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Abstract: Verbenone and carvone are allylic monoterpenoid ketones with many applications in the
fine chemicals industry that can be obtained, respectively, from the allylic oxidation of α-pinene and
limonene over a silica-supported iron hexadecachlorinated phthalocyanine (FePcCl16-NH2-SiO2)
catalyst and with t-butyl hydroperoxide (TBHP) as oxidant. As there are no reported analyses of
the environmental impacts associated with catalytic transformation of terpenes into value-added
products that include the steps associated with synthesis of the catalyst and several options of raw
materials in the process, this contribution reports the evaluation of the environmental impacts in the
conceptual process to produce verbenone and carvone considering two scenarios (SI-raw-oils and SII-
purified-oils). The impact categories were evaluated using ReCiPe and IPCC methods implemented
in SimaPro 9.3 software. The environmental impacts in the synthesis of the heterogeneous catalyst
FePcCl16-NH2-SiO2 showed that the highest burdens in terms of environmental impact come from
the use of fossil fuel energy sources and solvents, which primarily affect human health. The most
significant environmental impacts associated with carvone and verbenone production are global
warming and fine particulate matter formation, with fewer environmental impacts associated with
the process that starts directly from turpentine and orange oils (SI-raw-oils) instead of the previously
extracted α-pinene and limonene (SII-purified-oils). As TBHP was identified as a hotspot in the
production process of verbenone and carvone, it is necessary to choose a more environmentally
friendly and energy-efficient oxidizing agent for the oxidation of turpentine and orange oils.

Keywords: carvone; catalyst; citrus; life cycle assessment (LCA); process design; turpentine; verbenone

1. Introduction

Citrus essential oils extracted from citrus fruits peels (orange, mandarin, lemon, lime,
and grapefruit) are principally constituted by d-limonene [1,2]. Turpentine oil extracted
from pines is predominantly composed of α-pinene and β-pinene, among others [3,4].
Limonene, α-pinene, and β-pinene are used as solvents and precursors of fine chem-
icals [5–7]. Limonene and α-pinene are oxidized to produce carvone and verbenone
(C10H14O), respectively; these allylic ketones are used in food, perfumes, medicine, agro-
chemicals, pesticides, and the chemical and oral hygiene product industries [8,9]. Although
there is plenty of information about methods for producing the monoterpenoids verbenone
and carvone at laboratory scale [8,10–15], hypothetical and industrially implemented tech-
nology processes for the production of these ketones are scarcely presented [16–18]. In
addition, studies of, or approaches to the sustainability (environmental, economic, and
social) assessment required to produce these compounds are not available. Since industrial
verbenone and carvone production has been neither well known nor very detailed in the
literature, the state of the art of industrial processes and the LCA for the production are still
uncertain. The only studies concerning these topics have mainly focused on the evaluation
of the environmental impacts of the extraction of some essential oils that contain terpenes
as α-pinene or d-limonene.
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It was found with the LCA methodology that in the evaluation of environmental sus-
tainability of citrus plantations in China, the production and use of fertilizers are the first
contributors to the environmental impacts [19]. Moura et al. [20] reported a study imple-
menting the LCA methodology in the quantification of the environmental performance of
lab scale essential oil production by hydro-distillation (HD), HD + lyophilization (HD + L),
and supercritical fluid extraction (SFE) methods from the Rosmarinus officinalis L. species
grown in Portugal. Their results showed that the energy is the main critical factor affecting
the environmental performance of the extraction processes, particularly the lyophilization
HD required to recover residual essential oil from the hydrolat. In addition, HD was
preferable for α-pinene production from fresh and dried samples. Teigiserova et al. [21]
implemented an LCA in a biorefinery for the production of limonene, citric acid, and animal
feed from orange peel waste (OPW) generated from juice factories. Their results indicate
that the climate change impact category, according to the Environmental Footprint life
cycle impact assessment method, depended upon the electricity input with the highest
CO2,eq for current electricity mix, middle CO2,eq using renewable sources, and the lowest
CO2,eq using electricity from wind. Santiago et al. [22] analyzed the environmental impacts
with the LCA methodology in the valorization of citrus waste (CW) biorefineries targeting
the production of d-limonene, among other co-products such as biogas and digestate. The
scenarios covered four sections: pre-treatment, extraction (hydrodistillation, cold pressing,
and solvent extraction), purification, and anaerobic digestion. The extraction and purifi-
cation stages showed the main differences between the scenarios: the purification stage
was primarily responsible for the highest environmental burdens in most of the scenarios
due to the energy requirements; and in the scenario with the best profile, the pre-treatment
and extraction steps were identified as hotspots due to the high electricity requirement.
Jahandideh et al. [23] evaluated the environmental impacts with the LCA of a hypothetical
limonene production facility using genetically engineered filamentous N2-fixing cyanobac-
teria. The analysis of the limonene production, as an alternative methodology for the
manufacture of next-generation biofuels from renewable and sustainable sources, showed
less negative environmental impact than lipid-based algal biodiesel production technolo-
gies. The major environmental burdens of the facility were the cyanobacteria nutrient
supply sodium nitrate and the photobioreactor electrical requirements.

