponent reconstructing algorithm is introduced to build 
the representative multiscale model for each layer, which can describe the complex 3D structures of 
nano organic pores, micro-nano inorganic pores, micro slits and several typical minerals. Especially, to 
reproduce the realistic morphology for shale, the optimization algorithm based on simulated annealing 
algorithm uses the experimental data as constrain conditions to adjust and optimize the model for each 
layer. To describe the bedding characteristics of the shale core, bedding fractures are constructed by 
analysis of the mineral distribution in the interface of two layers, and then the representative models 
for different layers are integrated together to obtain the final core-scale digital-experimental model. 
Finally, the model is validated by computing its morphological and flow properties and comparing 
them with those of the actual 3D shale sample. This method provide a way for systematically and 
continuously describe the multiscale and anisotropic pore structure (from nm-cm) of the shale core, and 
will be helpful for understanding the quality of the shale reservoir.

Analyses of shale cores can provide valuable information in understanding the quality of the shale reservoir and 
provide critical input to the completion design. Characterization of the complex pore structure in shale matrix 
is the foundation issue for analyses of shale cores. However, owing to the presence of multiscale pore structures 
and the heterogeneity at different scale, characterization of shale core is both tremendously difficult and radically 
different from that of conventional core samples1,2. A complex shale pore structure includes nano organic pores 
in organic matter, micro-nano inorganic pores, micro slits in inorganic mineral and micro bedding fracture in 
the interface of thin layers, and all these pores (slits) together play a vital role in fluid flow3–5. Moreover, the shale 
rock is made up of very thin layers, and different layer has quite different distribution of minerals which also 
affect the formation of bedding fractures and make the multiscale pore structure more complicated. However, 
many methods for modeling of porous media can construct only single-scale or single-component model and are 
difficult to fully classify and characterize the multiscale pore and multicomponent structure of the shale. Also, 
because of the high resolution required to image small scale features of interest (nm), the volumes of constructed 
model are inevitably small (μm3) when compared to the realistic shale sample (core-scale)6. Therefore, it is of 
great significance to develop new reconstructing methods to accurately reproduce the multiscale pore structure 
of the shale core.

At present, the methods commonly used to study the shale pore structure can be generally classified in two 
kinds: the physical construction method and the reconstruction algorithm. The physical construction method 
can directly construct real 3D digital cores through X-ray computed tomography (e.g., Micro-CT and Nano-CT) 
and Focused Ion Beam Scanning Electron Microscope (FIB-SEM)6–9. Though high-resolution imaging of the 
pore structure in kerogen can be obtained by FIB-SEM, FIB-SEM can only scan microscale volumes of shale. 
Moreover, it is still expensive and time consuming. Micro-CT and Nano-CT method can obtain much wider field 
of view, but they only resolve the pore throats larger than 0.7 mm and 50 nm, respectively6,10. Thus the physical 
construction method cannot satisfy the requirements of a sufficiently large, in terms of a representative elemen-
tary volume (REV), sample size and a sufficient spatial resolution.
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Digital cores can also be reconstructed by 2D images through reconstruction algorithm. The reconstruction 
methods commonly used include the truncated Gaussian random function method, the simulated annealing 
method, the sequential indicator simulation method (SISIM), the multiple-point statistics (MPS) method, and 
various hybrid methods11–19. However, these techniques have never been tested for reconstructing models of shale 
reservoirs. Recently, Tahmasebi20,21 has proposed the cross-correlation–based simulation (CCSIM) method and 
use it to reconstruct stochastically equiprobable 3D models of shale rocks. This method can produce 3D realiza-
tions with acceptable approximation of the same properties in the 2D image. However, the reconstructed vertical 
morphological features are unsatisfactory22. The CCSIM-TSS combines the merits of both CCSIM and TSS (three 
step sampling method) and can reproduce more accuracy of the connectivity of the vertical direction23. However, 
it is not capable of reproducing accurately the experimental data. A hybrid method has been proposed to improve 
the CCSIM-TSS method by optimizing the reconstructed model based on multiple objective simulated anneal-
ing algorithm (MOSA) with experimental data as constrain conditions24 However, all the above methods are 
only suitable for constructing only single-scale or single-component digital core, and cannot be directly used for 
reproducing the multiscale pore structure of the shale.

