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A B S T R A C T   

Because of their many excellent properties, hollow glass beads (HGBs) are widely used in com
posite materials; stealth coatings; the aerospace field; the deep-sea field; electrical, thermal and 
sound insulation materials and military explosives. However, there is currently no method for 
predicting the strength of HGBs. This paper proposes a probability distribution model for the 
compressive strength of micro thin-walled HGBs under uniform pressure. The theoretical model 
was verified by comparing the parameters of 13 types of HGBs. The model showed that 
compressive strength is inversely proportional to the square root of the radius for the same type of 
HGBs. Moreover, for different types of HGBs made with identical materials, the compressive 
strength is only related to the outer diameter and equivalent density. Further study revealed that 
the particle size of HGBs follows a normal distribution. The failure mode of HGBs under uniform 
pressure is mode-II. Therefore, the maximum shear stress, which occurs on the inner surface of 
HGBs, is the dominant factor in the failure process. Furthermore, the shear strength is only 
inversely proportional to the square root of the radius even for different types of HGBs.   

1. Introduction 

Hollow glass beads (HGBs) have many excellent properties such as low density; high melting point; good electrical, heat and sound 
insulation; high temperature resistance and shrinkage resistance [1–4]. They are widely used in composite materials; stealth coatings; 
the aerospace field; the deep-sea field; electrical, thermal, sound insulation materials, and military explosives [5–9]. For example, 
HGB/epoxy resin composites prepared from HGBs are lightweight but have high compressive strength [10]. They can provide 
buoyancy compensation for manned/unmanned deep submersibles to enable them to float [11–13]. Their application has enabled 
manned submersibles to transition from the first generation (20–30 tonnes for full ocean depth) to the second generation (150 tonnes 
for full ocean depth) [14–16]. Therefore, they are of great significance to the exploration and development of deep-sea resources. 

At present, HGBs and their composites are mainly used in the engineering field as functional materials [17,18]. Although they also 
have strong application prospects in load-bearing structures because of their good compressive properties, their application to such 
structures is progressing slowly. The main reason behind the slow progress is that there is no strength theory for HGBs and thus no 
theoretical basis when they are used in structural design and optimisation. 

HGBs are the weak link in their composites because of their thin shells and defect sensitivity, which is due to their brittle nature 
[19]. Under an external load, they crack easily and become the source of cracks in the composite [20]. The cracks then expand from the 
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microscale to the macroscale in the interface phase and matrix phase, finally causing the failure of the composite material [21–24]. 
Therefore, before applying HGBs and their composites to load-bearing structures, the failure behaviour of HGBs should be studied [25, 
26]. 

In 1951, Hall found the following relationship between grain strength and grain size, as shown in Eq. (1): 

σth =
k
dx , (1)  

where σth is the grain strength, d is the grain size and k is a constant. Because of technical limitations, Hall only derived a proportional 
relationship and did not provide the value of x. Then, Petch found that the strength is proportional to the reciprocal of the square root 
of the diameter, as shown in Eq. (2): 

σth = σ0 +
k
̅̅̅
d

√ . (2) 

The above formula describes the Hall–Petch effect. In this formula, σ0 is the friction stress in the absence of grain boundaries. The 
Hall–Petch effect has been repeatedly shown to be applicable to grain sizes varying from 1 mm down to 1 μm [3,4]. The size of HGBs is 
also within this range. Therefore, this is also the limitation of the theoretical approach in this paper. However, the sizes, strengths and 
spatial distributions of HGBs are random [22,27], which makes it difficult to propose a compressive strength model. In this paper, 
assuming that the failure strength is proportional to the square root of the radius and that the fracture mode is similar to mode-II, the 
distribution of the compressive strength of HGBs is effectively characterised. Then, a micro-compressive strength model and its dis
tribution model for HGBs are proposed. 