There are few reports on the environmental impacts related to the transformation of
the main components of essential oils into high value-added compounds. Zhang et al. [24]
reported on the environmental impacts in the production of sustainable biopolymers as an
alternative for the conventional petroleum-based polymers, using the LCA methodology in
the production of the biopolymer polylimonene carbonate through a conceptual process
design from limonene oxidation with TBHP using different feedstocks (citrus waste and mi-
croalgae). The production stages for limonene oxide, TBHP, and the product were simulated
in Aspen Plus V9 software to estimate both the energy consumption and mass balances
for each process. Their results, obtained with the ReCiPe Mid-Point method, revealed that
sustainable polylimonene carbonate synthesis was limited by the use of TBHP, suggesting
that a more environmentally friendly and energy-efficient limonene oxidation method
should be developed. In a previous report from our research group [25], we evaluated the
environmental performance in the production of the fine chemical nopol, a monoterpenoid
alcohol obtained via Prins reaction between β-pinene and paraformaldehyde through the
implementation of the LCA methodology. The LCI was carried out combining primary
and secondary data from simulation of the process using Aspen Plus software. The results
obtained by the Hierarchist ReCiPe v1.13 (2008) method indicated that the extraction of
raw materials contributed more to the environmental burdens than the production stages,
and the solvent was identified as a hotspot. Some proposed alternatives to decrease the
environmental burdens included the optimization of fossil resources, acting as solvent, and
the evaluation of different heterogeneous catalysts and reaction conditions.

In this contribution, the conceptual design of the process for the production of ver-
benone and carvone by catalytic oxidation of limonene and α-pinene over the catalyst
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FePcCl16-NH2-SiO2 [26,27] is included together with the environmental performance
through the implementation of the Life Cycle Assessment (LCA) methodology associ-
ated with these processes. To identify the effect of the feedstock on the environmental
performance of the processes, two different alternatives in the proposed design of the
process are analyzed according to the used feedstock: (i) raw commercial orange and
turpentine oils (SI-raw-oils) or (ii) limonene and α-pinene obtained by a preliminary distil-
lation of the essential oils (SII-purified-oils). The results from this research will contribute
significantly to the state of the art of the implementation of LCA in the fine chemical
processes of terpene-related compounds and the identification of the main environmental
burdens which must be addressed to develop improvements in the processes.