Recently, there have been several studies on stochastic multiscale reconstruction of shale rocks. Gerke25 has 
developed a general solution for merging multiscale categorical spatial data into a single dataset using stochastic 
reconstructions with rescaled correlation functions. However, the paper only proposed this method and did not 
applied this method to actual 3D shale samples. Tahmasebi21 has develop a three-step multiresolution reconstruc-
tion method to reconstruct a shale model with a strongly bimodal distribution of the pore sizes (organic pores 
and few inorganic pores), and the size of the final digital core is only 10*10*10 µm3. As mentioned above, the 
complex shale pore structure includes nano organic pores, micron-nano inorganic pores, micron natural slits and 
micron bedding fracture, and the above method only construct two-scale and two components digital core. Also, 
the reconstructed result is too small to contain enough information and represent the characteristics of the shale 
core. Furthermore, the reconstructed result is random and its physical properties may be very different from the 
existing experimental data. In sum, the reconstruction of multiscale pore structure of shale is still in its infancy 
and needs additional study, and it is necessary to develop new methods to reconstruct more accurate model to 
describe the multiscale pore structure of shale core.

In this work, we present a developed core-scale reconstructing method including the multiscale and multi-
component reconstructing algorithm, the optimization algorithm and the bedding fracture constructing algo-
rithm. To test the method, it is used to reconstruct the core-scale model of a complex shale sample from Sichuan 
Basin. During this process, the representative multiscale model for each layer and the bedding fractures between 
thin layers are reconstructed based on the proposed algorithm, and subsequently they are integrated together to 
obtain the final core-scale digital-experimental model. Furthermore, the morphological and flow properties of 
the reconstructed model are calculated and compared with the experiments. The comparison indicates that the 
final model honor the permeability data and pore-size distribution of the actual shale sample, which can be used 
for a systematic study of the fluid flow and transport in complex shale samples. Our results are expected to have 
practical implications in petroleum engineering.

Results and Discussion
To test the methodology, a complex shale sample from Longmaxi Marine Shale Formation of Lower Silurian in 
the Sichuan Basin, are used for reconstruction. To account for the methodology, Fig. 1 plots the process of recon-
structing the core-scale digital-experimental model. First, the 3D models including typical components for each 
thin layer are reconstructed based on 2D SEM and EDS image with experiment data(pore-size distribution) as 
constrain condition. Then the experimental data for such properties as flow modeling and pore size distribution 
are integrated to optimize the reconstructed result for each layer. Finally, the bedding fracture model and the 3D 
models for different layer are integrated together to obtain the final core-scale digital-experimental model, as 
shown in Fig. 1.

Reconstructed 3D model for each layer.  The SEM image of one thin layer in shale core, obtained by 
scanning electron microscopy, is shown in Fig. 1. It can be used to investigate the nanoscale pore shape and the 
spatial distribution of multiple pores in organic matter and typical minerals. While the EDS image, obtained by 
energy dispersive X-ray spectroscopy, is used to investigate the distribution of minerals in different layers of the 
shale core. The scanning area of SEM image, is 400 μm × 400 μm with a maximum resolution of 4.0 nm. The size 
of EDS map is 4000*1000 μm2 with a maximum resolution of 1.0 μm. By energy dispersive spectroscopy we found 
there are two typical thin layers in the shale core. Also, dry sample permeability of gas is measured by pulse-decay 
permeability measurement under 38 °C at different pressures (0.5 Mpa, 1.0 Mpa, 1.5 Mpa, 2.0 Mpa). The nitrogen 
adsorption method is used to characterize the pore distribution of the sample. The experiment data will be used to 
optimize and validate the reconstructed model. In the following we will demonstrate the process for reconstruct-
ing the representative 2D multiscale model for the first thin layer.

