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Abstract
Obstructive sleep apnea (OSA) is a common chronic disease and increases the risk of cardiovascular disease, metabolic and
neuropsychiatric disorders, resulting in a considerable socioeconomic burden. This study aimed to identify potential key genes
influence the mechanisms and consequences of OSA.
Gene expression profiles related to OSA were obtained from Gene Expression Omnibus (GEO) database. Differentially expressed

genes (DEGs) in subcutaneous adipose tissues fromOSA compared with normal tissues were screened using R software, followed by
gene ontology (GO) and pathway enrichment analyses. Subsequently, a protein-protein interaction (PPI) network for these DEGs was
constructed by STRING, and key hub genes were extracted from the network with plugins in Cytoscape. The hub genes were further
validated in another GEO dataset and assessed by receiver operating characteristic (ROC) analysis and Pearson correlation analysis.
There were 373 DEGs in OSA samples in relative to normal controls, which were mainly associated with olfactory receptor activity

and olfactory transduction. Upon analyses of the PPI network, GDNF, SLC2A2, PRL, and SST were identified as key hub genes.
Decreased expression of the hub genes was association with OSA occurrence, and exhibited good performance in distinguishing
OSA from normal samples based on ROC analysis. Besides, the Pearson method revealed a strong correlation between hub genes,
which indicates that they may act in synergy, contributing to OSA and related disorders.
This bioinformatics research identified 4 hub genes, including GDNF, SLC2A2, PRL, and SST which may be new potential

biomarkers for OSA and related disorders.

Abbreviations: AHI = apnea-hypopnea index, DEGs = differentially expressed genes, GDNF = glial cell derived neurotrophic
factor, GEO = Gene Expression Omnibus, GO = gene ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes, OSA =
obstructive sleep apnea, PCA = principal component analysis, PPI = protein-protein interaction, PRL = prolactin, ROC = receiver
operating characteristic, SLC2A2 = solute carrier family 2 member 2, SST = somatostatin.
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1. Introduction

Obstructive sleep apnea (OSA) is a sleep respiratory disturbance
disease characterized by nocturnal sleep snoring, apnea, and
daytime sleepiness, which leads to intermittent hypoxemia,
transitory hypercapnia and sleep structural disorder. The main
clinical risk associated with OSA is multiple organ system
damage, such as cardio-cerebrovascular diseases, metabolic
syndrome, and cognitive dysfunction.[1–3] The prevalence of
OSA has increased among the general population, and moderate
to severe OSA has been estimated to be as high as 49.7% inmales
and 23.4% in females.[4] Unfortunately, the vast majority
patients with OSA (70%–90%) remain undiagnosed, resulting
in a heavy health and socioeconomic burden.[5] Therefore, it is an
urgent task to study the etiology and pathogenesis of OSA and to
find indicators for early diagnosis and treatment targets.
Strong genetic influence has been reported for OSA, with more

than 1.5-fold increased risk in first-degree relatives of patients.[6]

Approximately 35% to 40% of variation in apnea-hypopnea
index (AHI), which measures apnea severity, can be explained by
genetic factors.[7] Genetic research has yielded new insights into
understanding the mechanism underlying OSA to develop a more
effective target therapy and optimize treatment strategies. Most
efforts to date to identify the genetic cause of OSA have taken the
candidate gene approach, based on 4 intermediate pathogenic
pathways: obesity and body fat distribution, craniofacial
morphology, ventilatory control, control of sleep and circadian
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rhythm.[7,8] However, this method limits the validity of the
findings because these studies rely on prior hypotheses about
disease mechanism, which precludes discovery of genetic
variation in previously unknown pathways.[9]

Recently, the genome-wide DNA microarray based on high-
throughput platforms for gene expression analysis, has emerged as
an efficient and relatively economical tool to study complex disease
genetics.[10] Therefore, we compared gene expression profiles in
subcutaneous adipose tissue between OSA and control from the
Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo) for screening differentially expressed genes
(DEGs). Subsequently, the DEGs were identified using a
combination of functional enrichment and protein-protein
interaction (PPI) analyses. The reliabilities of the identified hub
genes were further validated in another independent dataset and
assessed by receiver operating characteristic (ROC) analysis to
determine the predictive, diagnostic and therapeutic value of these
genes for OSA.
2. Materials and methods