2. Materials and Methods
2.1. General Introduction of the Development

This section includes a conceptual design of the reported [26,27] lab scale batch ox-
idation of limonene and α-pinene into carvone (~12% selectivity) and verbenone (~22%
selectivity), respectively, using aqueous t-butyl hydroperoxide (TBHP) as an oxidizing
agent and the heterogeneous catalyst FePcCl16-NH2-SiO2. Reactions are described in
Figure 1. Two feedstocks are proposed for obtaining the allylic ketones either directly from
the essential oils (SI-raw-oils) or from the terpenes that were previously extracted from
the essential oils (SII-purified-oils). Then, the LCA methodology is used to identify the
environmental impacts associated with the production of carvone and verbenone using the
two feedstocks.
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Figure 1. Chemical route for the production of verbenone and carvone from α-pinene and d-limonene
oxidation with TBHP and FePcCl16-NH2-SiO2. Conditions: acetone, 40–50 ◦C, 6 h, molar ratio
TBHP/monoterpene of 2.6:1. TBA: t-butyl alcohol.
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2.2. Description of the Heterogeneous Catalytic Process for the Batch Production of Verbenone
and Carvone

The production of verbenone from the allylic oxidation of α-pinene (or turpentine
oil) and the production of carvone from the allylic oxidation of d-limonene (or orange
peel oil) were carried out through a proposed conceptual design of the scaled-up process
shown in Figure 2 and with the design parameters presented in Table 1. The oxidation
of the essential oils is promoted with TBHP as oxidant and over the iron phthalocyanine
heterogeneous catalyst in an organic solvent. Two different process design alternatives or
scenarios are proposed for the batch production of verbenone and carvone based on the
purification of one of the raw materials. The first scenario (SI-raw-oils) uses raw commercial
orange and turpentine oils to be directly processed in the reactor. The second scenario
(SII-purified-oils) includes a preliminary distillation module for the purification of orange
and turpentine essential oils. The process diagram was divided into the conventional raw
material conditioning, reaction, and separation zones.
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Figure 2. Process flow diagram for two scenarios (SI-raw-oils and SII-purified-oils) in the batch
production of verbenone and carvone from turpentine and orange oils oxidation with TBHP and
FePcCl16-NH2-SiO2.

2.2.1. Raw Materials Conditioning Zone

This zone includes the units required to carry out the conditioning of all the raw
materials essential for the proposed processes. No further purification of the fresh input
of solvent acetone is required since it is marketed with high purity. Although the use of
dehydrated TBHP would be of great advantage, the purification of commercial aqueous
solution is not considered in the process because of its unstable formulation resulting
after higher purification [28]. The FePcCl16-NH2-SiO2 catalyst is obtained by the synthesis
procedure reported in the literature [29,30]. Commercial turpentine and orange essential
oils with no additional purification are used in the SI-raw-oils scenario of the process.
However, the purification of α-pinene and d-limonene by fractional vacuum distillation
in T-102 from the essential oils is proposed in the SII-purified-oils scenario based on a
technical and economic feasibility analysis developed in previous studies [31].
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Table 1. Design parameters of the proposed scenarios in the conceptual process for the production of
verbenone and carvone.

Verbenone Carvone

SI-Raw-Oils SII-Purified-Oils SI-Raw-Oils SII-Purified-Oils

R-101
Initial mass, kg 1665.60 1627.85 1624.90 1615.80

Ketone mass produced, kg 27.23 27.63 13.03 10.52
Molar percentage ketone, % 0.539 0.546 0.242 0.199

Heat duty, kW −316.8 −326.9 −530.6 −483.8
T, K 318 318 318 318

P, kPa 85 85 85 85
Time, h 6 6 6 6

F-101
Ketone mass recovered, kg 26.96 27.36 12.90 10.41

D-101
Molar percentage ketone concentrated, % 22.6 44.84 16.58 2.03

Reboiler heat duty, kW 363 350 383 383
Time, h 2 2 2 2

T-101
Initial mass, kg 119.87 59.56 70.98 179.31

Product mass, kg 41.78 26.53
Ketone purity, % 59.7 83.9 36.5 32.6

Reboiler heat duty, kW 26.8 9.6 8.3 46.0

Ketone capacity at 3 batches in R-101 per
day, ton/y 46.01 29.21 36.44 29.53

2.2.2. Reaction Zone

This zone contains the batch reactor R-101 in which the liquid-phase chemical trans-
formation of the essential oils with the aqueous solution of the oxidizing agent TBHP takes
place at constant temperature, using acetone as solvent and the heterogeneous catalyst
FePcCl16-NH2-SiO2.

