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ABSTRACT
We sequenced the complete mitochondrial genomes of three pairs of congeneric peripheral fishes dis-
tributed on either side of the Isthmus of Panama in order to test their status as geminate species pairs.
Our phylogenetic analysis did not support a sister relationship between Gobiomorus dormitor and
G. maculatus and therefore they cannot be considered geminates. The average genetic distance of pro-
tein-coding genes between Sicydium altum and S. salvini was more than two times larger than between
Atlantic and Pacific Awaous banana, suggesting different timings for their divergence across the
Isthmus of Panama.
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Introduction

The formation of the Isthmus of Panama represents one of
the most dramatic geological events in Earth’s history with
major climatic and biological implications. Despite its global
importance, the timing of the uplift of the Isthmus of
Panama remains an open question that has resulted in a
thrilling scientific discussion (Montes et al. 2012; Bacon et al.
2015a, 2015b; Lessios 2015; O’Dea et al. 2016; Jaramillo et al.
2017), in which the most recent studies challenge the long-
held idea of a Pliocene connection (ca. 3.5 Million years ago)
of North and South America (Coates and Obando 1996).
Thus, recent works propose an earlier age (i.e. Miocene-
Oligocene) for the formation of the Isthmus, as well as a
more complex geological history than previously believed
(Montes et al. 2012).

The formation of the Isthmus created a landbridge that
allowed species to cross between South and North America,
and, at the same time, created a barrier to gene flow
between marine organisms in the Pacific and Caribbean.
Provided this barrier, species may have diverged on either
side of the Isthmus into descendant sister taxa called
‘geminate species’ (Jordan 1908). Molecular evidence indi-
cates that all geminate species were not simultaneously sepa-
rated by the emerging Isthmus (Knowlton and Weigt 1998;
Marko 2002; Lessios 2008; Miura et al. 2010; O’Dea et al.
2016), and suggests that ecological differences, such as habi-
tat preference, may influence the timing of separation. For
example, mangrove dwelling invertebrates exhibit fewer gen-
etic differences than species associated with deeper
habitats (Knowlton and Weigt 1998; Miura et al. 2010).

Similarly, peripheral fishes (i.e. groups with a recent marine
origin that have invaded coastal streams; Myers 1949) of the
genus Dormitator show remarkably young divergence times
(Galv�an-Quesada et al. 2016). These results support the idea
that near-shore taxa are ideal candidates for molecular clock
calibrations, because their limited genetic divergences might
reflect the latter stages of transisthmian marine connection
(Knowlton and Weigt 1998; Galv�an-Quesada et al. 2016).

In this study, we provide a comparison of genetic distan-
ces across complete mitochondrial genomes of three pairs of
peripheral fish species, or lineages, with distributions on
either side of the Isthmus of Panama. We infer their evolu-
tionary relationships to test the hypothesis that they are
geminate species.

Materials and methods

We collected specimens from six species or lineages of gobii-
form fishes distributed in Atlantic and Pacific watersheds of
Panama: Gobiomorus dormitor (STRI-15207, R�ıo Chagres, R�ıo
Chagres, Panama Province, Panama), Gobiomorus maculatus
(STRI-7077, R�ıo Pavo, R�ıo Pavo, Veraguas Province, Panama),
Sicydium altum (STRI-4981, R�ıo Bongie, R�ıo Changuinola,
Bocas del Toro Province, Panama), S. salvini (STRI-660, R�ıo
Chiriqu�ı Viejo, R�ıo Chiriqu�ı Viejo, Chiriqu�ı Province, Panama;
STRI-3170, R�ıo Lajas, R�ıo Santa Mar�ıa, Herrera Province,
Panama), Awaous banana (STRI-4986, R�ıo Bongie, R�ıo
Changuinola, Bocas del Toro Province, Panama), and A.
banana (STRI-11209, R�ıo Mamon�ı, R�ıo Bayano, Panama
Province, Panama). We excised the gill arches and preserved
them in a 20% dimethyl sulphoxide (DMSO), 0.5M EDTA, pH
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8 solution at 4 �C until DNA extraction. All specimens were
initially fixed in formalin, later transferred to 70% ethanol,
and deposited and vouchered in the Neotropical Fish
Collection (NFC-STRI) at the Smithsonian Tropical Research
Institute in Panama (STRI).