2. Theoretical derivation 

2.1. Basic assumptions 

In 1920, Griffith proposed the theory of fracture mechanics [28], and nearly a hundred years of development by many scholars has 
led to the present fracture mechanics theory. Fracture mechanics proposes three modes of failure [29]: (I) tensile fracture, (II) shear 
fracture and (III) mixed tensile and shear fracture. However, tensile stress cannot occur in HGBs under uniform pressure. Therefore, we 
believe that neither mode-I nor mode-III fractures can occur and that the fracture mode of HGBs under uniform pressure is mode-II. 
Hence, several basic assumptions are proposed and verified by comparing the theory with experimental data. The basic assumptions 
are as follows:  

1) The materials of HGBs are ideal elastomers.  
2) HGBs form standard spheres under surface tension. Therefore, the HGBs are assumed to have no initial deformation.  
3) According to the fracture mechanics theory, there are only three fracture modes. However, neither mode-I nor mode-III can occur 

when the HGBs are under uniform pressure. Therefore, it is assumed that the fracture mode of HGBs under uniform pressure is 
mode-II.  

4) Experimental data show that the density HGBs with different particle sizes of the same type does not differ significantly. Therefore, 
the density of all HGBs of the same type is independent of particle size.  

5) Characterising the shapes and sizes of the initial defects in HGBs is difficult. Therefore, it is assumed that there is an average value 
that can represent the effect of initial defects on the compressive strength of HGBs. 

2.2. Compressive strength model 

The fracture mode of HGBs under uniform pressure is shear fracture (mode-II). This means that the fracture of HGBs under uniform 
pressure follows the maximum shear stress criterion. According to Hall’s research, the yield stress scales with the inverse square root of 
grain size [30–32], as shown in Eq. (3): 

Fig. 1. The internal stresses of hollow glass bead shell.  
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τth =
k
̅̅
r

√ , (3)  

where τth is the shear strength, r is the radius of an HGB and k is a measure of the local stress required to initiate plastic flow at a grain 
boundary. With a small-angle spherical shell as the research object, the internal stress of hollow glass microspheres is as shown in 
Fig. 1. According to the elastic theory [33], the radial and tangential normal stress distributions in the spherical shell under uniform 
pressure are as follows, as shown in Eq. (4): 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σr= −

1 −
a3

r3

1 −
a3

b3

p

σt= −

1 +
a3

2r3

1 −
a3

b3

p

, (4)  

where a and b are the inner and outer radii of the HGBs, respectively, the radius r varies from a to b, p is the uniform pressure and σr and 
σt are the radial and tangential stresses, respectively. The failure of HGBs under uniform pressure is similar to mode-II. Therefore, the 
maximum shear stress dominates the failure process. According to the theory of material mechanics, the maximum shear stress dis
tribution along the radial direction is as follows [33]: 

τmax =
σr − σt

2
, (5)  

where τmax is the maximum shear stress at any point (a ≤ r ≤ b). Obviously, when r = a, the maximum shear stress is the highest. 
Substituting r = a into Eq. (4) yields Eq. (6): 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σr= −

1 −
a3

a3

1 −
a3

b3

p= 0

σt= −

1 +
a3

2a3

1 −
a3

b3

p= −
3

2
(

1 −
a3

b3

) p

. (6) 

Further, substituting Eq. (6) into Eq. (5) yields Eq. (7): 

τmax =
σr − σt

2
=

1
2

⎡

⎢
⎢
⎣0 −

⎛

⎜
⎜
⎝ −

3

2
(

1 − a3

b3

) p

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦=

3

4
(

1 − a3

b3

) p(r= a) (7) 

The mass of air in the HGBs is very small and can be ignored. Therefore, the mass of glass is the mass of the HGBs, as shown in Eq. 
(8): 

mb = mg = ρgVg

⇒ ρbVb = ρgVg

⇒
ρb

ρg
=

Vg

Vb

, (8)  

where mg and mb are the masses of glass and HGBs, respectively, ρb and Vb are the equivalent density and the volume of HGBs, 
respectively and ρg and Vg are the density and volume of glass, respectively. The volume of glass is equal to the volume of HGBs minus 
the volume of the hollow portion. Therefore, we obtain Eq. (9) as follows: 

ρb

ρg
=

4
3 πb3 − 4

3 πa3

4
3 πb3 = 1−

a3

b3 . (9) 

Substituting Eq. (9) into Eq. (7) yields Eq. (10): 