2.2.3. Separation Zone

This zone contains the essential equipment to carry out the purification of verbenone
and carvone. After the reaction takes place, the solid catalyst is separated from the reaction
media using a filter F-101; the recovered catalyst may be reused at least seven times without
losing significant catalytic activity [26,27]. The solvent acetone, TBA, and water are almost
removed by simple distillation in D-101, and the acetone could be further purified by
distillation if required according to the simulation results obtained in Aspen Plus software.
The fractional distillation T-101 is used to purify the interest products verbenone and
carvone under vacuum conditions.

2.3. LCA Methodology

The LCA was carried out following the ISO 14040 and 14044 standards [32,33] that
describe the principles and framework for implementing the Life Cycle Assessment con-
ducting the four phases: (i) Goal and Scope Definition, (ii) Life Cycle Inventory Analysis
(LCI), (iii) Life Cycle Impact Assessment (LCIA), and (iv) Life Cycle Interpretation.

2.3.1. Goal and Scope Definition

The goal of this study was to determine the environmental impacts in the two pro-
posed alternatives or scenarios (SI-raw-oils and SII-purified-oils) of the conceptual design
process for the batch production of verbenone and carvone, respectively, from turpentine
and orange essential oil oxidation with TBHP and the heterogeneous FePcCl16-NH2-SiO2
catalyst. The functional unit chosen was the production of 1.0 kg/batch of carvone and
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1.0 kg/batch of verbenone. The LCA was implemented using SimaPro 9.3.0.3 software by
the cradle-to-gate approach, mass allocation, and system boundary, including the com-
bination of five different stages shown in Figure 3. The stages of essential oil separation,
reagent synthesis, and verbenone/carvone separation were supported with background
data through the implementation of processes in databases and computational simula-
tion models using Aspen Plus and Matlab software. The stages of the production of
FePcCl16-NH2SiO2 and verbenone/carvone reaction were carried out at laboratory scale
and conceptually scaled-up for the design of the process shown in Figure 2. In addition, the
waste management of materials released in the process was not considered in the analysis.
Two goals were identified for the present LCA; the first one is to determine the main causes
of environmental impacts in the production of the heterogeneous iron base phthalocyanine
catalyst FePcCl16-NH2SiO2, carvone, and verbenone. The second objective is to compare,
in terms of environmental impacts, the production of verbenone and carvone, respectively,
to the allylic oxidation of raw essential oils of turpentine and orange (SI-raw-oils), or the
oxidation of their main components, α-pinene and d-limonene, previously purified from
the essential oils (SII-purified-oils).
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2.3.2. Life Cycle Inventory Analysis

All data required for the LCI were obtained combining both secondary (background
data) and primary (adjusted foreground data) sources (Figure 3). This is because this study
is focused on an original conceptual process design to produce verbenone and carvone, and
due to the absence of information on the implementation of the process at the industry level.
The foreground data were obtained from laboratory scale experiments related to catalyst
and product preparation in the reactor and adjusted to the scale of the process shown
in Figure 2 by process simulation. The secondary data were obtained by computational
simulation of mathematical models of the equipment in the process using Aspen Plus and
Matlab software, from global LCI datasets such as Ecoinvent and Agrifootprint, and from
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patents and articles. For the implementation of the LCI in the SimaPro software, some
additional processes were implemented since there was no available information in the
selected databases (see Table S1 in Supplementary Materials). The additional processes
were based on either patented or reported information covering the production of orange
essential oil [34] and the synthesis of several reagents such as t-butyl hydroperoxide [35,36],
(3-aminopropyl)triethoxysilane [37], allylamine [38], ammonium heptamolybdate [39],
tetrachlorophthalic anhydride [40], triethoxysilane [41], and FePcCl16-NH2-SiO2 catalyst
by the chemical routes shown in the Supplementary Materials section in Figure S2. The
available data of raw materials emission and extraction were obtained from the Agri-
footprint 5.0—mass allocation and the Ecoinvent 3.8—allocation, cut-off by classification
databases (Table S2). The LCI is structured in the process block diagram shown in Figure 4
with a detailed description in the Supplementary Materials (Section S1. Details of the life
cycle inventory).
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Figure 4. Process block diagram of the LCI for the batch production of verbenone and carvone from
turpentine and orange oils oxidation with TBHP and FePcCl16-NH2-SiO2 (See detailed description in
Supplementary Materials).
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2.3.3. Life Cycle Impact Assessment