2.1. Microarray dataset source

A systematic retrieval of gene expressionmicroarray datasets from
the National Center for Biotechnology Information GEO (http://
www.ncbi.nlm.nih.gov/geo/) was performed to examine DEGs
between OSA and normal. The key words “obstructive sleep
apnea” was used for the screening. The gene expression profile of
GSE135917 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE135917)[11] was included in the present study, which
was based on GPL6244 platform (HuGene-1_0-st; Affymetrix
Human Gene 1.0 ST Array). This dataset contained 18
subcutaneous adipose tissue samples obtained from the abdominal
subcutaneous fat biopsy of 10OSA patients and 8 normal controls
during ventral hernia repair surgery, and the baseline character-
istics of the OSA and control samples are presented in
Supplemental Table S1, http://links.lww.com/MD/F598.[11] OSA
severity was assessed using the ARESTM Unicorder (Watermark
Medical, Boca Raton, FL) a previously validated portable sleep
monitor worn 2 consecutive nights prior to surgery.[11]

A further independent dataset, GSE38792 (https://www.ncbi.
nlm.nih.gov/geo/ query/acc.cgi?acc=GSE38792)[12] including
microarray data from visceral fat biopsies obtained intraoper-
atively from the momentum of 10 OSA patients and 8 normal
controls, was used to validate the results obtained from the
GSE135917 dataset. Similarly, the GSE38792 dataset was based
on the GPL6244 platform. All samples enrolled in our study were
obtained from publicly available database which allowed
researchers to download and analyze datasets for scientific
purposes, and ethical review and approval were thus not required.
2.2. Data preprocessing and differential expression
analysis

R software (version 3.6.2; https://www.r-project.org/) together
with packages available from Bioconductor (http://www.biocon
ductor.org/) was used to perform statistical analyses. According to
theAffymetrix platform, preprocessing, normalization and quality
control of the microarray datasets with raw data (.CEL files) were
performed using the Affy package[13] in R. The robust multichip
average (RMA) method was used for background correction,
quantile normalization and median polish summarization.
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According to the annotation platform, probe IDs were converted
into gene symbols. Probe setswithout corresponding gene symbols
or genes with more than one probe set were removed or averaged.
The Linear Models for Microarray Data (LIMMA) package[14]

in R Bioconductor was used to identify DEGs [jlog2Fold Changej
≥1; false discovery rate (FDR) <0.05] between OSA and normal
controls. FDR was controlled based on the Benjamini-Hochberg
method and empirical Bayes-modified t-tests were performed to
select sets of DEGs. Moreover, principal component analysis
(PCA) was performed and visualized with the rgl and pca3d R
packages to examine separation of the OSA and normal groups
based on differential gene expression. Heat map and volcano plot
of DEGs were generated in R using the ggplot2 and pheatmap
packages.
2.3. Biological functions and pathway enrichment analyses

To further elucidate the biological functions of DEGs between
OSA and normal controls, the identified DEGs were subjected to
Gene Ontology (GO) term enrichment and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analyses using cluster
Profiler package (version 3.10.0)[15] and org.Hs.e.g,.db annota-
tion package (version 3.10.0)[16] in R. The significant GO terms
or KEGG pathways were enriched by more than 2 genes with the
threshold of FDR <0.05. Furthermore, pathway network
analysis may reveal the possible crosstalk interactions among
pathways associated with the development of OSA. Therefore,
functionally grouped GO term/pathway networks were con-
structed based on the identified DEGs on Cytoscape (version
3.7.2) using Clue Go (version 2.5.6)[17] with kappa score = 0.4
and P value �.05.
2.4. Protein-protein interaction network analysis and hub
genes selection