We recovered complete mitochondrial DNA sequences as
a by-product of hybrid target capture of ultraconserved ele-
ments (UCEs) (Faircloth et al. 2012). Briefly, we extracted DNA
using a QIAGEN DNeasy kit (Qiagen, Valencia, CA) and ran-
domly sheared 400–1000 ng of DNA by sonication to a target
size of 400–600 base pairs (bp). We constructed genomic
libraries for each of our samples using the Kapa Hyper Prep
Kit v.3.15 (Kapa Biosystems, Wilmington, MA), and enriched
them for 500 UCE loci using the Actinops-UCE-0.5Kv1 probe
set (Faircloth et al. 2013) following protocols for the
MYcroarray MYBaits kit v.3.0 (MYcroarray, Ann Arbor, MI).
Then we sequenced these libraries in one lane of PE150
Illumina MiSeq (Illumina, San Diego, CA).

We trimmed raw reads for adapter contamination and low
quality bases in illumiprocessor (Faircloth 2013), and mapped
them to reference mitogenomes using Bowtie 2 (Langmead
and Salzberg 2012) as implemented in Geneious 10.1.3 (www.
geneious.com, Kearse et al. 2012). Also using Geneious 10.1.3,
we created and annotated consensus sequences.

We aligned our mitogenomes with representative mitoge-
nomes from 22 species belonging to five out of the seven
families of Gobiiformes (sensu Agorreta et al. 2013), including
three newly sequenced mitogenomes of Neotropical eleotrids
(Alda et al. 2017), and Kurtus gulliveri (Kurtiformes) that was
used as an outgroup. We extracted and individually re-
aligned all 13 protein-coding genes for subsequent phylogen-
etic analysis. We partitioned the data by gene and by codon,
and estimated the best partition scheme under the
GTRþGAMMA substitution model using PartitionFinder
(Lanfear et al. 2012). We used these partitions in a Maximum
Likelihood analysis in RAxML (Stamatakis 2014), in which we
ran 40 searches to find the best tree, and performed 500
bootstrap replicates to assess nodal support.

To compare mitochondrial divergences across pairs of
putative geminate taxa, we calculated uncorrected p-distan-
ces between congeneric taxon pairs for each mitochondrial
gene, and calculated their standard errors using 500 boot-
strap replicates in MEGA7 (Kumar et al. 2016).

Results and discussion

We obtained complete mitochondrial genome sequences
with a minimum of 10� coverage for three species pairs, or
lineages, of peripheral gobiiform fishes: G. dormitor
(MF927493) and G. maculatus (MF927494); S. altum
(MF927496) and S. salvini (MF927497, MF927498); and
A. banana from Atlantic (MF927488) and Pacific (MF927489)
watersheds.

The size of the mitochondrial genomes ranged from
16,474 bp in G. dormitor to 16,536 bp in G. maculatus. All spe-
cies contained 22 tRNA genes, two rRNA genes, 13 protein
coding regions, as well as control region arranged in the
same order. The most common start codon ATG was found

in all genes except in COXI that had the start codon GTG,
and in ND6 that had TAC as the start codon. The stop codon
TAA terminated the genes ND2, ND4L and ATP8 in all species,
whereas genes ND1 and ND5 exhibited either TAA or TAG as
stop codons. Incomplete stop codons were found in some or
all species for genes ATP6, COXII, COXIII, CYTB, ND3 and ND4
formed of only T or TA, which are likely completed as TAA
via post-transcriptional polyadenylation.