The LCIA of the process for the production of verbenone and carvone was imple-
mented in SimaPro 9.3.0.3 software [42], using both ReCiPe 2016 Endpoint (H) v1.06/World
(2010) H/A and IPCC 2021 GWP100 v1.0 methods. Additionally, results for the ReCiPe
Midpoint are shown in the Supplementary Materials (Section S2. Evaluation of the envi-
ronmental impacts by the ReCiPe Midpoint) and are reported to have lower uncertainty
than the Endpoint method. However, the ReCiPe Endpoint provides better information on
the environmental relevance of the environmental flows [43], and therefore an uncertainty
analysis was considered for this method. The impact categories selected for the analysis
in the ReCiPe method include global warming (human health, terrestrial ecosystems, and
freshwater ecosystem), stratospheric ozone depletion, ionizing radiation, ozone formation
(human health and terrestrial ecosystems), fine particulate matter formation, terrestrial
acidification, eutrophication (fresh water and marine), ecotoxicity (fresh water, marine, and
terrestrial), water toxicity, human toxicity (carcinogenic and non-carcinogenic), land use, re-
source scarcity (mineral and fossil), and water consumption (human health, terrestrial, and
aquatic ecosystems). The IPCC 2021 GWP100 method was used to evaluate at a timeframe
of 100 years the impacts of the synthesis of the materials on climate change, its implications,
and future risks in terms of CO2 emissions including the GWP100 impact categories of
fossil, biogenic, and land transformation [44].

3. Results and Discussion
3.1. Environmental Impacts in the Production of the Iron-Based Phthalocyanine Complex Catalyst
FePcCl16-NH2-SiO2

The process contribution to the environmental impact categories (Table 2) by the
ReCiPe method in the synthesis of the active phase complex FePcCl16 is presented in
Figure 5. From the damage environmental impact categories perspective, the highest
burdens are associated with potential damage to human health (Figure 5b), since the two
highest impact categories using this synthesis procedure relate to the impact of global
warming on human health followed by the fine particulate matter formation, and with
minor weight for both carcinogenic and non-carcinogenic toxicity to humans (Figure 5a).
Additionally, fossil resource scarcity and global warming in terrestrial ecosystems are, in a
minor grade, important potential environmental impact categories to be considered from
this process. In the impact categories, the process contributing the most to the impacts are
the use of natural gas as a heating source, the requirement of organic solvents— mainly
acetone and nitrobenzene—and the use of sulfuric acid, which is the highest contributing
process in the human non-carcinogenic toxicity category.

When comparing the production of 1.0 kg of the modified support NH2-SiO2 and the
catalyst with the active phase complex FePcCl16, similar results were observed in terms of
process contribution and the most relevant impact categories (Figures 6 and 7). However, it
can be concluded that the synthesis of the support generates the highest environmental
impacts between them—in this case, due to the large extent of inert atmosphere of Ar
needed for the synthesis (Figure 6). LCA results using the IPCC GWP 100 method are
used to estimate the 100-year global warming potential (GWP) from the catalyst synthesis.
Like the results obtained through the ReCiPe method, it is shown that the synthesis of
the support would generate more CO2-eq than the active phase and the catalyst synthesis
(Figure 7b).
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Table 2. Impact categories selected for the analysis.