Potential interactions among the DEGs encoding proteins were
predicted with the aid of the online database STRING (version
11.0; http://string-db.org), and a combined interaction score
>0.4 was considered statistically significant. Subsequently, the
protein-protein interaction (PPI) network was visualized using
Cytoscape (version 3.7.2). Molecular Complex Detection
(MCODE; version 1.6) plugin of Cytoscape was used for
searching the most denset and significant module in the PPI
network with criteria as follows: degree cutoff = 2, node score
cutoff = 0.2, K-core = 2, and max depth = 100. CytoHubba
(version 0.1) plugin was used to select and identify genes ranking
top ten based on eleven topological analysis algorithms.[18] The
intersection of the top gene sets revealed the final hub genes
displayed through a Venn diagram created with OmicShare tools
(http://www.omicshare.com/tools). Further, functional annota-
tion of hub genes was carried out using DAVID database (version
6.8; https://david.ncifcrf.gov/).
2.5. Validation and analysis of hub genes

GSE38792, another independent microarray dataset, was utilized
to verify the differential expression of these hub genes between
OSA and normal controls, and the gene expression visualization
was performed by pheatmap R package. Meanwhile, the
expression level of hub genes based on GSE135917 and
GSE38792 datasets was analyzed by ggpubr and ggplot2 R
packages. Subsequently, to identify diagnostic value of hub genes
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and optimum cutoff points at the gene expression level for
predicting OSA, we integrated the above twomicroarray datasets
to screen out expression of hub genes in all samples and divided
them into OSA and control groups; the gene expression data was
imported into R software and receiver operating characteristic
(ROC) curves were plotted, and the area under the curve (AUC)
was calculated for each hub gene using the pROC package (AUC
>0.5 indicated good diagnostic value). Furthermore, to explore
co-expression among hub genes, a heat map of Pearson
correlation coefficient matrix was plotted to visualize the
correlations between different genes by using the ggcorrplot
and ggthemes packages of R. Genes with an absolute value of
correlation coefficient >0.4 and P value <.05 were identified as
the related genes.
3. Results

3.1. Identification of DEGs

In this reanalysis, the raw microarray data from GSE135917 was
subjected to RMA preprocessing and then normalized to the
median of all samples. The box plot of each sample before and
after normalization demonstrated that the chip data had been
normalized and were available for DEGs selection (Fig. 1).
Figure 1. Data preprocessing. The distribution diagrams o
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Following data preprocessing, a total of 23281 gene expression
values were obtained from the 18 samples. Based on the
calculating criteria of absolute log2FC ≥1 and FDR <0.05, there
were 373 DEGs in OSA samples in relative to normal controls,
including 342 down-regulated genes and 31 up-regulated genes.
As shown in Figure 2, the volcano plot (Fig. 2A) intuitively
exhibited the distribution of DEGs and the heat map (Fig. 2B)
based on the expression level of DEGs showed the result of
bidirectional hierarchical clustering of DEGs and samples.
Moreover, DEGs clearly separated OSA samples from controls
on the PCA plots (Fig. 2C, D).

3.2. Functional and pathway enrichment analyses of DEGs

GO enrichment and KEGG pathway analyses were performed
using the cluster Profiler R package, and only the GO terms and
KEGG pathways enriched with an adjusted P value <.05
(Benjamini-Hochberg correction for multiple testing) were
considered. The GO functional enrichment resulted in a total
of 373 DEGs mapped to 4 GO terms including 3 biological
process (BP) terms and 1 molecular functional (MF) terms
(Fig. 3A). Enriched GO terms are mainly associated with
olfactory receptor activity and detection of chemical stimulus
involved in sensory perception of smell. Furthermore, KEGG
f gene expression values before and after normalization.