The typical components, such as organic pores, inorganic pores, slits, pyrites, organic matter (OM), dolo-
mite, calcite, ankerite and quartz, are extracted from the SEM and EDS image at different resolutions. To ensure 
that each image can represent the characteristics of the corresponding component, the RES (the representative 
elementary surface) for each component is calculated, as shown in Fig. 2. We choose four different initial points 
(four corners of an image), expand the target area starting from the source points (1 pixel on the edge) in the 2D 
image and calculate the proportion of each component in the sub-square. Inspecting Fig. 2, we can find that the 
lengths of the edge of the RES for organic pores, inorganic pores, slits, pyrites, organic matter (OM), dolomite, 
calcite, ankerite and quartz are approximately 4 μm, 15 μm, 120 μm, 200 μm, 320 μm, 800 μm, 350 μm and 800 μm, 
respectively.
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Then the 3D representative model for the first layer are reconstructed by the proposed multi scale and compo-
nent approach as follow: First, typical components in the shale are reconstructed. Organic matter has abundant 
nanopores which connect the macroscale pores, and it is very important in representing an actual interconnected 
pore network. To accurately reproduce the connectivity of the nanopore structure, the 3D models of organic 
matter and organic pores are reconstructed by the CCSIM-TSS algorithm based on the representative 2D image, 
as shown in Fig. 2. The volumes of the realizations are 800*800*800 μm3 and 4*4*4 μm3, and the resolution are 
100 nm and 4 nm, respectively. Also, the 3D model for dolomite, calcite and ankerite are reconstructed by the 
CCSIM-TSS method, and their volumes are 800*800*800 μm3. As they manifest, the global structures in the 2D 
image are reproduced. Then, the 3D models for the inorganic pores, pyrites and slits are constructed by the sta-
tistical analysis algorithm. The sizes of the 3D models for the inorganic pores, pyrites and slits are 20*20*20 μm3, 
800*800*800 μm3 and 800*800*800 μm3, and the resolutions are 10 nm, 1000 nm, and 1000 nm, respectively. The 
size of the 3D models for pyrites and slits is bigger than that of the RES image because it is convenient for super-
posing them with the 3D models for organic matter.

Second, the models for the typical components are integrated (see Fig. 3). Up to now, nine different models 
for typical components in the first layer are obtained, and they represent the shale from microscale and nano-
scale formations, respectively. At first, the kerogen solids (green) and organic pores (red) on the organic pore 
image (4*4*4 µm3) is merged with the organic matter model (800*800*800 µm3) and the inorganic pores model 
(20*20*20 µm3). It should be noted that the nanoscale image of organic pores is only filled in the organic matter 
in the organic matter model and the inorganic pores is only filled in the skeleton in the organic matter model. 
Especially, the models for inorganic pores for different mineral are only filled in the corresponding mineral 
region. Then the 3D models with organic matter and pores in the OM and IOM are integrated with the models for 
the pyrites, slits, dolomite, calcite, ankerite and quartz together based on the multiscale superposition algorithm. 
The final multiscale model (800*800*800 µm3) for the first layer is plotted in Fig. 3, and it can be found that it has 
multiscale pore structures and multi components.

Figure 1.  The schematic illustration of the process of reconstructing the digital-experimental model.
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Like the reconstruction of the model for the first layer, the 3D representative model for the second layer is 
generated, as shown in Fig. 4, and its size is 1000*1000*1000 µm3. To examine the pore structure more clearly, we 
also plot the corresponding 3D model only including OM, pyrites and multiscale pores (slits). It can be seen from 
the models that the mineral structure of the second layer is quite different from that of the first layer.

Optimization for the 3D model in each layer.  Although the multiscale and multicomponent algorithm 
can reproduce models with the high accuracy of statistical properties, the reconstructed models are random and 
their physical properties may be different from the experimental data. Thus in the following we will use the exper-
iment data as constrain condition to optimize the reconstructed multiscale models.

