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Abstract: The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals
has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl
X chromosome, which varies widely in morphology and G-banding pattern between species. It is
hypothesized that this sex chromosome has undergone multiple rearrangements that changed
the centromere position and the order of syntenic segments over the last 80 million years of
Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved
bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed
along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative
range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray
whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn
(Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by
fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in
specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer,
and Pere David’s deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have
identified three major conserved synteny blocks and rearrangements in different cetartiodactyl
lineages and found that the recently described phenomenon of the evolutionary new centromere
emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times.
We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the
order of syntenic segments and centromere position for key groups.
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1. Introduction

Despite the great variation in diploid number and high level of autosome reshuffling, the
X chromosome of eutherian mammals is evolutionary conserved. The size and morphology of the
X chromosome as defined by the position of the centromere is similar in most mammalian orders.
Hypothetically, this unique conservation was guided by the establishment of a mechanism for dosage
compensation in the therian ancestor [1]. The emergence of this mechanism is thought to have imposed
evolutionary constraints on chromosomal rearrangements in the sex chromosome [1].

Classical cytogenetic techniques were used to describe morphology, centromere position, banding
pattern, and heterochromatin distribution in a wide range of species. Comparative analysis has
identified similar X chromosome morphology and G-banding patterns across species from different taxa
(primates, pigs, camels, carnivores, perissodactyls) [2]. Comparative mapping of the X chromosome
with gene-specific probes confirmed similarity in the gene order on the X chromosome of distantly
related species (human, pig, horse, dog, cat) [3]. These studies provided strong evidence for Ohno’s
rule, confirming genomic conservancy of eutherian X chromosomes. However, some notable exceptions
in conservation phenomenon of X chromosome have been identified in Cetartiodactyla and Rodentia.
The modified X chromosome structure in these orders is caused by inversions, changes in centromere
position, heterochromatin expansion and autosome to sex chromosome translocations [4].

The order Cetartiodactyla exhibits great diversity of chromosome X morphology both within
and between families. Note that in most eutherian orders only autosomal syntenic segments undergo
reshuffling as shown by cross-species chromosome painting [5]. The exact mechanisms behind dynamic
changes on X chromosome in Cetartiodactyla are unknown. Comparative chromosome painting
with whole chromosome painting probes, including X, has been employed in several studies [6–11].
These studies showed that cetartiodactyl autosomes evolved through fission, fusion, and inversions.
However, unlike autosomes, the sex chromosomes evolved through more complex chromosomal
rearrangements involving reshuffling of conserved segments inside the chromosome, changes in
centromere positions, heterochromatic variation, and autosomal translocations [12,13]. It is likely that
centromere repositioning (shift) or so-called evolutionary new centromere phenomenon, reflecting a
change of centromere position on the chromosome without a change in the gene order, also occurred
in cetartiodactyl X chromosome evolution. So far it was shown only in primates, rodents and
perissodactyls [14–17].

The structure of cetartiodactyl X chromosomes has been closely studied mainly in domestic
species from the family Bovidae [13,18–22], and in a few wild species from the families Giraffidae,
Cervidae, Antilocapridae and Hippopotamidae [6,23–25]. In previous studies, microdissection probes
or arm-specific paints and several bacterial artificial chromosome (BAC) clones were used to detect
intrachromosomal rearrangements. A recent investigation showed centromere repositioning and
inversions in cetartiodactyl X chromosomes [25]. Interspecific X chromosome variation in the
Cetartiodactyla has been a source of some controversy in the past [12]. The analysis of X chromosome
rearrangements can be a potential source of phylogenetic information [12], but the X chromosome
evolution in Cetartiodactyla has not yet been studied in detail.

In the present study, we report the comparative map of cetartiodactyl X chromosomes obtained
by cross-species hybridization with the set of cattle BAC clones, and provide new data about
X chromosome evolution in 10 cetartiodactyl families. Our analysis allows reconstruction of the
ancestral X chromosome for major nodes of the cetartiodactyl tree and traces the rearrangements of
X chromosome that have occurred during evolution within this order.
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2. Materials and Methods

2.1. Species

The list of studied species with scientific and common names, diploid chromosome number, and
source of cell lines is presented in the Table 1. All cell lines belong to the cell cultures collection of
general biological purpose (No. 0310-2016-0002) of Institute of Molecular and Cellular Biology Siberian
Branch of the Russian Academy of Sciences.

Table 1. List of cetartiodactyl species included in this study and their characteristics.

Scientific Name,
Abbreviation Code Common Name Family Diploid

Number Source of Cell Line

Sus scrofa SSC Pig Suidae 38, XX IMCB SB RAS, Novosibirsk-1*
Lama pacos LPA Alpaca Camelidae 74, XY 2*

Eschrihtius robustus ERO Gray whale Eschrichtiidae (Cetacea) 44, XY [11]
Hippopotamus amphibius HAM Common hippopotamus Hippopotamidae 36, XY [8]

Tragulus javanicus TJA Java mouse-deer Tragulidae 32, XY Frozen Zoo (San Diego Zoo’s Conservation
Research, San Diego, CA, USA)

Antilocapra americana AAM Pronghorn Antilocapridae 58, XY [10]
Giraffa camelopardalis GCA Giraffe Giraffidae 30, XY [8]
Moschus moschiferus MMO Siberian musk deer Moschidae 58, XY [8]