http://www.md-journal.com


Figure 2. DEGs screening and visualization for GSE135917. (A) Volcano plot of the DEGs for OSA samples vs. Normal controls. Each dot represents a gene (red:
up-regulated gene; blue: down-regulated gene; black: no significant difference). (B) Heat map and clustering pattern of the DEGs including 342 down-regulated
and 31 up-regulated genes. Red or blue indicates either higher or lower expression levels of DEGs. Samples were separated into the normal and OSA cluster. (C) 2-
dimensional PCA and (D) 3-dimensional PCA of DEGs. The scatter plots showed a good separation of OSA and normal samples along the first two or three PC.
DEGs = differentially expressed genes, OSA = obstructive sleep apnea, PCA = principal component analysis.
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pathway analysis demonstrated that DEGs were significantly
enriched in olfactory transduction and neuroactive ligand-
receptor interaction pathways (Fig. 3B). In addition, to examine
possible networks and relationships among enriched terms,
ClueGO visualization and analysis of biological role (GO,
KEGG pathways) was undertaken, shown in Figure 3C,D,
respectively.
4

3.3. PPI network analysis and hub genes selection
A PPI network comprising 90 nodes and 86 edges was
constructed based on the biological interactions of 373 DEGs
to further identify their associations at the protein level (Fig. 4A).
As shown in the PPI network, 11 up-regulated and 79 down-
regulated genes were screened out in patients with OSA.
Subsequently, we combined the results of MCODE and



Figure 3. Enrichment analysis of the DEGs using cluster Profiler R package. (A) GO enrichment analysis. (B) KEGG pathway analysis. Four significant GO terms (3
BP and 1MF) and two KEGG pathways were identified with the cutoff criteria of adjusted P value<.05. DEGs= differentially expressed genes, GO= gene ontology,
KEGG = Kyoto Encyclopedia of Genes and Genomes, BP = biological process, MF = molecular function. Enrichment analysis of the DEGs using ClueGO plugin.
Functionally grouped GO term (C) and KEGG pathway (D) networks were constructed based on the DEGs (kappa score = 0.4 and P value �.05). DEGs =
differentially expressed genes, GO = gene ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes.
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cytoHubba analyses, and selected genes ranking top ten based on
nine topological analysis algorithms (Table 1). Venn diagram
analysis was used to determine the intersection of the nine gene
sets, as presented in Figure 4B. Finally, the final hub genes
including GDNF, SLC2A2, PRL, and SST were identified and
presented in Table 2, providing functional annotation for these
genes by DAVID.

3.4. Validation of hub genes for OSA identification

To validate the reliability of the results obtained from
GSE135917 dataset, the heat map and hierarchical clustering
analysis of hub genes, based on data from an independent
GSE38792 dataset was performed, and the results showed that
the 4 hub genes with low expression can basically distinguish
OSA from normal samples (Fig. 5A). Meanwhile, we compared
the expression level of these hub genes between OSA and normal
controls in the 2 datasets respectively, and found that all 4 genes
showed a significant difference (all P values<.05), as presented in
Figure 6. Subsequently, the ROC curves were constructed to
identify diagnostic value of per hub gene and optimum cutoff
points at the gene expression level for predicting OSA (Fig. 5B).
The AUC as well as sensitivity, specificity and cut-off value at the
best performance were summarized in Table 3, which suggested
that the 4 hub genes can be used as indicators for OSA
identification. Furthermore, the heat map on Pearson correlation
was used to show the co-expression among hub genes, indicating
that the expression between any 2 hub genes were highly positive
5

correlated, with correlation coefficients ranging from 0.83 to
0.94 and all P values <.001(Fig. 5C).

4. Discussion

Currently, bioinformatics has become increasingly important for
exploring the pathogenesis of multifactorial disorders.[19] The
identification of gene expression changes in tissues relevant to a
disease is an important step toward facilitating our understand-
ing of pathogenesis, and eventually lead to better diagnosis and
treatment.[19] In the present study, we identified 31 up-regulated
and 342 down-regulated genes in subcutaneous adipose tissue of
OSA patients compared with normal controls, which suggested
that the occurrence and development of OSA is a complex
biological process involving multiple genes and steps. Biological
function and pathway enrichment analyses indicated that DEGs
were mainly involved in the GO terms or KEGG pathways
associated with olfactory receptor activity and olfactory
transduction. However, the association of the olfactory pathway
with OSA has not been previously studied. Besides, GDNF,
SLC2A2, PRL, and SST were identified as the key hub genes
through PPI network construction. The low expression levels of
these 4 hub genes were further validated in an additional dataset,
and can basically distinguish OSA from normal samples.
Furthermore, ROC curves of these genes exhibited larger AUCs,
suggesting that they had good diagnostic value for OSA.
Therefore, the present study considered these 4 genes were
significant and needed to be discussed.