Figure 2.  The model process of typical component in the first layer of the shale sample.

https://doi.org/10.1038/s41598-019-39442-5
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First, 10 multiscale realizations for each layer are generated, and the pore size distribution of each realization 
is calculated. The one that most approach the experiment data is chose, as shown in Fig. 5a. Second, the model is 
optimized to minimize the difference between it and the experiment data. The result in Fig. 5b indicates that the 
optimized model obtained by the Step 2 reproduces the pore-throat size distribution of the real samples very well. 
Third, the apparent permeability of the 3D model in the above step is calculated by the multiscale gas transport 
simulation method (see Supplementary File). The tortuosity of the inorganic pores is determined by the vertical 
permeability obtained from experiment at 1.5 MPa. It can be obtained that the tortuosity of the inorganic pores 
for 3D model of the first and second layer are 2.6 and 2.1.

The final core-scale digital-experimental model.  In the following we will construct the digital-experimental 
core with multi layers. First, based on the bedding fracture constructing method and the mineral distribution in the 
interface of two layers, the bedding fracture are constructed, as shown in Fig. 6a. It can be found that the bedding frac-
tures are curved surface. Furthermore, we calculate the multiple point connectivity of the bedding fractures. Figure 6b 
shows that the connectivity of the bedding fractures is good, and it plays a very important role in the flow of the shale 
gas. For more detail information of the bedding fracture, please see the Supplementary File.

Similar to the above the method, the 3D representative multiscale models of each layer are integrated together 
to obtain the final core scale 3D model. Considering there are only two typical layers in our shale core sample, the 
3D representative models for each layer are alternately superposed together. Similar to the inorganic pores, the 
horizontal permeability at the 1.5 MPa is used as constrain condition to optimize the 3D model and the tortuosity 
of the bedding fracture is 1.5. The final digital-experimental 3D model are shown in Fig. 7. The size of the model 
is 2.0*2.0*2.0 cm3 and the resolution is 4 nm. In the same way, to examine the pore structure more clearly, we also 
plot the corresponding 3D model only including OM and pores (Fig. 7b). It can be seen from the figure that the 
model are layered.

Figure 3.  The process of merging various scale digital cores together.

Figure 4.  The reconstructed 3D model in the second layer of the shale sample (1000*1000*1000 µm3). (a) 
3D model containing several typical minerals; (b) the corresponding 3D model (1000*1000*1000 µm3) only 
including OM, pyrites and multiscale pores (slits).
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Figure 5.  Selecting the most accurate pore size distribution. In this case the most accurate model for the first 
layer is the second (a). Comparison of the pore size distribution of the final 3D model for the first layer obtained 
by the optimization method, before optimization and the experiment data (b).

Figure 6.  Comparison of the pore size distribution of the final result obtained by the optimization method, 
before optimization and the experiment(a); The connectivity of the bedding fractures.

https://doi.org/10.1038/s41598-019-39442-5
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Validation.  Finally, we present a comparison between the pore size distribution and the apparent permea-
bility of the final digital-experiment model and the actual shale core to validate it, as shown in Fig. 8. Figure 8a 
shows that the pore size distribution of the digital-experiment cores and experiment data of the actual shale rock 
agrees very well. Figure 8b,c demonstrates that the values of apparent permeability from the simulations agree 
well with the results from experiments at the average pressure of 0.5 MPa, 0.75 MPa, 1.0 MPa and 2.0 Mpa. The 
good agreement of the apparent permeability validated the reconstructed digital-experimental core.

Conclusions
Constructed more realistic core-scale 3D models with sufficient spatial resolution is of great significance for exploration 
of shale reservoirs. In this paper, the core-scaling reconstructing method, including the multiscale and multicompo-
nent reconstructing algorithm, the optimization algorithm and the bedding-fracture constructing algorithm, is used 
to reconstruct the digital-experimental model considering the multiscale pores. By using multiscale and multicompo-
nent reconstructing algorithm, the representative multiscale model for each layer is successfully built based on the 2D 
SEM and EDS image. With the pore size distribution and vertical permeability obtained from experiment as constrain 
condition, the representative multiscale model are adjusted by the optimization algorithm to accurately describe the 
3D structures of nano organic pores, micro-nano inorganic pores, micro slits and several typical minerals for each 
layer. Finally, the bedding fracture constructing algorithm guarantees an accurate reproduction of the complex bedding 

Figure 7.  The final digital-experimental 3D model (2.0*2.0*2.0 cm3) (a); The corresponding 3D model only 
including OM, pyrites and multiscale pores (slits) (2.0*2.0*2.0 cm3) (b).