τmax =
3

4
(

ρb
ρg

) p=
3
4

ρg

ρb
p(r= a). (10) 
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Equation (10) shows the relationship between pressure and maximum shear stress for ideal elastic materials. According to Petch’s 
research, friction stress enhances the grain tensile strength. However, in the case of compression failure, defects may cause a reduction 
in grain strength: 

pth = p0 − pl
⇒ p0 = pth + pl

, (11)  

where pth is the pressure corresponding to the fragmentation of HGBs, p0 is the fracture strength of the ideal elastic material and pl is the 
strength loss due to defects. Obviously, p in Eq. (10) corresponds to p0. Substituting Eq. (11) into Eq. (10) yields Eq. (12): 

τth =
3
4

ρg

ρb
p0

⇒ τth =
3
4

ρg

ρb
(pth + pl)

⇒ pth =
4
3

ρb

ρg
τth − pl

, (12)  

where τth is the maximum shear stress when an HGB cracks. Substituting Eq. (3) into Eq. (12) yields Eq. (13): 

pth =
4
3

ρb

ρg

k
̅̅
r

√ − pl. (13) 

For the same type of HGBs, the equivalent density is assumed to be equal. Therefore, by defining K1 =
4kρb
3ρg

, Eq. (12) can be 

simplified as follows: 

pth =
K1
̅̅
r

√ − pl. (14) 

However, different types of HGBs with identical materials and production processes have different equivalent densities. Therefore, 
by defining K2 = 4k

3ρg
, we can simplify Eq. (14) as follows: 

pth =K2
ρb̅̅

r
√ − pl. (15) 

Equations (14) and (15) reflect the compressive strength models of HGBs. They show that the compressive strength of HGBs made 
of identical materials depends only on their outer radius and equivalent density (related to wall thickness). In particular, the 
compressive strength of the HGBs is directly proportional to the equivalent density and inversely proportional to the square root of 
their outer radius. 

2.3. Probability distribution model of compressive strength 

Equations (14) and (15) can be used to predict the compressive strength of a single HGB. However, when HGBs are applied to 
engineering, their number is usually very large. Therefore, the probability distribution of the strength of HGBs is worth studying. For 
the same type of HGBs, it is simpler to use Eq. (14): 

Table 1 
Hollow glass beads and their parameters.  

Series Kinds Density 
（g/cm3） 

radii（μm） pth(0.9) (MPa） 

r(0.1) r(0.5) r(0.9) Max 

Routine series K1 0.125 15 32.5 55 60 1.72 
S15 0.15 12.5 27.5 45 47.5 2.07 
K20 0.20 15 32.5 55 60 3.45 
XLD3000 0.23 7.5 15 20 / 20.69 
K25 0.25 12.5 27.5 47.5 52.5 5.17 
S38HS 0.38 7.5 20 37.5 42.5 37.92 
VS5500 0.38 7.5 20 37.5 42.5 37.92 
im16K 0.46 6 8 10 / 110.32 

Floating series A16/500 0.16 17.5 35 57.5 67.5 3.44 
A20/1000 0.20 15 30 50 60 6.90 
H20/1000 0.20 15 30 50 60 6.90 
D32/4500 0.32 10 20 35 42.5 31.03 
H50/10000 0.50 10 20 25 30 68.95  
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pth =
K1
̅̅
r

√ − pl ⇒ r =
(

K1

pth + pl

)2

r ∈ [rmin, rmax]. (16) 

Tests showed that the particle size of HGBs approximately followed a normal distribution. Therefore, we obtain the following: 

r − μ
σ ∼ N(0, 1)

⇒ f (r) =
1̅̅̅
̅̅

2π
√

σ
exp

(

−
(r − μ)2

2σ2

) , (17)  

where f(r) is the probability density function and μ and σ are the average and standard deviation of the outer radius, respectively; they 
are listed in Table 1. Then, the cumulative probability distribution function is as follows: 

Φ(r)=
1̅̅̅
̅̅

2π
√

σ

∫ r

rmin

exp

(

−
(r − μ)2

2σ2

)

dr. (18)  

from Eq. (16), 

r=
(

K1

pth + pl

)2

⇒ dr= −
2K1

2

(pth + pl)
3 dpth. (19) 

Substituting Eq. (19) into Eq. (17) yields the probability density function of compressive strength for the HGBs: 

f (pth)=
1̅̅̅
̅̅

2π
√

σ
exp

⎛

⎜
⎜
⎜
⎝

−

((
K1

pth+pl

)2

− μ
)2

2σ2

⎞

⎟
⎟
⎟
⎠
. (20) 

Further, substituting Eq. (19) into Eq. (18) yields the cumulative probability distribution for the HGBs: 

Φ(pth)= −
K1

2

σ

̅̅̅
2
π

√ ∫ K1̅
r

√ +pl

K1̅̅̅̅̅rmin
√ +pl

1
(pth + pl)

3 exp

⎛

⎜
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⎝
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K1

pth+pl
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2σ2

⎞

⎟
⎟
⎟
⎠

dpth. (21) 

Equations (20) and (21) reflect the compressive strength distribution models of HGBs. They represent the probability density 
distribution and cumulative probability distribution of compressive strength. 