Dama dama DDA Fallow deer
Cervidae, Cervinae

68, XX Catoctin Wildlife Preserve and Zoo,
Maryland, USA

Elaphurus davidianus EDA Pere David’s deer 68, XX 3*
Alces alces AAL Eurasian elk Cervidae, Capreolinae 68, XX IMCB SB RAS, Novosibirsk

Capreolus pygargus CPY Siberian roe deer 70, XX IMCB SB RAS, Novosibirsk
Ovibos moschatus OMO Muskox

Bovidae, Antilopinae

48, XX IMCB SB RAS, Novosibirsk

Capra hircus CHI Goat 60, XX Catoctin Wildlife Preserve and Zoo,
Maryland, USA

Ovis aries musimon OAR Sheep 54, XX Catoctin Wildlife Preserve and Zoo,
Maryland, USA

Hippotragus niger HNI Sable antelope 60, XX 3*
Bison bison BBI American bison

Bovidae, Bovinae
60, XX 4*

Bos taurus BTA Cattle 60, XX IMCB SB RAS, Novosibirsk

1*: IMCB SB RAS - Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences.
2*: The cell line is established by William Nash (Laboratory of Genomic Diversity, NCI, Frederick, MD, USA).
The sample provided by Camelid Research Group (Oregon State University, Corvallis, OR, USA). 3*: Sample
provided by Mitchell Bush (Conservation and Research Center, National Zoological Park, Front Royal, VA, USA).
Cell line is established in the Laboratory of Genomic Diversity (NCI, Frederick, MD, USA). 4*: The sample is
provided by Douglas Armstrong (Henry Doorly Zoo, Omaha, NE, USA). Cell line is established in the Laboratory
of Genomic Diversity (NCI, Frederick, MD, USA).

2.2. Chromosome Preparation

Metaphase chromosomes were obtained from fibroblast cell lines. Briefly, cells were incubated
at 37 ◦C and 5% CO2 in medium αMEM (Sigma Aldrich Co., St. Louis, MO, USA) supplemented
with 15% fetal bovine serum, 5% AmnioMAX-II complete (GibcoTM) and antibiotics (ampicillin
100 µg/mL, penicillin 100 µg/mL, amphotericin B 2.5 µg/mL). Metaphases were obtained by adding
colcemid (0.02 mg/mL) and ethidium bromide (1.5 mg/mL) to actively dividing culture for 3–4 h.
Hypotonic treatment was performed with 3 mM KCl, 0.7 mM sodium citrate for 20 min at 37 ◦C and
followed by fixation with 3:1 methanol/glacial acetic acid (Carnoy’s) fixative. Metaphase chromosome
preparations were made from a suspension of fixed fibroblasts, as described previously [26]. G-banding
on metaphase chromosomes prior to fluorescence in-situ hybridization (FISH) was performed using
standard procedure [27].

2.3. BAC Clones

Using the cattle genome assembly version from October 2011 (Baylor Btau_4.6.1/bosTau7) in
UCSC Genome Browser [28], X chromosome-located BAC clones were manually chosen from the
CHORI-240 BAC library from the “BACPAC Resource Center” (BPRC, the Children’s Hospital Oakland
Research Institute in Oakland, CA, USA). To download information in the Genome Browser about the
localization of BACs of appropriate size (length of insertion varied from 50–300 kb), a custom track
in Browser Extensible Data (BED) format was created [29]. BAC clones with appropriate insert sizes
(50–300 kbp) and genetic content (unique genes, less repetitive elements) were selected. BAC sequence
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conservation was estimated from phyloP data [30] in the human genome (“Conservation” track
in GRCh37/hg19 assembly). Genome coordinates were converted from cow to human using the
Batch Coordinate Conversion (liftOver tool) in UCSC Genome Browser. Thus, 73 BAC clones evenly
distributed on cattle X chromosome (2–5 Mbp gaps) were selected. For each of the manually selected
73 BACs, we defined various genomic features selected to increase the probability of a clone to
hybridize with metaphase spreads of distant cetartiodactyl species. To do so, we calculated protein
coding genes, cattle genes orthologous to human, GC content, and repetitive sequences in each of the
selected BAC clones. By using multiple alignments, including all available cetartiodactyl genomes, we
calculated the nucleotide conservation scores and conserved elements using phastCons [31]. Then,
we compared the characteristics of four BACs that had previously worked on distant species with all
the 73 BACs by using the classification tree from the CART algorithm [32]. A total of 51 BACs were
selected to have a high probability of hybridization to distant species. These BACs contained less
than 48% of repetitive sequence and more than 20% of conserved elements. A subset of 26 of these
BAC clones that were evenly distributed along the cattle X chromosome with a median distance of
5 Mb were hybridized on all cetartiodactyl species studied here. Table 2 lists the CHORI-240 cattle
X chromosome BAC clones used in this study. A single BAC clone (CH240-316D2) is the same as used
by Fröhlich et al. [25].

BAC DNA was isolated using the Plasmid DNA Isolation Kit (BiosSilica, Novosibirsk, Russia)
and amplified with GenomePlex Whole Genome Amplification kit (Sigma-Aldrich Co., St. Louis,
MO, USA). Labeling of BAC DNA was performed using GenomePlex WGA Reamplification Kit
(Sigma-Aldrich Co., St. Louis, MO, USA) by incorporating biotin-16-dUTP or digoxigenin-dUTP
(Roche, Basel, Switzerland). The quality of produced BAC probes was controlled by FISH localization
on cattle chromosomes.