Figure 8.  Comparison of the pore size distribution (a) and the permeability in the horizontal (b) and vertical 
direction (c) obtained from experiment and digital-experiment cores of shale sample.

https://doi.org/10.1038/s41598-019-39442-5
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fracture distribution and the representative multiscale models for different layers are integrated together to obtain the 
final core-scale digital-experiment model. The digital-experiment model can systematically and continuously describe 
the multiscale and anisotropic pore structure in organic-rich shale core, and will be helpful for understanding the qual-
ity of the shale reservoir and provide critical input to the completion design.

The method proposed in this paper generates realization of shale samples that match the measured permea-
bility and the pore size distribution only based on a large area 2D SEM image, EDS image and experiment data 
without using full 3D imaging. It can be used as a tool for reducing the cost and time in the studies of shale.

Methodology
Due to the wide pore size distribution ranging from nanometer to micrometer and the multiple layers in shale 
core, it is very difficult to consider different pores and components simultaneously and the combination of various 
algorithms is essential to obtain the “global 3D model” of the shale. The main idea of the core-scale reconstructing 
method proposed in our paper is to characterize the 3D structure of different pores and components of shale with 
different techniques and then integrate them together. The proposed methodology in this paper consists of three 
algorithms used sequentially to produce high-quality 3D model.

The multiscale and multicomponent reconstructing algorithm.  This algorithm utilizes the cross cor-
relation based simulation- three step sampling method (CCSIM-TSS) to produce an ensemble of realizations for 
inhomogeneous porous media23. In our work, the CCSIM-TSS method is used to reproduce the morphological 
features of some components with complex structure in the shale. The steps of the CCSIM-TSS method is arranged 
as follows (see Fig. 9). First, a representative 2D image, named as DI, is selected as the digital image. Second, the 
image is set as the first layer at the bottom part of the reconstructed 3D model, and the other four frames (left, right, 
front, and back) are reconstructed. Third, the internal structure is generated layer by layer in the vertical direction. 

Figure 9.  The schematic illustration of the multiscale and multicomponent reconstructing algorithm.

https://doi.org/10.1038/s41598-019-39442-5
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The multiple-point connectivity probability function of the DI is calculated. Then, if the k + 1 layer is reconstructed 
currently, the k layer is successively scanned by 5 × 5 and 3 × 3 sampling templates. If the points of the template, are 
entirely pore (grain), the central node is marked as a sampling point. Based on the multiple-point connectivity prob-
ability function, the sampling points in the remaining area are selected. The sampling points are used as condition 
constrain when reconstructing the k + 1 layer, thus the continuity and variability between adjacent layers can be 
controlled directly. Finally, the all the layers are stacked together to obtain the reconstructed 3D model.

Figure 10.  The flow chart of the step 2 in optimization algorithm.

Figure 11.  The 2D EDS image of bedding fracture (a) and the formation of 3D bedding fracture (red curved 
surface) (b).

https://doi.org/10.1038/s41598-019-39442-5
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The multiscale and multicomponent reconstructing algorithm utilizes the statistical analysis algorithm to 
generate the 3D models of some components in the shale, which are scattered in the shale matrix and their con-
nectivity are not very good. The procedure of the statistical analysis algorithm is: (1) the diameter distribution of 
each component (pyrites and inorganic pores) is calculated based on the global SEM image at proper resolution; 
(2) we use the statistics to construct random spheres whose radius follow the distribution of the diameter, and the 
spheres are distributed randomly in the 3D image (digital core), as shown in Fig. 9.