http://www.md-journal.com


Figure 4. PPI Network Analysis and Hub Genes Selection. (A) PPI network of the DEGs. Blue circles and red diamonds represent down-regulated genes and up-
regulated genes, respectively; the size of circles or diamonds indicates P values, with larger circles or diamonds representing smaller P values. (B) Venn diagram of
gene sets ranking top ten based on nine topological analysis algorithms in cytoHubba plugin. The intersection of the top gene sets revealed four hub genes. PPI =
protein-protein interaction, DEGs = differentially expressed genes.

Table 1

Top 10 genes by nine ranked methods respectively in cytoHubba.

Rank methods in cytoHubba

MCC Betweens Degree Stress Eccentricity Bottleneck Radiality Closeness EPC

TOP 10 gene SST SST SST SST PRL SST SST SST SST
PRL EYA1 PRL EYA1 GDNF GDNF PRL PRL PRL

KRTAP20-3 GDNF SLC2A2 GDNF SST PRL GDNF GDNF VIP
KRTAP19-7 PRL GDNF PRL SLC2A2 RAD21L1 VIP VIP BRS3
KRTAP19-6 SLC2A2 EYA1 SLC2A2 EYA1 SMC1B SLC2A2 SLC2A2 SLC2A2
KRTAP3-2 VIP CHRM2 VIP GFRAL EYA1 HOXA11 BRS3 AVPR1B

HRG CHRM2 BRS3 TAAR9 NPVF HOXA11 EYA1 EYA1 GDNF
SLC2A2 MYF5 VIP MYF5 UCN3 TRIML1 BRS3 CHRM2 CHRM2
GDNF SPAG6 TEX11 SPAG6 HOXA11 ASB5 UCN3 HOXA11 UCN3
EYA1 TAAR9 PROZ HOXA11 DCX SLC2A2 CHRM2 UCN3 HRH4

MCC, Between, Degree, Stress, Eccentricity, Bottleneck, Radiality, Closeness and EPC are different algorithm names.

Cao et al. Medicine (2021) 100:4 Medicine
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Table 2

Functional roles of 4 hub genes.

Gene symbol Full name Function

GDNF Glial cell derived neurotrophic factor Neurotrophic factor that enhances survival and morphological differentiation of dopaminergic neurons
and increases their high-affinity dopamine uptake

SLC2A2 Solute carrier family 2 member 2 Facilitative glucose transporter
PRL Prolactin Prolactin acts primarily on the mammary gland by promoting lactation
SST Somatostatin Somatostatin inhibits the release of somatotropin

Cao et al. Medicine (2021) 100:4 www.md-journal.com
GDNF, glial cell-derived neurotrophic factor, belongs to the
transforming growth factor family, which is crucial for motor
neurons, dopaminergic and peripheral neurons.[20] A large
candidate gene study for OSA[8] supported a potential pathogenic
role for polymorphisms in GDNF gene in European Americans.
The associations of GDNF with OSA still remained after
adjustment for BMI, implying that these genetic variants
influence OSA susceptibility through obesity-independent path-
ways. Larkin et al[8] argued that GDNF variants are related to the
pathogenesis of OSA via ventilatory control abnormalities for the
following reasons. First, ventilatory control abnormalities may
predispose to OSA by worsening ventilatory instability, impair-
ing the arousal response to airway obstruction, or contributing to
imbalanced activation of upper airway muscles compared with
chest wall muscles. Additionally, GDNF plays a critical role in the
development of neural pathways (e.g., noradrenergic neurons
development and differentiation) vital for normal respiration.
Moreover, GDNF seems to play a trophic role for sensory
Figure 5. Validation of the hub genes. (A) Hierarchical clustering heat map of the fo
color, down-regulated. (B) ROC curves of the four hub genes to distinguish OSA fr
Correlation analysis among the four hub genes. Heat maps showing the correlations
circles indicates the correlations, with Pearson correlation coefficients superimpose
apnea, GDNF = glial cell derived neurotrophic factor, SLC2A2 = solute carrier fa
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afferent neurons in the carotid body, which may be important in
development of hypoxic responses. Finally, knockout of GDNF
gene results in abnormal central respiratory output, and severe
mutations in GDNF are associated with the central congenital
hypoventilation syndrome. Likewise, as shown in our present
study, the GDNF expression was decreased in OSA samples, and
had the highest AUC for predicting OSA. Notably, Larkin et al
results were not successfully replicated in a large Icelandic OSA
cohort,[21] probably because they had different study population
or environmental factors. So the association between GDNF and
OSA remains controversial and warrants further research.
SLC2A2 (solute carrier family 2 subfamily A member 2)