2.4. Fluorescence In-Situ Hybridization (FISH)

Dual-color FISH experiments on G-banded metaphase chromosomes were performed as described
by Yang and Graphodatsky [26]. Digoxigenin-labeled and biotin-labeled probes were detected with
CyTM3 anti-digoxin (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA), fluorescein avidin
DCS, biotinilated anti-avidin D (Vector Laboratories, Inc., Burlingame, CA, USA), respectively. Images
were captured with a Baumer Optronics CCD Camera (Baumer Ltd., Southington, CT, USA) mounted
on an Olympus BX53 microscope (Olympus, Shinjuku, Japan) and processed using VideoTesT 2.0
Image Analysis System (Zenit, St. Petersburg, Russia).

2.5. Bioinformatics Analysis

An analysis in UCSC Genome Browser was performed to establish the order of CHORI-240
BAC clones on X chromosomes of one cetartiodactyl species (sheep) and four species from out-group
mammalian orders (Perissodactyla, Primates, Rodentia). BAC positions in these genomes were obtained
using Batch Coordinate Conversion (liftOver) in the UCSC Genome Browser that converts genome
coordinates between assemblies. The cattle genome assembly (Bos_taurus_UMD3.1.1/bosTau8) was
used as a reference. Sequences coordinates of all BAC clones were calculated in human (GR ch38/hg 38),
mouse (GRC m38/mm10), rat (RGSC 6.0/rn6, except 386M8, which is disrupted in this genome), horse
(Broad/equCab2), and sheep (ISGC Oar_v3.1/oviAri3) genomes.

2.6. Ancestral Chromosome Deduction

The morphology and conservative block orientation of the ancestral X chromosome were deduced
using maximum parsimony by comparing X chromosomes across the top branches of Cetartiodactyla
and assuming the most common variant to be ancestral for the order. Once the provisional ancestral
chromosome was identified, we detected whether the extant X chromosome and the suggested ancestral
form differ by inversions (change of BAC order) or/and by centromere repositioning (change of
centromere position without change in BAC order).
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Table 2. CHORI-240 BAC’s order on cetartiodactyl X chromosomes. The color of the cells corresponds to a certain conservative syntenic segment.

No. BAC’s Order and Localization on
Cattle X chromosome

CHORI (CH-240) BACs Localization on Cetartiodactyl X chromosomes

Domestic
Pig, SSC

Alpaca,
LPA

Gray Whale,
ERO

Common Hippopota-
mus, HAM

Java Mouse-
Deer, TJA

Pronghorn,
AAM

Giraffe,
GCA

Siberian Roe
Deer, CPY

Eurasian
Elk, AAL

Fallow
Deer, DDA

Pere David’s
Deer, EDA

Muskox,
OMO

Goat,
CHI

Sheep,
OAR

Sable
Antelope, HNI

1

X
sy

nt
en

ic
bl

oc
k

2
(X

SB
2)

CH240-514O22Start 1949353,
End 2129088 66H2 66H2 66H2 66H2 66H2 108D16 386M8 386M8 386M8 93K24 514O22 66H2 66H2 66H2 66H2

2 CH240-287O21Start 7324034,
End 7488466 155A13 155A13 155A13 155A13 155A13 54D24 103E10 103E10 103E10 122N13 287O21 155A13 155A13 155A13 155A13

3 CH240-128C9Start 8233624,
End 8391009 90L14 90L14 90L14 90L14 90L14 93K24 229I15 229I15 229I15 195J23 128C9 90L14 90L14 90L14 90L14

4 CH240-106A3Start 13345128,
End 13540519 373L23 373L23 373L23 373L23 373L23 122N13 106A3 106A3 106A3 316D2 106A3 373L23 373L23 373L23 373L23

5 CH240-229I15Start 13805346,
End 13950311 62M10 62M10 62M10 62M10 62M10 195J23 128C9 128C9 128C9 386M8 229I15 62M10 62M10 62M10 62M10

6 CH240-103E10Start 20150516,
End 20286173 122P17 122P17 122P17 122P17 122P17 316D2 287O21 287O21 287O21 103E10 103E10 122P17 122P17 122P17 122P17

7 CH240-386M8Start 33395588,
End 33587168 252G15 252G15 252G15 252G15 252G15 514O22 514O22 514O22 514O22 229I15 386M8 252G15 252G15 252G15 252G15

8

X
sy

nt
en

ic
bl

oc
k

3
(X

SB
3)

CH240-108D16Start 48672324,
End 48917704 375C5 375C5 375C5 375C5 375C5 287O21 316D2 316D2 316D2 106A3 108D16 375C5 375C5 375C5 375C5

9 CH240-54D24Start 53219586,
End 53351583 130I15 130I15 130I15 130I15 130I15 128C9 195J23 195J23 195J23 229I15 54D24 130I15 130I15 130I15 130I15

10 CH240-93K24Start 57734547,
End 57947720 118P13 118P13 118P13 118P13 118P13 106A3 122N13 122N13 122N13 287O21 93K24 118P13 118P13 118P13 118P13

11 CH240-122N13Start 62228039,
End 62371946 25P8 25P8 25P8 25P8 25P8 229I15 93K24 93K24 93K24 514O22 122N13 25P8 25P8 25P8 25P8

12 CH240-195J23Start 62982639,
End 63183460 14O10 14O10 14O10 14O10 14O10 103E10 54D24 54D24 54D24 54D24 195J23 14O10 14O10 14O10 14O10

13 CH240-316D2Start 68490278,
End 68678635 214A3 214A3 214A3 214A3 214A3 386M8 108D16 108D16 108D16 108D16 316D2 214A3 214A3 214A3 214A3