Impact Category Abbreviation

Global warming, Human health GWH
Global warming, Terrestrial ecotoxicity GWTE
Global warming, Freshwater ecotoxicity GWFE
Stratospheric Ozone Depletion OD
Ionizing radiation IR
Ozone formation, Human health OFH
Fine particulate matter formation PMF
Ozone Formation, Terrestrial Ecosystem OFTE
Terrestrial Acidification TA
Freshwater Eutrophication FEu
Marine Eutrophication MEu
Terrestrial Ecotoxicity TEt
Freshwater ecotoxicity FEt
Marine ecotoxicity MEt
Humam Carcinogenic Toxicity HCT
Human Non-carcinogenic Toxicity HNCT
Land Use LU
Mineral Resource Scarcity MR
Fossil Resource Scarcity FR
Water Consumption, Human health WCH
Water Consumption, Terrestrial ecosystem WCTE
Water Consumption, Aquatic ecosystem WCAE
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Figure 7. Environmental impact assessment in the production of the catalyst FePcCl16-NH2-SiO2, sup-
port and active phase by (a) process contribution and (b) the global warming potentials. Assessment
methods: ReCiPe 2016 Endpoint (H) V1.06/World (2010) H/A; IPCC 2021 GWP100 v1.0.
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3.2. Comparing Scenarios SI-Raw-Oils and SII-Purified-Oils in the Proposed Process to Produce
Verbenone and Carvone

The main difference between SI-raw-oils and SII-purified-oils consists in the use of
raw essential oil during the reaction step (turpentine or orange oil) in the first scenario
and the inclusion of a distillation tower T-102 in the second scenario to purify the relevant
monoterpene (α-pinene or d-limonene) prior to the reaction step. This causes different
compositions of by-products in the process units of the SI-raw-oils and SII-purified-oils
scenarios. The LCA results for both impact and damage environmental impact categories for
these scenarios in the production of verbenone and carvone are presented in Figures 8 and 9,
respectively. The most relevant environmental impact categories in the systems are the
fine particulate matter formation and the effect of global warming on human health,
whereas the highest damage environmental impact categories are associated with human
health issues. A comparison of SI-raw-oils and SII-purified-oils in terms of LCA results
indicates that including a separation step in the process for purifying the raw essential oil
increases the environmental impacts of producing verbenone without evident benefits in the
production performance (Figure 8). In the case of carvone, the LCA results in Figure 9 show
similar impacts for the two evaluated scenarios, which is due to the high concentration of
d-limonene in the orange oil, causing low operating costs in the oil purification unit.
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Figure 9. Comparison of the environmental impacts in the SI-raw-oils and SII-purified oils scenarios
for the carvone process production. (a) Impact categories and (b) damage categories. Assessment
method: ReCiPe 2016 Endpoint (H) V1.04/World (2010) H/A.

The contribution of the most important activities on the environmental impacts in the
scenarios for the production of verbenone and carvone are presented in Figures 10 and 11,
respectively. Calculations of the impact on human health are presented since it was
identified in the damage category results as the highest damage category contributing to the
environmental impacts in the process, as shown in Figures 8b and 9b. Liquified petroleum
gas, transport trucks, and hydrochloric acid are the most significant contributors to human
health impacts. Electricity is also a major impact process due to its intensive use in operating
compressors and pumps, especially during the production of t-butyl hydroperoxide, and
in refrigerating essential oils to avoid their degradation. In addition, high amounts of
oxygen, hydrochloric acid, and butane (simulated in this study as liquefied petroleum gas)
are needed to produce t-butyl hydroperoxide and heat used to operate distillation units.
Acetone and the catalysts are not significant pollutants since they are constantly recirculated
in the processes. However, t-butyl hydroperoxide is easily degraded to t-butanol, making
its reuse unfeasible. In particular, the implementation of the orange processing step for the
extraction of the orange oil in the carvone production increases the environmental impact of
the process in comparison with the verbenone production (Figure 11). This is also evidenced
from the results of the global warming potential calculated by the IPCC GWP100 method
shown in Figure 12, where the amount of CO2-eq/kg carvone is almost 3.9 higher than the
amount of CO2-eq/kg verbenone with respect to contaminant SII-purified-oils scenario.
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Figure 10. Comparison of the environmental impacts in the SI-raw-oils and SII-purified-oils scenarios
for the verbenone process production by process contribution on the human health damage category.
Assessment method: ReCiPe 2016 Endpoint (H) V1.04/World (2010) H/A.
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Figure 11. Comparison of the environmental impacts in the SI-raw-oils and SII-purified oils scenarios
for the carvone process production by process contribution on the human health damage category.
Assessment method: ReCiPe 2016 Endpoint (H) V1.04/World (2010) H/A.