encodes the facilitative glucose transporter isoform GLUT2,
which is expressed in liver, kidney, intestine, pancreatic islet beta
cells and the central nervous system.[22] GLUT2 facilitates the
passive transport of glucose across plasma membranes, which is
important for the basis of an integrated inter-organ communica-
tion system to control glucose homeostasis, including the control
ur hub genes in the GSE38792 validation dataset. Red color, up-regulated; blue
om normal samples using data from GSE135917 and GSE38792 datasets. (C)
between hub genes in GSE135917 and GSE38792 datasets. Color and size of
d on circles. ROC = receiver operating characteristic, OSA = obstructive sleep
mily 2 member 2, PRL = prolactin, SST = somatostatin.

http://www.md-journal.com


Figure 6. Continued. Validation of the hub genes. Differential expression of four hub genes in OSA samples and normal controls based on GSE135917 (A) and
GSE38792 (B). These results indicate that our findings are reliable.

∗
P< .05,

∗∗∗
P< .001 and

∗∗∗∗
P< .0001.
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of cellular mechanisms impinging on gene expression, regulation
of intracellular metabolic pathways, and induction of hormonal
and neuronal signals.[22] Single nucleotide polymorphisms
(SNPs) in SLC2A2 were associated with the conversion from
impaired glucose tolerance to type 2 diabetes in the Finnish
Diabetes Prevention Study, and this relationship was independent
of weight change.[23] Furthermore, Anders et al. found only the
minor risk allele of SCL2A2 was significantly associated with
increased risk of incident cardiovascular disease (CVD), when
assessing the individual and cumulative effect of 46 type 2
diabetes related genetic variants, and the association was
independent of diabetes status at baseline.[24] The present study
combined two different microarray datasets for analysis and
showed that SLC2A2 expression was low in OSA patients, and
exhibited good discrimination (AUC = 0.9594). Given the
increasingly recognized adverse impact of OSA on CVD,
metabolic syndrome and neuropsychiatric disorders, some
genetic variants may prove also to be important in determining
whether pathways disrupted in the pathogenesis of OSA causally
contribute to these outcomes.[7,8] It might be of great significance
to investigate whether SLC2A2 variants are associate both with
OSA and co-morbid disorders (e.g., diabetes, CVD), that is,
SLC2A2 variants may contribute simultaneously to both
phenotypes through different mechanistic effects.
Table 3

ROC curve analysis of hub gene expression for OSA.