14

X
sy

nt
en

ic
bl

oc
k

1
(X

SB
1)

CH240-214A3Start 84397606,
End 84521707 108D16 108D16 108D16 108D16 316D2 214A2 214A3 214A3 214A3 214A3 214A3 386M8 386M8 386M8 386M8

15 CH240-14O10Start 85224265,
End 85389684 54D24 54D24? 54D24 54D24 195J23 14O9 14O10 14O10 14O10 14O10 14O10 103E10 103E10 103E10 103E10

16 CH240-25P8Start 90681870,
End 90861947 93K24 93K24 93K24 93K24 122N13 25P7 25P8 25P8 25P8 25P8 25P8 128C9 128C9 128C9 229I15

17 CH240-118P13Start 92264186,
End 92429310 122N13 122N13 122N13 122N13 93K24 118P12 118P13 118P13 118P13 118P13 118P13 106A3 106A3 106A3 106A3

18 CH240-130I15Start 95938488,
End 96135558 195J23 195J23 195J23 195J23 54D24 130I14 130I15 130I15 130I15 130I15 130I15 229I15 229I15 229I15 128C9

19 CH240-375C5Start 103959199,
End 104119579 316D2 316D2 316D2 316D2 514O22 375C4 375C5 375C5 375C5 375C5 375C5 287O21 287O21 287O21 287O21

20 CH240-252G15Start 108195394,
End 108349350 514O22 514O22 514O22 514O22 287O21 252G14 252G15 252G15 252G15 252G15 252G15 514O22 514O22 514O22 514O22

21 CH240-122P17Start 110284444,
End 110450903 287O21 287O21 287O21 287O21 128C9 122P16 122P17 122P17 122P17 122P17 122P17 316D2 316D2 316D2 316D2

22 CH240-62M10Start 111125731,
End 111275450 128C9? 128C9 128C9 128C9? 106A3 62M9 62M10 62M10 62M10 62M10 62M10 195J23 195J23 195J23 195J23

23 CH240-373L23Start 117191008,
End 117371368 106A3 106A3 106A3 106A3 229I15 373L22 373L23 373L23 373L23 373L23 373L23 122N13 122N13 122N13 122N13

24 CH240-90L14Start 126821940,
End 127050706 229I15 229I15 229I15 229I15 108D16 90L13 90L14 90L14 90L14 90L14 90L14 93K24 93K24 93K24 93K24

25 CH240-155A13Start 128339848,
End 128504608 103E10 103E10 103E10 103E9 103E10 155A12 155A13 155A13 155A13 155A13 155A13 54D24 54D24 54D24 54D24

26 CH240-66H2Start 141101222,
End 141358968 386M8 386M8 386M8 386M7 386M8 66H1 66H2 66H2 66H2 66H2 66H2 108D16 108D16 108D16 108D16
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3. Result

3.1. BACs Localization

We investigated the X chromosome structure across major branches of Cetartiodactyla represented
by 18 species from four non-ruminant (Suidae, Camelidae, Eschrichtiidae (Cetacea), Hippopotamidae)
and six ruminant (Tragulidae, Antilocapridae, Giraffidae, Moschidae, Cervidae, and Bovidae) families
(Table 1). The order of 26 labeled cattle BAC clones was established on the X chromosomes of each
of 18 species by a series of pairwise FISH experiments (Table 2). In total, comparative analyses of
BAC orders across 18 species revealed three major chromosomal conservative segments, which were
numbered and designated with colors used throughout the paper: X Syntenic Block 1 (13 BACs, XSB1,
pink); X Syntenic Block 2 (seven BACs, XSB2, yellow), and; X Syntenic Block 3 (six BACs, XSB3, blue).

3.2. Intrachromosome Rearrangements

Comparative analysis of the order of BAC on the X chromosomes of 18 species identified three
key scenarios that likely took place in the course of the cetartiodactyl X chromosomes’ evolution.

1. Conservation: no change in the BAC order and no change of the centromere position.
We identified a group of four basal cetartiodactyl species (gray whale (ERO), common
hippopotamus (HAM), alpaca (LPA), and pig (SSC)) that have an identical order of the BACs and
the same relative position of the centromere (located in XSB1).

2. Centromere repositioning: conserved BAC order, changes in the centromere position. Centromere
repositions have been shown in roe deer, and mouse-deer, resulting in metacentric (Siberian roe
deer (CPY)) and acrocentric (Java mouse-deer (TJA)) X chromosomes, respectively. This event
took place prior to a formation of some lineage specific ancestral chromosomes (RAX (Ruminant
Ancestral X), AAX (Antilopinae Ancestral X), and CEAX (Cervinae Ancestral X)), indicating that
centromere repositioning is one of the key rearrangements of the ruminant X: while maintaining
a conserved order of the segments there was a displacement of the centromere (Figure 1).