Our phylogenetic analysis was congruent in the relation-
ships among families and genera with recent studies using
both mitochondrial and nuclear loci (Agorreta et al. 2013;
Adrian-Kalchhauser et al. 2017). The species or lineage pairs
of Sicydium and Awaous showed sister relationships and can
be considered as geminate species. However, G. dormitor and
G. maculatus were not recovered as sister species, and conse-
quently the hypothesis that they are geminate species was
rejected (Figure 1). This result is in contrast with the results
of Thacker and Hardman (2005) and Thacker (2017), who ana-
lyzed the same data set in a phylogeny of the Gobiodei and
in a comparative morphological analysis of geminate species,
using Maximum Parsimony and Bayesian Inference, respect-
ively. In both cases they recovered a sister relationship for
the two species of Gobiomorus. Conversely, further reanalyses
of the data from Thacker and Hardman (2005) have also evi-
denced the non-monophyly of Gobiomorus, and similarly to
our study, have recovered a sister relationship between G.
dormitor and H. latifasciata (Thacker 2009; Agorreta and
R€uber 2012). Furthermore, and in agreement with the latter, a
recent barcoding study with a broader geographical and
taxonomical sampling within the Eleotridae, pointed to the
Eastern Pacific species G. polylepis as the sister of G. dormitor,
and H. latifasciata as sister to the two of them (Guimar~aes-
Costa et al. 2017). According to this, G. dormitor and G. polyle-
pis would constitute the geminate species pair in the genus
Gobiomorus.

As would be expected, given they were not recovered as
sister groups, G. dormitor and G. maculatus exhibited the larg-
est divergences for every mitochondrial gene among the spe-
cies compared (Figure 2). Distances were as low as 1.37% for
tRNA Leu, and as large as 31.14% for ND6. On average, pro-
tein-coding genes were 18.74%±4.70 divergent. These gen-
etic distances were also greater than between G. dormitor
and H. latifasciata (mean¼ 15.43%±1.82), except for the
COXII gene (12.74% versus 12.30%).

Throughout all comparisons, control region and ND6 were
two of the most variable genes, while tRNA genes were con-
sistently the least variable. The fewest differences existed
between Atlantic and Pacific A. banana: ten tRNA genes were
identical, with the remaining 12 ranging from 1.33 to 4.34%
different. All protein-coding genes were over 2% divergent
(mean ¼ 4.75%± 2.02), which is a common threshold for spe-
cies delimitation in mitochondrial and barcoding studies
(Ward 2009; Pereira et al. 2013; Bagley et al. 2015), except for
ATP8 and ND4L (1.82% and 1.68% divergent, respectively).
Sicydium altum and S. salvini divergences ranged between
1.66 and 12.70% for the protein coding genes (mean
¼ 10.03%±1.66) (Figure 2).

The divergence values between Awaous and Sicydium
geminate pairs are in the lower and upper boundaries of
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Figure 2. Genetic divergence across all mitochondrial genes between three pairs of species: Gobiomorus dormitor versus G. maculatus, Awaous banana from Atlantic
versus A. banana from the Pacific watersheds, and Sicydium salvini versus S. altum. Genes are presented in the same order as they appear in these species mitochon-
drial genomes. Error bars represent standard errors and the dashed horizontal line indicates the commonly used threshold at 2% genetic divergence.
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other geminate species pairs of peripheral fishes (e.g. D. mac-
ulatus versus D. latifrons: CYTB uncorrected p-distance¼ 8.6%,
Galv�an-Quesada et al. 2016; and Caribbean Agonostomus
monticola versus Pacific A. monticola: CYTB uncorrected p-dis-
tance¼ 8.3%, McMahan et al. 2013). Assuming that mutation
rates are similar across evolutionary close species, these dif-
ferences might reflect a range of divergence times across
geminate species of peripheral fishes that could be related to
their habitat preferences. For example, Sicydium species
inhabit fast flowing rivers and creeks between sea level and
1100 m, whereas A. banana is commonly found in estuaries
and rivers only up to 300 m above sea level. Therefore, the
affinity of Awaous to near-shore environments and brackish
waters may have allowed them to maintain gene flow until
the very last instances of marine connectivity across the
Central American Seaway. Overall, these new mitogenomes
constitute an important resource for future investigations on
rates of molecular evolution and divergence times of gemin-
ate species, and eventually for a further understanding of the
geological history and age of the Isthmus of Panama.
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