In order to capture the pores at various scales, the multiscale superposition algorithm are utilized to integrate the 3D 
models with different physical size and resolution together. The procedure is: (1) the macropore digital core with low 
resolution is refined into an image with high resolution using a cubic spline interpolation technique. During this step, 
each voxel in macropore digital core is refining into i*i*i voxels (i is the resolution ratio between the low resolution pore 
digital core and the high resolution one). (2) We stack j*j*j nanopore digital cores with high resolution up to obtain 
a composition image with the same size of the macropore digital core. (3) The 3D model for different component is 
superposed as follows:
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where Ω, Ω1, Ω2, Ω3, Ω4, Ω5, Ω6, Ω7, Ω8, Ω9 indicates the final superposed shale multiscale digital core, the organic 
matter digital core, the organic pores digital core, the pyrite digital core, the slits network, the inorganic pores 
digital core, the dolomite digital core, the calcite digital core, the ankerite digital core and the quartz digital rock, 
respectively. For the superposed shale multiscale digital core, Ωskeleton, Ωpyrite, Ωorganic pore, Ωinorganic pore, Ωslit, Ωom, 
Ωdolomite, Ωcalcite and Ωanlerite represent the skeleton, the pyrites, the organic pores, the inorganic pores, the slits, 
organic matter (OM), dolomite, calcite, ankerite, and their values are 0, 1, 2, 3, 4, 5, 6, 7 and 8. Figure 9 presents an 
example of the superposition of the organic matter digital rock, the organic pores digital rock, the inorganic pores 
digital core. It should point out that this multiscale superposition algorithm applies to the cases that the difference 
of resolutions is not too big or the heterogeneities are not too strong.

The optimization algorithm.  The optimization algorithm consists of three steps, and each step relies on 
the model developed in the previous steps and improves it. (1) This step chooses the reconstructed model whose 
physical properties is most close to the experiment data (pore-size distribution) from the realizations recon-
structed by the statistic method. It should be pointed out that the AB (axis & ball) algorithm is used to extract 
the pore networks from the reconstructed model and the pore-size distribution is calculated based on the pore 
networks26. (2) The complete pore-size distribution of the reconstructed model is sometimes different from the 
experiment data by Step 1. Thus, the model in Step 1 is further improved using an iterative scheme to minimize 
the difference and reproduce model that is even more similar to the real sample, as shown in Fig. 10. To this end, 
the 3D model reconstructed in Step 1 is further optimized based on simulated annealing algorithm (SA) with 
the experiment data (pore-size distribution) as the objective function24. We design the search scheme based on 
D3Q19model, select the boundary point of pore and the matrix, and proposes the generation solutions of the 
new system by exchanging the boundary points of two pores. Then the Metropolis criterion is used to determine 
whether the new system is accepted. The iteration process continues until the difference between the recon-
structed model and the experiment becomes lower than a specified value. The flow chart of the optimization algo-
rithm is shown in Fig. 10; (3) The continuity of the inorganic pores of the multiscale model in Step 2 is random 
and the apparent permeability may be different from the experiment data. Here we assume that the tortuosity of 
the inorganic pores in inorganic matrix is the same, and it is determined by the apparent permeability obtained 
from the experiment data. The apparent permeability of the multiscale model is calculated by the multiscale gas 
transport simulation method.
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The bedding fracture constructing method.  Inspecting the 2D EDS image, we can find that the bedding 
fracture distributes mainly in the interface of two different minerals of the two layers, as shown in Fig. 11a. Thus, 
the bedding fracture constructing method construct the 3D bedding fracture network as follows: (1) during 
superposing two 3D representative models (names as model A and model B) of different thin layers together, we 
search the contact surface of two mineral grains in the interface of model A and model B. (2) If these two mineral 
grains belong to different models and have different kinds of minerals, we assume that the bedding fracture are 
formed in their contact surface. For example, as shown in Fig. 11b, there are three different mineral grains. The 
yellow mineral grain belong to model A, while the blue and pink mineral grains belong to model B. Thus there is 
a bedding fracture in the contact surface between the yellow and blue (pink) mineral grains. However, there are 
no bedding fracture between the blue and pink mineral grains, because they both belong to model B. According 
to the above method, we can obtain the bedding fracture network between two different layers.
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