3. Inversion: changes in the BAC order. Three kinds of inversions were identified: (A) syntenic
block (SB) flip—this inversion reverses the orientation of the whole syntenic block (TJA, AAM,
AAX, CEAX); (B) an inversion inside the syntenic block (goat (CHI), muskox (OMO)); (C) the
exchange inversion—inversion that involves several BAC clones from two syntenic blocks
(TJA, fallow deer (DDA)) (Figure 2).
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Taken together, we found that inversions (paracentric and pericentric) and centromere shifts were
key rearrangements in the course of X chromosome evolution in Cetartiodactyla. In addition to the
described rearrangements, the nucleolar organizing region (containing clusters of 18S and 28S rDNA
genes) were localized on the short arm of both X and Y sex chromosomes of the Java mouse-deer
(TJA) [33].
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Figure 2. The scheme of evolutionary transformations of X chromosome in Cetartiodactyla.
Chromosome rearrangements were identified by changes in BAC order. Three major conservative
segments are designated by different colors: pink—X syntenic block 1; yellow—X syntenic block 2,
and; blue—X syntenic block 3. Individual BAC clones are shown with a different color in small
colored circles on corresponding conservative segment. Centromere position is indicated by a black
circle. The orientation of the conservative segments is indicated by the white arrowhead. Ancestral
associations are shown in black rectangle (Cetartiodactyla ancestral X (CAX), Ruminantia ancestral
X (RAX), Pecora ancestral X (PAX), Antilopinae ancestral X (AAX), Cervinae ancestral X (CEAX)).
CR: centromere reposition. Inv: inversion.
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Table 3. CHORI-240 (CH-240) BAC’s order on mammalian chromosomes X. Conservative syntenic segments are colored in pink, yellow and blue.

No.
Laurasiatheria Euarchontoglires

BAC Clones in Cattle
Genome

BAC Clones in Sheep
Genome

BAC Clones in Horse
Genome)

BAC Clones in Human
Genome

BAC Clones in Mouse
Genome BAC Clones in Rat Genome

1
Start 1949353 Start 10045822 Start 8367618 Start 12497685 Start 7554450 Start 1711095

514O22 End 2129088 66H2 End 10306770 66H2 End 8624882 66H2 End 12794877 118P13 End 7697987 25P8 End 1907049

2
Start 7324034 Start 19299853 Start 16543677 Start 22069138 Start 9209615 Start 4672236

287O21 End 7488466 155A13 End 19464920 155A13 End 16698622 155A13 End 22228453 62M10 End 9317028 375C5 End 4863802

3
Start 8233624 Start 28630482 Start 24698243 Start 31328065 Start 10195810 Start 10936630

128C9 End 8391009 373L23 End 28810179 373L23 End 24857300 373L23 End 31509266 122P17 End 10370080 252G15 End 11107682

4
Start 13345128 Start 34891275 Start 30220096 Start 31328065 Start 12644301 Start 13483272

106A3 End 13540519 62M10 End 35037294 62M10 End 30342071 62M10 End 31509266 252G15 End 12803364 122P17 End 14335671

5
Start 13805346 Start 35738657 Start 30907267 Start 38298814 Start 18235010 Start 14415064

229I15 End 13950311 122P17 End 35910824 122P17 End 31039631 122P17 End 38458494 375C5 End 18480200 62M10 End 14541523

6
Start 20150516 Start 37830134 Start 32879937 Start 40611820 Start 20507324 Start 15650399

103E10 End 20286173 252G15 End 37981845 252G15 End 33007527 252G15 End 40767797 25P8 End 20696050 118P13 End 15784402

7
Start 33395588 Start 41973255 Start 36512266 Start 45036869 Start 23213727 Start 22235385

386M8 End 33587168 375C5 End 42128838 375C5 End 36698919 375C5 End 45234319 514O22 End 23316229 130I15 End 22435973

8
Start 48672324 Start 49649383 Start 38190847 Start 47047149 Start 41535889 Start 27957571

108D16 End 48917704 130I15 End 49847996 25P8 End 38327897 25P8 End 47226311 287O21 End 41677049 66H2 End 28439737

9
Start 53219586 Start 52564228 Start 39580949 Srart 49122932 Start 42491010 Start 40510641

54D24 End 53351583 118P13 End 52727917 118P13 End 39734268 118P13 End 49608099 128C9 End 42653374 155A13 End 40710667

10
Start 57734547 Start 54170178 Start 44962739 Start 53053920 Start 47802786 Start 53052665

93K24 End 57947720 25P8 End 54331345 130I15 End 45135718 130I15 End 53291737 106A3 End 48012093 373L23 End 53277814

11
Start 62228039 Start 59810734 Start 52316685 Start 70333575 Start 48279488 Start 70503930

122N13 End 62371946 14O10 End 59977176 14O10 End 52471298 14O10 End 70530493 229I15 End 48451406 14O10 End 70671925

12
Start 62982639 Start 60702841 Start 53269385 Start 71438703 Start 57106307 Start 71468323

195J23 End 63183460 214A3 End 60821565 214A3 End 53389760 214A3 End 71567090 103E10 End 57244888 214A3 End 71575467

13
Start 68490278 Start 80094458 Start 76549898 Start 97540872 Start 71145260 Start 100451494

316D2 End 68678635 386M8 End 80283568 108D16 End 76701833 108D16 End 97704621 386M8 End 71388925 108D16 End 100747362

14
Start 84397606 Start 93391997 Start 81725518 Start 103662230 Start 84771898 Start 107378470

214A3 End 84521707 103E10 End 93531761 93K24 End 81893517 54D24 End 103838933 373L23 End 84970050 93K24 End 107552526

15
Start 85224265 Start 101734836 Start 83362409 Start 105651553 Start 100669857 Start 109470944

14O10 End 85389684 287O21 End 101892691 54D24 End 83480210 93K24 End 105782858 14O10 End 100840304 54D24 End 109865654

16
Start 90681870 Start 102635193 Start 86318687 Start 109356460 Start 101583273 Start 113344277

25P8 End 90861947 128C9 End 102791210 122N13 End 86434114 122N13 End 109486477 214A3 End 101676469 122N13 End 113475228