3. Model verification 

3.1. Research objects 

In this section, the relationships among the densities, particle size distributions and strengths of 13 groups of HGBs are evaluated. 
Then, the compressive strength model and distribution model of HGBs are verified. The HGBs were provided by Minnesota Mining and 
Manufacturing (3 M). The size distributions, densities, compressive strength and other parameters of HGBs given in Table 2 were 

Table 2 
Mean radii and standard deviations of all hollow glass beads.  

Series Kinds Normal distribution parameters 

Average Standard deviation 

Routine series K1 35.00 15.61 
S15 28.75 12.68 
K20 35.00 15.61 
XLD3000 13.75 4.88 
K25 30.00 13.66 
S38HS 22.50 11.70 
VS5500 22.50 11.70 
im16K 8.00 1.56 

Floating series A16/500 37.50 15.60 
A20/1000 32.50 13.66 
H20/1000 32.50 13.66 
D32/4500 22.50 9.75 
H50/10000 17.50 5.85  
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provided by 3 M. In Table 2, r(0.1), r(0.5) and r(0.9) are the quantiles of the radius for 10 %, 50 % and 90 % HGBs, respectively. 
To confirm the reliability of the data provided by 3 M, XLD3000, im16K and H50/10000 were selected as the research objects. A 

small number of these three types of HGBs were used to prepare observation samples, and photos were taken under a scanning electron 
microscope (SEM). Nano Measurer 1.2 software was used to measure the particle size of each glass bead in the SEM photos (see Fig. 2). 
The measured quantities of XLD3000, im16K and H50/10000 were 940, 900 and 900, respectively. The quantity distributions of the 
different particle sizes are shown in the histograms in Fig. 3(a–c). 

3.2. Particle size distributions 

The particle size of HGBs was assumed to follow a normal distribution. The mean radii and standard deviations of all HGBs were 
calculated according to the data in Table 2; the results are presented in Table 1. Then, the probability density distributions of the 
particle sizes of XLD3000, im16K and H50/10000 were calculated; the results are presented in the curves in Fig. 3(a–c). The curves 
show good agreement with the histograms, validating the reasonableness of the assumption that the particle size of HGBs follows a 
normal distribution. 

The probability density function and cumulative probability function of all 13 types of HGBs were calculated according to Eqs. (13) 
and (14); the results are shown in Fig. 4(a and b). In the cumulative probability distribution (Fig. 4(b)), r(0.1), r(0.5) and r(0.9) were 
calculated theoretically; they are shown in Fig. 5 and compared with the data in Table 2. In Fig. 5, -E and -T following r(0.1), r(0.5) and 
r(0.9) are the abbreviations for the experimental data and theoretical values, respectively. Fig. 5 shows that there is little difference 
between the theoretical values and experimental data, and deviations are acceptable. This also verifies the rationality of using a normal 
distribution to characterise the particle size distribution of HGBs. 

3.3. Compressive strength distributions 

To verify the compressive strength model of HGBs, comparing the different types of HGBs is necessary. Therefore, Eq. (11) is more 
appropriate. Equation (11) shows that the compressive strength of HGBs is directly proportional to ρb̅̅

r
√ . Then, K2 = 868.00 (Pa m1/2)/ 

(kg/m3) and pl = 15.94 MPa in this equation are calculated from the data in Table 2. In Fig. 6, the horizontal axis is ρb̅̅̅̅̅̅̅̅̅
r(0.9)

√ and the 

vertical axis is pth(0.9). pth(0.9) denotes the quantile of the compressive strength of 90 % HGBs. The curves in Fig. 6 are approximately 
straight lines. The comparison results are in good agreement, which verifies the reliability of the compressive strength model. 