Gene Cut-off value Specificity,%

GDNF 5.573 100.0
SLC2A2 4.402 93.8
PRL 5.216 93.8
SST 6.176 75.0

OSA = obstructive sleep apnea, ROC = receiver operating characteristic, AUC = area under curve, CI =
member 2, PRL = prolactin, SST = somatostatin.
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Prolactin (PRL) is a luteotropic and pleiotropic hormone
involved in many biological processes, such as lactation,
reproduction, angiogenesis, immune response and osmoregula-
tion.[25] Besides, PRL can influence sleep structure, and PRL-
deficient mice display less rapid eye movement (REM) sleep than
wild-type mice.[26] Additionally, patients with hyperprolactine-
mia have been observed to have metabolic alterations and are
more susceptible to weight gain, and weight loss in these patients
is associated with normalization of their prolactin levels.[27] PRL
may modulate energy metabolism by regulating the LPL activity
and lipogenesis, and reducing the release of adiponectin in human
adipose tissue.[28] On the basis of a genome-wide association
study (GWAS) for early onset and morbid obesity, a variant near
PRL was identified relevant for common obesity and BMI
variation.[29] Nilsson et al. successfully replicated the association
in a large population-based study from Western Finland, finding
that the variant near PRL gene is associated with increased
adiposity in males.[28] Herein, our study demonstrated that PRL
gene expression was significantly decreased in OSA samples
compared with normal controls. As we know, obesity increases
the risk of OSA by 10 to 14-fold, and is expected to explain up to
40% of AHI variation.[7] Identification of genes determining
intermediate phenotypes (potentially on a causal pathway
leading to OSA) may be helpful to determine susceptibility
Sensitivity,% AUC AUC 95%CI

100.0 1.00 1.000–1.000
90.0 0.9594 0.9019–1.000
95.0 0.9688 0.9189–1.000
85.0 0.8438 0.7152–0.9723

confidence interval, GDNF = glial cell derived neurotrophic factor, SLC2A2 = solute carrier family 2
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genes.[7] Thus, further research is warranted to explore whether
PRL variants contribute to OSA via sleep structural alterations or
intermediate phenotypes such as obesity.
Somatostatin (SST), a cyclic peptide hormone, affects growth

hormone release, and gastrointestinal function. SST can influence
somatic growth and body weight by regulating the gastrointesti-
nal motility, intestinal absorption of nutrients, and energy
homeostasis. It has emerged as a therapeutic approach for obesity
and type 2 diabetes.[30] Moreover, as a neurotransmitter or
neuromodulator abundant in the central nervous system, SST
plays a role in the fine-tuning of synaptic plasticity and neuronal
activity.[31] SST+/nNOS+ neuron dysfunction may contribute to
pathophysiological changes observed in various diseases associ-
ated with both disturbed slow-wave activity (SWA) production
and cognitive impairments including Alzheimer’s disease (AD),
epilepsy, schizophrenia and traumatic brain injury.[32] Evidence
has suggested that the down-regulation of SST expression in the
brain of early aging initiates a gradual decline in neprilysin
activity, leading to amyloid-b (Ab) peptide accumulation in
patients with AD. Thus, SST variants might alter the expression
or function of somatostatin and be involved in the AD process.[33]

Our study demonstrated that decreased expression of SST was
observed in OSA samples. As mentioned above, OSA has been
strongly associated with CVD, metabolic syndrome and
neuropsychiatric disorders, and some genetic variants may prove
also to be important in determining whether pathways disrupted
in the pathogenesis of OSA causally contribute to related
consequences.[7,8] That is, SST variants may contribute simulta-
neously to both OSA and cognitive dysfunction through different
mechanistic effects, which are required to further validate.
Finally, correlation analysis revealed a strong correlation

between these 4 hub genes, which indicates that they may play a
synergistic role in the occurrence and development of OSA.
Previous study has shown that GDNF promotes survival and
axonal regeneration in a wide variety of neuronal populations,
and SST promoted neurite outgrowth in rat cerebellar granule
cells.[34] Besides, Morel et al demonstrated that GDNF gene
therapy is effective in ameliorating chronic hyperprolactinemia,
possibly by stimulating the tuberoinfundibular dopamine neuron
function.[35] However, the co-expression relationship between
these hub genes has not been well explained. Although this study
presented here based on rigorous bioinformatics methods, several
limitations should be acknowledged. First, the findings of our
study resulted from public database and bioinformatics analyses,
which still need clinical data and experimental verification.
Second, the data we utilized were obtained from subcutaneous
adipose tissue samples, which were of poor quantity.
In conclusion, the present study has identified DEGs and key

hub genes in subcutaneous adipose tissues from OSA patients
compared with normal controls, which may help us understand
the mechanisms behind OSA development, and provide more
clues for its health consequences. Further research is needed to
validate their potential role as future diagnostic, prognostic, or
therapeutic biomarkers for OSA.
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