17
Start 92264186 Start 107701336 Start 86961327 Start 110108649 Start 130409135 Start 114041201

118P13 End 92429310 106A3 End 107885819 195J23 End 87148727 195J23 End 110310972 108D16 End 130602938 195J23 End 114226114

18
Start 95938488 Start 108152302 Start 89122764 Start 112670755 Start 136717423 Start 116629155

130I15 End 96135558 229I15 End 108300381 316D2 End 89285710 316D2 End 112844328 93K24 End 136874331 316D2 End 116812891

19
Start 103959199 Start 111218064 Start 93641183 Start 117884744 Start 138738349 Start 121570459

375C5 End 104119579 514O22 End 111402064 514O22 End 93800197 514O22 End 118065524 54D24 End 138862889 514O22 End 121690157

20
Start 108195394 Start 115697759 Start 97957842 Start 123321223 Start 142065201 Start 127687918

252G15 End 108349350 316D2 End 115869258 287O21 End 98099669 287O21 End 123489384 122N13 End 142200659 287O21 End 127828202

21
Start 110284444 Start 118153613 Start 98755966 Start 124334066 Start 142770604 Start 128883616

122P17 End 110450903 195J23 End 118356580 128C9 End 98902048 128C9 End 124491573 195J23 End 142959710 128C9 End 129042712

22
Start 111125731 Start 118952818 Start 102828316 Start 129437403 Start 145340226 Start 134638127

62M10 End 111275450 122N13 End 119094106 106A3 End 103004015 106A3 End 129628777 316D2 End 145507925 106A3 End 134841751

23
Start 117191008 Start 122240643 Start 103242991 Start 129926486 Start 152167108 Start 135116351

373L23 End 117371368 93K24 End 122443675 229I15 End 103384683 229I15 End 130107731 130I15 End 152363913 229I15 End 135281818

24
Start 128339848 Start 124299513 Start 108619397 Start 136556505 Start 157177353 Start 159580103

155A13 End 128504608 54D24 End 124431515 103E10 End 108750001 103E10 End 136681177 155A13 End 157384607 103E10 End 159734497

25
Start 141101222 Start 129843594 Start 119476270 Start 150502313 Start 167378561

66H2 End 141358968 108D16 End 130091258 386M8 End 119683931 386M8 End 150728735 66H2 End 167730488
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3.3. Bioinformatic Analysis of Mammalian X chromosomes

To evaluate the unique conservation of mammalian X chromosomes [3] we calculated the
coordinates of 26 BAC clone sequences in four Boreoeutherian non-cetartiodactyl genomes represented
by Euarchontoglires: human (Primates); mouse, and rat (Rodentia), and; Laurasiatheria: horse
(Perissodactyla). We have observed that three X chromosome syntenic blocks (XSB) found in
Cetartiodactyla are conserved in Laurasiatheria and also in Euarchontoglires, indicating common
Boreoeutherian structure of the X chromosome. It was previously reported that human, horse, and
pig X chromosomes have similar gene order [3]. In general, this observation was confirmed by
liftOver analyses (Table 3). We have identified several small inversions in XSB1 (human, horse) and
in XSB2 (horse) in comparison to CAX. Interestingly, XSB1 is the most derived segment outside of
Cetartiodactyla, no rearrangements in BACs order in the cetartiodactyl species were detected within
this block. According to our data, XSB2 is highly conserved in non-cetartiodactyl species, while in
ruminants there are inversions inside of this syntenic block (CHI, OMO, sheep (OAR)) and exchange
inversions between XSB2 and XSB3 (TJA and DDA).

We also aligned the BAC clone sequences to another cetartiodactyl genome, the domestic sheep.
We observed the same BAC order as in all analyzed Caprini species except for a small inversion in XSB3.
The FISH with relevant BAC clones confirmed the presence of this inversion in the sheep genome.

4. Discussion

4.1. Ancestral X chromosome

The phenomenon of X chromosome conservation in eutherian mammals was first proposed
by Susumu Ohno and was based solely on its size similarity across a wide range of species [1].
High similarity in G-banding pattern led to the hypothesis that not only size and gene content [34]
but also gene order is conserved on the X chromosomes of most eutherian mammals, and this was
later confirmed by fine gene mapping [3,35–38]. Remarkably, the submetacentric X chromosome
morphology defined by the location of the centromere is also largely conserved across mammals.
Some slight changes of otherwise conserved X chromosomes were observed in several orders, such as
the difference in the distance between homologous genes between human and alpaca [39], or a shift in
centromere position without a change of the gene order in Afrotheria [37]. Still, the lack or low level of
rearrangements of the X chromosome in comparison to the active exchanges on autosomes during
over 150 million years of eutherian evolution represents an interesting phenomenon. Comparative
G-banding analysis had identified the classical chromosome X morphology and banding pattern
common to most eutherian species [2]. Similar submetacentric morphology and gene order were
also found in non-ruminant cetartiodactyls. A high level of X chromosome conservation was shown
in Suinae [3,40], Tylopoda [41–43], and Cetacea [44]. Nevertheless, using G-banding analysis [4]
and high-resolution mapping with BACs [25] or region specific probes, [12] intrachromosomal
rearrangements were uncovered in Ruminantia species. Compared with the previous study, we
have expanded the number of BACs to 26 and the species list to 18 in order to define conservative
blocks and their orientation, to identify rearrangements across species, and to reconstruct the ancestral
cetartiodactyl X chromosome. The analyses of BAC order across major families of Cetartiodactyla
revealed three syntenic blocks on the X chromosome that in general correspond to the conserved
segments reported by Fröhlich and coauthors [25].