An uncertainty analysis of the environmental impacts of the different scenarios of the
process is shown in Figure 13. The single score probability results of the environmental
impacts to produce 1 kg/batch of carvone were higher than the probabilities in the produc-
tion of verbenone. However, the differences between the statistical parameters reported
in Table 3 were very similar for the production of carvone since the orange essential oil
has high levels of d-limonene concentration and the results do not affect both scenarios
evaluated, as presented in Figures 9b and 12b.
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Figure 13. Uncertainty analysis of the process for the production of verbenone (a,b) and carvone (c,d).
Assessment methods: ReCiPe 2016 Endpoint (H) V1.06/World (2010) H/A; number of bins: 50,
visible interval: 99.9%, confidence interval: 95%. Functional unit: 1 kg of ketone/batch.
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Table 3. Statistical parameters (by score) of the uncertainty analysis of the processes. Assessment
methods: ReCiPe 2016 Endpoint (H) V1.06/World (2010) H/A; number of bins: 50, visible interval:
99.9%, confidence interval: 95%. Functional unit: 1 kg of ketone/batch.

Ketone Process Verbenone Carvone

Scenario/Statisticals of the Score SI-Raw-Oils SII-Purified-Oils SI-Raw-Oils SII-Purified-Oils

Mean 0.249 0.335 1.78 1.78
Median 0.248 0.334 1.78 1.78

SD 0.00973 0.0138 0.0116 0.0123
CV 3.91% 4.11% 0.654% 0.691%

2.5% 0.23 0.312 1.76 1.76
97.5% 0.27 0.367 1.8 1.81

SEM (standard error of mean) 0.000308 0.000436 0.000367 0.00039

In this LCA, the production process of TBHP was identified as a hotspot in accordance
with the network diagram of the process shown in Figure 14. Thus, a sensitive analysis
was carried out considering the SI-raw-oils scenario, which has the lowest environmental
impacts, to produce the allylic ketone and including the most important activities affecting
the production of verbenone: transportation and type of electricity for TBHP production.
Carvone production was not considered since the uncertainty analysis was very similar
in both scenarios (coefficient of variations CV reported in Table 3 were very similar and
lower than in the scenarios for verbenone production). EURO1, EURO3, and EURO5 were
analyzed in the sensitive analysis of the transport by truck, and the electricity energy grid
mix by hydroelectrical and natural gas sources as the most representative uses in Colombia
were also considered in the results of the cumulative score for the input and outputs of
the process (Table 4). The lowest cumulative scores in the production of TBHP (85.2%),
i.e., the lowest environmental impact condition, was obtained using the EURO5 transport
truck; however, the differences in using EURO1 and EURO3 were not significant. On
the other hand, using electricity from natural gas (cumulative score 69.8%) rather than
from hydroelectrical (cumulative score 51.2%) sources may have a greater contribution to
the environmental impacts in the production of TBHP and therefore in the production of
verbenone in the SI-raw-oils scenario.
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Figure 14. Network diagram by single score of the process for verbenone production in the SI-raw-
oils scenario. Assessment method: ReCiPe 2016 Endpoint (H) V1.06/World (2010) H/A. Functional
unit: 1 kg of verbenone/batch, Node cut-off: 8%, cumulative indicator as percentage.