The probability density distribution and cumulative probability distribution of compressive strength were calculated according to 
Eqs. (16) and (17), respectively. The results are presented in Fig. 7(a and b) pth(0.9) can be calculated theoretically according to the 
cumulative probability distribution (Fig. 7(b)). As depicted in Fig. 8, the comparison between the theoretical values and experimental 
data for pth(0.9) shows little difference. This verifies the compressive strength distribution model of HGBs. 

4. Analysis 

4.1. Deviation analysis 

The basic assumption that HGBs follow a normal distribution may be inconsistent with the facts. Fig. 4 shows that when the particle 
size is r≤ 0, the probability of HGBs is P{r≤ 0}> 0, which is obviously inconsistent with the fact that the outer diameter should be r> 0. 
Taking K1 as an example yields the following: 

{
P{r≤ 0}= 1.242%
P{r≤ 30}= 10% . (22) 

Equation (22) shows that in the calculation process, the probability of r≤ 30 μm is 10 %. However, the actual value range of HGBs is 

Fig. 2. Measurement of the particle size of hollow glass beads in the SEM photos.  
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Fig. 3. Particle size distribution of three kinds of hollow glass beads.  

Fig. 4. Particle size probability distribution.  

Fig. 5. Comparison between theoretical values and experimental data for r(0.1), r(0.5) and r(0.9).  
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0 < r≤ 30 μm. Therefore, the real probability is P{0< r≤ 30}= 10% − 1.242% = 8.758%, which will inevitably cause calculation 
deviations in the process. Fig. 9 shows the probabilities for all types of HGBs when r≤ 0. These can also be considered deviations. In 
Fig. 9, the probabilities for S38HS and VS5500 are the maximum, P{r≤ 0}= 2.732%, while that for im16K is the minimum, P{r≤ 0}=
0.009%. In addition, incomplete samples, differences in the preparation processes and the basic assumption that the same types of 
HGBs have a constant equivalent density can also cause deviations. 

Fig. 6. Relationships among compressive strength, particle size and equivalent density.  

Fig. 7. Compressive strength probability distribution.  

Fig. 8. Comparison between theoretical values and experimental data for pth(0.9).  
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4.2. Finite element simulation and analysis 

As shown in Fig. 9, the deviations of XLD3000, im16K and H50/10000 are small compared to those of other types of HGBs. 
Therefore, these three types of HGBs were selected as research objects. Then, finite element models of the three types of HGBs were 
built using ABAQUS, a powerful finite element engineering simulation software. After establishing the finite element models, the 
solver in ABAQUS was used to automatically calculate the stress distributions. In these finite element models, the outer diameter was 
the average value of HGBs, and the inner diameter was calculated according to the average density. The fragmentation strengths of 
these three HGB models were calculated by using Eq. (15). Then, they were applied to the model surface as uniform loads. All the 
parameters required by the finite element model are listed in Table 3. 

The finite element model, which is a 1/8 model of HGBs, is shown in Fig. 10. The global coordinate system adopted is the rect
angular coordinate system. Further, for stress and strain calculation, the spherical coordinate system is adopted. The boundary con
ditions are shown in Fig. 10. The three sides are symmetrical about the X, Y and Z axes of the rectangular coordinate system. A uniform 
pressure is applied to the outer surface. 

The distributions of the radial and tangential stress obtained by the theoretical model and finite element simulation are depicted in 
Fig. 11(a and b), which shows that they are essentially coincident. This also verifies the theoretical model. The tangential normal stress 
is much larger than the radial normal stress. When r = a, the radial normal stress is 0. At this moment, tangential stress may be the 
main factor that causes the HGBs to fracture. Equation (4) shows that the radial and tangential stresses are related to the third power of 
the radius. However, Fig. 11(a and b) show that the tangential and radial stress curves are approximately straight lines. This is because 
the shell of HGBs is very thin, and the curvature of normal and shear stress changes very slightly. 