Using available FISH and bioinformatic data on the order of cattle BACs in the genomes of
different species, we were able to investigate the phenomenon of the conservation of the X chromosome
in eutherian mammals represented by four superorders: Laurasiatheria; Euarchontoglires; Afrotheria,
and; Xenarthra [45]. Three conserved syntenic blocks identified here can be traced in Boreoeutherians
(Laurasiatheria and Euarchontoglires), and possibly in all eutherians, considering reports on Afrotheria
X chromosome conserved gene order [37] (Table 2). The eutherian X chromosome ancestral
condition (EUX) is represented by a submetacentric chromosome with the centromere located in
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XSB1. Bioinformatic analysis in outgroup species shows a common change of BAC order in XSB1 on
human and horse X chromosomes. Supposedly, an inversion on EUX had occurred in the ancestor
of Cetartiodactyla prior the radiation of this order. This ancestral condition was revealed in all
non-ruminant cetartiodactyls and named here Cetartiodactyla Ancestral X (CAX). We confirmed the
conservation of the X chromosome in basal branches of Cetartiodactyla. It occurs in Suidae (pig),
Camelidae (alpaca), and Cetacea (gray whale) (Table 2 and Figure 3). Cetacea is a sister taxon to
Hippopatamidae and is characterized by extremely conserved karyotypes across the whole infraorder
and by uniform X chromosome morphology and banding pattern [11,46]. The Hippopotamidae
X chromosome also displays the same morphology and the gene order [8,25]. However, it should be
emphasized that there are some unresolved cases of the X chromosome changes in these basal groups
that would require additional investigation, for example, the X chromosome of Tayassu pecari (Suinae,
Taysuidae) has been changed due to a centromere reposition [40].
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Figure 3. The structure of the Cetartiodactyla X chromosome depicted on the phylogenetic tree of
the order (the tree topology from [47]) Major conservative segments are shown by yellow, blue, and
pink. Centromere positions are designated by a black circle. White arrowheads show the orientation of
the conservative segments. Ancestral associations are shown under X chromosomes (Cetartiodactyla
ancestral X (CAX), Ruminantia ancestral X (RAX), Pecora ancestral X (PAX), Antilopinae ancestral X
(AAX). MMO X chromosome is inverted here relatively to its cytogenetic orientation for presentation
purposes [8].

4.2. Ancestral Form of Ruminantia-Pecora X-Chromosome

Contrary to the conservation of the X chromosome in Suidae-Camelidae-Whippomorpha,
we found that multiple rearrangements occurred during the radiation of other cetartiodactyl
branches. We suggest that in the Ruminantia an ancestral centromere reposition led to changes
of the X chromosome morphology from submetacentric to metacentric forming the Ruminantia
Ancestral X-chromosome (RAX) (Figures 2 and 3). Both ancestral forms (CAX and RAX) have
same intrachromosomal structure and differ only by centromere position. The RAX form of the
X chromosome is also preserved in many basal Pecora branches: Giraffidae (GCA); Moschidae (MMO);
and in the Capreolini (AAL) subfamily of Cervidae. Only in the basal Pecoran family Antilocapridae,
an inversion turned the ancestral metacentric X chromosome into an acrocentric element (Figure 2).
Thus we expect that the Ancestral Ruminant and the Ancestral Pecoran X chromosomes have the same
structure: RAX=PAX.
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In the Tragulidae, the basal and the only non-Pecora ruminant group, we found a major centromere
reposition resulted in the formation of an acrocentric X. Also, two kinds of inversions (SB-flip and
synteny block exchange) affect syntenic block structure in the Tragulidae. These rearrangements create
unique arrangement of the three syntenic blocks in the Java mouse-deer. This arrangement may occur
across all tragulids, but requires confirmation in other Tragulus species.

4.3. Cervidae

There is a great variation in X chromosome morphology among cervids. Two cervid subfamilies,
Capreolinae and Cervinae, exhibit a notably differing extent of sex chromosome conservation. The only
detected rearrangement was a centromere shift in CPY. G-banding pattern comparison of Capreolinae
X chromosomes otherwise indicates a uniform metacentric morphology [48] and suggests a similar
disposition of conservative syntenic blocks.

In contrast, Cervinae is characterized by a variety of rearrangements on the X chromosome:
centromere repositioning, SB flips, and many inversions disrupting the XSB2. The Cervinae Ancestral
X-chromosome (CEAX) was formed by a centromere reposition and a SB flip of XSB2. Inversions
change this ancestral form in EDA by SB flip of XSB3 and in DDA by the splitting of XSB2 (Figure 2).
Also in the same subfamily, a translocation of an autosome to the X chromosome was reported in
several Muntiacini species [7,49–52]. In total, this indicates that the level of X chromosome variation is
increased in Cervinae and is caused not only by inversions and centromere repositioning but also by
autosome to sex chromosome translocations.

4.4. Bovidae

The family Bovidae includes two major branches: Bovinae and Antilopinae [53].
Earlier cytogenetic studies identified two types of morphological diversity of X chromosome in
Bovidae: a caprine type (acrocentric, suni type) and a bovine type (submetacentric) [12,54]. The bovine
type of X chromosome was likely formed from the ancestral pecoran X (PAX) by two inversions.
This form is retained in cattle (BTA) and American bison (BBI). Cytogenetic data for other studied
Bovinae species demonstrated same submetacentric X chromosome morphology [48]. There are
independent autosome translocations in two branches (Tragelaphini and Bosephalini) altering the
bovine type X chromosome [12,23,48,55,56]. The notable exceptions are the Bubalina lineage, oryx and
kudu (Tragelaphilini), whose X chromosomes have acrocentric morphology (designated as eland-type
acrocentric based on eland, kudu, and nyala X chromosomes [12]).