Molecules 2022, 27, 5479 16 of 19

Table 4. Sensitivity analysis of transportation and electricity in the process for verbenone production
in the SI-raw-oils scenario. Assessment method: ReCiPe 2016 Endpoint (H) V1.06/World (2010) H/A.
Functional unit: 1 kg of verbenone/batch, cumulated indicator as percentage.

Transport, Truck < 10 t, Euro TYPE, 80%LF, Default/GLO Mass Sensitive Analysis

Activity/Cumulated Indicator (%) EURO1 EURO3 EURO5

t-butyl_hydroperoxyde_(TBHP) 85.8 85.7 85.2
isobutane_isomerization_B 49.1 49.3 51.1
Transport, truck < 10 t, EURO TYPE, 80%LF, default/GLO Mass 27.9 27.7 25.1
t-butyl_alcohol_rxn_P1 32.1 32.1 31.9
water_rxn_P1 24.8 24.8 24.7
alpha_pinene_rxn_P1 9.69 9.68 9.62

Electricity, High Voltage {CO}| Electricity Production, TYPE

Activity/Cumulated Indicator (%) Natural Gas Hydro

isobutane_isomerization_B 69.8 51.2
t-butyl_hydroperoxyde_(TBHP) 69.8 51.2
Liquified petroleum gas {RoW}|market for|Cut-off, S 14.1 23.9
Hydrochloric acid, without water, in 30% solution state {RoW}|market for|Cut-off, S 8.52 14.4
Electricity, high voltage {CO}| electricity production, TYPE 47.2 12.8

4. Conclusions

As part of the conceptual design of a process to produce verbenone and carvone using
turpentine and orange essential oil oxidation with TBHP and the heterogeneous catalyst
FePcCl16-NH2-SiO2, an analysis of the environmental impacts was successfully applied
with the LCA methodology. The evaluation of the environmental impacts in the synthesis
of the heterogeneous catalyst FePcCl16-NH2-SiO2 showed that the greatest contributions
to the environmental impacts come from the use of natural gas as an energy source and
the requirement of both organic and inorganic solvents, which mainly affect human health.
After performing a life cycle assessment to the verbenone and carvone processes of produc-
tion through the SI-raw-oils and SII-purified-oils scenarios, it was concluded that the most
important environmental impacts on human health are global warming and formation of
fine particulate matter. When comparing SI and SII, it was observed that SI presented fewer
environmental impacts, which means that it is a good alternative to use raw turpentine
and orange oil to produce verbenone and carvone, respectively. Since orange oil has a
high concentration of d-limonene (up 96 wt.%), environmental impact results were quite
similar in both SI-raw-oils and SII-purified-oils scenarios, which did not happen in the
case of verbenone production from turpentine oil, which has a lower concentration of
α-pinene. TBHP was identified as a hotspot in the production of verbenone and carvone,
thus suggesting that a more environmentally friendly and energy-efficient oxidizing agent
method should be analyzed in the oxidation of turpentine and orange oils. The most
important activities affecting the production of verbenone were transportation and type of
electricity for TBHP production.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/molecules27175479/s1, Figure S1. Diagram for the production of orange essential oil; Figure S2.
Chemical routes considered for the implementation of the LCI for the batch production of verbenone
and carvone from turpentine and orange oils oxidation with TBHP and FePcCl16-NH2-SiO2; Figure S3.
Site location for the batch production of verbenone and carvone from turpentine and orange oils
oxidation with TBHP and FePcCl16-NH2-SiO2; Figure S4. Environmental impact assessment by
normalization indicators in the production of verbenone by SI-raw-oils. Assessment method: ReCiPe
2016 Midpoint (H) V1.06/World (2010) H/A; Figure S5. Environmental impact assessment by
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