The maximum shear stress distributions obtained by the theoretical model (-T) and finite element simulation (-F) are depicted in 
Fig. 12, which shows that the maximum shear stress in the thin shell is approximately linear. When r = a, the maximum shear stress is 
the maximum. Therefore, the initial crack occurs on the inner surface. Substituting Eq. (15) into Eq. (12) yields Eq. (23): 

τth =
3
4

ρg

ρb

(

K2
ρb̅̅

r
√

)

=
3ρg

4
K2
̅̅
r

√ . (23)  

in Eq. (23), even for different types of HGBs, K2 and ρg are constants. This means that the shear strength is only inversely proportional 
to the square root of the radius. The scale coefficient is k. Further, the K1, K2, k and strength parameters of all HGBs were calculated; 
these are listed in Table 4. These parameters can provide references for the design of HGBs and their composites. 

According to the basic assumptions, the density of all HGBs of the same type is a constant that is independent of particle size. 
However, there is also a slight difference in density even for the same type of HGBs. When XLD3000, im16K and H50/10000, whose 
outer diameter is the average particle size and inner diameter is variable, were selected as research objects, the density varied between 
0.1 and 0.6 g/cm3. The relationship between fragmentation strength and density is shown in Fig. 13, which reveals that the frag
mentation strength of HGBs has a linear relationship with the density when the outer diameter is constant. 

5. Summary and conclusions 

This paper proposes a compressive strength model and the probability density distribution and cumulative probability distribution 
of compressive strength for HGBs under uniform pressure. The theoretical model was verified by comparing the parameters of 13 types 
of HGBs provided by a 3 M representative. The models showed that compressive strength is inversely proportional to the square root of 
the radius for the same type of HGBs. In addition, the model revealed that for different types of HGBs made with identical materials, the 
compressive strength is only related to the outer diameter and equivalent density (related to wall thickness). Further, the particle size 

Fig. 9. Deviations of hollow glass beads caused by r≤ 0.  
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Table 3 
The material parameters of XLD3000, im16K and H50/10000.  

HGB E (GPa) μ ρ (g/cm3) b (μm) a (μm) pth (MPa) 

XLD3000 60.00 0.23 2.18 13.75 13.25 37.90 
im16K 8.00 7.39 125.23 
H50/10000 17.50 16.04 87.81  

Fig. 10. The 1/8 finite element model of hollow glass beads.  

Fig. 11. Radial and tangential stress distributions.  

Fig. 12. Maximum shear stress distribution.  
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of HGBs follows a normal distribution. 
The reasons for deviations were analysed. Then, XLD3000, im16K and H50/10000 were taken as the research objects, and the 

distribution law of stress in thin shells was evaluated. The range of their inner diameters are shown in Table 5. This evaluation revealed 
that the failure mode of HGBs under uniform pressure is mode-II and that the maximum shear stress is the dominant factor in the failure 
process. Moreover, the maximum shear stress was found to occur on the inner surface of HGBs and strengthening the inner surface 
helped to improve the compressive strength of HGBs. Further study showed that the shear strength is only inversely proportional to the 
square root of the radius even for different types of HGBs. 

Some parameters of HGBs were calculated, which can provide references for the design of HGBs and their composites. The rela
tionship between fragmentation strength and density was studied, revealing that the fragmentation strength of HGBs has a linear 
relationship with the density when the outer diameter is constant. 
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Table 4 
The parameters in theoretical models.  

Kinds pth (MPa) τth (MPa) k (Pa⋅m1/2) K1(Pa⋅m1/2) K2((Pa⋅m1/2)/(kg/m3)) 

K1 2.40 239.89 1419180 108500 868 
S15 8.34 264.68 1419180 130200 868 
K20 13.40 239.89 1419180 173600 868 
XLD3000 37.90 382.72 1419180 199640 868 
K25 23.68 259.11 1419180 217000 868 
S38HS 53.60 299.19 1419180 329840 868 
VS5500 53.60 299.19 1419180 329840 868 
im16K 125.23 501.76 1419180 399280 868 
A16/500 6.74 231.75 1419180 138880 868 
A20/1000 14.51 248.94 1419180 173600 868 
H20/1000 14.51 248.94 1419180 173600 868 
D32/4500 42.62 299.19 1419180 277760 868 
H50/10000 87.81 339.25 1419180 434000 868  

Fig. 13. Relationship between fragmentation strength and density.  

Table 5 
The range of inner diameters for XLD3000, im16K and H50/10000.  

HGB b (μm) amin (μm) amax (μm) k2 

XLD3000 13.75 12.35 13.54 234082.19 
im16K 8.00 7.19 7.88 306884.34 
H50/10000 17.50 15.72 17.23 207491.69  
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