Centromere reposition and inversion events resulted in the formation of an acrocentric Antilopinae
Ancestral X-chromosome (AAX) (Figure 2) from PAX. Therefore the X of the sable antelope (HNI)
could likely represent an ancestral form for all Antilopinae. Moreover, comparative analyses based on
published karyotypes supports the theory that the X chromosome in antelopes is largely conserved,
retaining the same morphology and banding pattern [48,57]. The exceptions are autosome to
X chromosome translocations found in several Antilopini species [48,58]. In the Caprini lineage
there is an additional inversion within the XSB3 (OMO, CHI, OAR). The bioinformatic and FISH
analyses of X chromosome of OAR indicated that the inversion between 128C9 and 229I15 is an
apomorphic phylogenetic marker for Caprini.

4.5. X chromosome Rearrangements

All X chromosome rearrangements discovered here are in agreement with the current phylogenetic
tree (Figure 3), and some of them could be used as cytogenetic markers for different Cetartiodactyla
groups. Therefore, we suggest that our BAC clone set can serve as a precise instrument for a
further search for cytogenetic X chromosome markers in Bovidae. The independent autosome to
sex chromosome translocations that occurred in several Bovidae and Cervidae branches require special
attention because they increase the previously identified rapid rate of evolution of the structure of the
cetartiodactyl X chromosome [7,12,49–52,55,56].
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The BAC clones that mark the borders of three conserved segments delineate regions of frequent
chromosome rearrangements in cetartiodactyl X, indicating a breakpoint reuse phenomenon [59].
Several BAC clones were involved at least twice in the intrachromosomal rearrangements found here,
suggesting breakpoint reuse: 108D16 and 214A3; 514O22 and 316D2; 229I15 and 103E10. We found
that the regions surroundings these BACs in the cattle genome are often gene sparse. It was previously
shown that chromosomal regions with evolutionary breakpoint in amniotes are enriched for structural
variations (segmental duplications, copy number variants, and indels), retrotransposons, zinc finger
genes, and single nucleotide polymorphisms [60]. Further investigation is required to find precise
points of evolutionary chromosome breakage on the Cetatiodactyla X and to define common genomic
features underlying chromosome rearrangements.

Another mammalian order characterized by the increased rate of X chromosome evolution is
Rodentia. Heterochromatin expansion, amplification of tandem repeats, inversions [61], centromere
reposition [62], and autosome to sex chromosome translocations [63] were shown to be involved in
rearrangements of X chromosome in rodents. Comparative chromosomal analysis of X chromosomes
was performed by microdissection in the Microtus genus. Rubtsov with coauthors postulated that
intrachromosomal rearrangements are associated with large clusters of intrachromosomal duplications
and/or repeated DNA sequences which were present in ancestral species but have subsequently
disappeared during evolution [61]. We hypothesize that similar processes were involved in evolution
of X chromosome in Ruminantia. Some genomic events possibly took place in the ruminant ancestor
that launched multiple chromosomal rearrangements of the conservative eutherian X chromosome.
Insertions of mobile repetitive elements such as long and short interspersed nuclear elements (LINE and
SINE were probably involved in synteny breaks on this sex chromosome [64]. It is possible that this
transforming genomic event had happend in or around the XSB2 area which demonstrates highest
rate of inversions in Ruminantia.

In total, nine paracentric, two pericentric inversions, and five centromere reposition events have been
revealed in Cetartyodactyla X chromosome evolution based on the analysis of 18 species. The eutherian
and cetartiodactyl ancestral X differ only by one small inversion; one additional rearrangement is proposed
to derive the Ruminantia ancestral X (RAX). Most other identified rearrangements happend during the
remaining 55 million years of ruminant’s radiation. The cow X chromosome was formed by at least two
rearrangements that distinguish it from PAX, corresponding to a rate of rearrangements of approximately 1
per 15 million years. This is comparable to 1 rearrangement per 10 million years postulated for autosomal
evolution among most mammalian orders found by chromosome painting [65]. These findings are
consistent with the rate of X chromosome evolution in Ruminantia being at least twice as high as in
X chromosomes of average eutherian mammalian group.

5. Conclusions

High-resolution X chromosome maps of cetartiodactyl species provide unique information about
evolution of intrachromosomal rearrangements. Three conserved syntenic blocks have been identified.
We postulate that inversions and centromere repositioning were two key types of rearrangements
in course of cetartiodactyl X chromosome evolution. The detailed analysis of the BAC order across
multiple species by FISH mapping and bioinformatic analysis allowed the reconstruction of a putative
cetartiodactyl ancestral X chromosome. The basal cetartiodactyl group of non-ruminants (pigs, camels,
whales, and hippos) share this metacentric ancestral type of X chromosome. The submetacentric
ancestral Ruminantia X chromosome was likely formed by simple centromere shift but it retained the
ancestral intrachromosomal structure. Currently observed X chromosome morphological variation
was formed by inversions and centromere repositioning during 55 million years of ruminant evolution.
Chromosome rearrangements supporting the taxonomic status of ruminant families and subfamilies
were found by mapping 26 BAC clones specific to the X chromosome. The rate of X-specific
rearrangements in Ruminantia significantly exceeds that among eutherian mammals.
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