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Abstract: Despite available treatments, breast cancer is the leading cause of cancer-related death.
Knowing that the tyrosine phosphatase SHP2 is a regulator in tumorigenesis, developing inhibitors of
SHP2 in breast cells is crucial. Our study investigated the effects of new compounds, purchased from
NSC, on the phosphatase activity of SHP2 and the modulation of breast cancer cell lines’ proliferation
and viability. A combined ligand-based and structure-based virtual screening protocol was validated,
then performed, against SHP2 active site. Top ranked compounds were tested via SHP2 enzymatic
assay, followed by measuring IC50 values. Subsequently, hits were tested for their anti-breast cancer
viability and proliferative activity. Our experiments identified three compounds 13030, 24198, and
57774 as SHP2 inhibitors, with IC50 values in micromolar levels and considerable selectivity over the
analogous enzyme SHP1. Long MD simulations of 500 ns showed a very promising binding mode in
the SHP2 catalytic pocket. Furthermore, these compounds significantly reduced MCF-7 breast cancer
cells’ proliferation and viability. Interestingly, two of our hits can have acridine or phenoxazine cyclic
system known to intercalate in ds DNA. Therefore, our novel approach led to the discovery of SHP2
inhibitors, which could act as a starting point in the future for clinically useful anticancer agents.

Keywords: breast cancer; protein tyrosine phosphatase SHP2; enzyme inhibitors

1. Introduction

Breast cancer is the leading cause of cancer-related death among women worldwide [1].
According to WHO, the number of cases will increase, and cases are expected to double by
2030 [2]. The suboptimal treatment outcomes despite chemotherapy and immunotherapy
show that enzymes’ targeted therapies are urgently needed to treat breast cancer cases.

The coordinated function of protein tyrosine kinases and protein tyrosine phosphatases
(PTPs) maintain the levels of tyrosine phosphorylation, which is known to be critical for a
wide range of cellular processes, such as growth, differentiation, metabolism, migration,
and survival [3,4]. The deregulation of tyrosine phosphorylation was linked to many types
of cancer, especially breast cancer [5].

Therefore, signaling pathways regulated by tyrosine phosphorylation may offer novel
molecular targets for therapeutic interventions [6–9].

Src homology region 2 protein tyrosine phosphatase 2 (SHP2), encoded by PTPN11,
is the first reported non-receptor protein oncogenic tyrosine phosphatase and is required
for the survival, proliferation, and differentiation of multiple cell types [10]. It plays a
regulatory role in signal transduction downstream of multiple receptor tyrosine kinases,
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such as PI3K/AKT, RAS/RAF/MEK/ERK, and RAS/MAPK signaling [11–13]. A mutation
of SHP2 leading to a gain in its function was correlated with breast tumorigenesis and
cancer progression [14,15]. Therefore, the development of small-molecule inhibitors of
SHP2 may provide the opportunity to inhibit oncogenic signaling in breast cells. Many
synthetic compounds have shown an inhibitory effect on SHP2 [16], by targeting the
catalytic site (e.g., thiazolidinone derivatives and NSC 87877) [17] or the allosteric site
(e.g., SHP099) [18]. Furthermore, SHP2 inhibition and the combination of SHP2 and MEK
or ERK inhibitors, were recently found to enhance antitumor efficacy in different types of
cancer [16].

In the present study, we investigated the effects of new compounds on the phosphatase
activity of SHP2 and the modulation of breast cancer cell lines’ proliferation and viability.
A structure-based virtual screening against the SHP2 active site was performed based on a
pre-validated computational approach. Top ranked compounds were biologically tested
via SHP2 enzyme assay to confirm their binding with the target protein. Then, the IC50
concentrations were calculated. Subsequently, these hits were tested for their anti-breast
cancer viability and proliferative activity.

2. Results and Discussion
2.1. Pharmacophore Model Generation and Validation

The goal of employing pharmacophoric-filters in virtual screening (VS) is to find
interesting ligands that could exert inhibitory activity against SHP2 while significantly
minimizing the VS time. This approach has been employed in many studies and has always
shown superior performance over the standard VS protocol [19,20]. Hence, in this study,
we validated the suitability of the pharmacophoric filter-based VS for the discovery of new
SHP2 inhibitors. Consequently, the said protocol was employed via screening the National
Cancer Institute (NCI) ligand library against the SHP2 active site, where top hits were
experimentally tested for their enzymatic inhibitory effect as well as for their anticancer
activity using several cancer cell-lines.

Pharmacophore queries were generated based on known SHP2 active site inhibitors.
A training set of five compounds (Supplementary Information Scheme S1) was prepared
for pharmacophore queries generation. These molecules have the fewest number of ro-
tatable bonds, a varied molecular size and IC50 values, and they belong to various types
of scaffolds.

Many pharmacophore queries were created from the training set compounds over-
laying. Table 1 shows pharmacophore queries with the best selectivity (Se) and specificity
(Sp) rates towards SHP2 active site inhibitors. Query no. 4 was the best pharmacophore
model in selecting active site inhibitors over decoys, with a selectivity rate of 100% along
with its distinguished ability to exclude most of the true negatives (Sp = 90%, Table 1).
Only query no. 7 performed better than query no. 4 in excluding decoys, with the highest
specificity rate of 93.3%; yet its selectivity rate was not the best (Se = 93.2%), as higher rates
were observed from other queries (i.e., query no. 4, 39 and 42). Taken all together, query
no. 4 seemed to have the edge over other queries and, hence, was selected to be used in the
validation process of our VS protocol.

Table 1. The selectivity and specificity of the best performing pharmacophore for active site SHP2 inhibitors.

PH4 No. Features Selectivity
Se (%)

Specificity
Sp (%)

4 Aro Acc2 Acc Acc 100 90
7 Aro Aro Acc2 Acc 93.2 93.3
22 Aro Hyd Acc2 Acc 93.18 66.67
30 Hyd Hyd Acc Acc 84.09 80
39 Hyd Acc2 Acc Acc 97.72 56.66
42 Aro Hyd Acc2 Acc 95.45 60

Aro: Aromatic center, Don: H-bond donor, Hyd: hydrophobic centroid, Acc: H-bond acceptor, Acc2: H-bond
acceptor projection, and Don2: H-bond donor projection.
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The four features of the pharmacophore query no. 4 are shown in Figure 1a. The
pharmacophore consists of one aromatic center, two hydrogen bond acceptors, and one
hydrogen bond acceptor projection. Distances and angles between those features were
also determined (Figure 1c). Two known inhibitors that successfully passed through the
pharmacophore were overlaid on the pharmacophoric query and shown in Figure 1b. It
is worth mentioning that a similar recent study has constructed a pharmacophore model
for the SHP2 inhibitors, using a different pharmacophore elucidation tool (i.e., Accelry
Discovery Studio 3.5 software [21]). The generated pharmacophore in that study had two
hydrogen bond acceptors, one aromatic center, and two hydrophobic centers. Additional
comparison to another PTP member can be found in a PTP1B study, where the resultant
pharmacophore model had two hydrogen bond acceptors, two hydrophobic centers, and a
negative ionic center feature. To sum up, the detected features in our pharmacophore corre-
late well with the PTP pharmacophores found in the literature, particularly the aromatic
center and hydrogen-bond acceptors features, which meets the important two features in
the natural substrate too (i.e., the phosphate group attached to an aromatic ring).

Figure 1. (a) The four features of the top pharmacophore query no. 4. (b) Two known inhibitors
overlaid on the said pharmacophore. (c) The measured distances and angles between the four
pharmacoohoric features (d) The effect of using pharmacophore query no. 4 as pre-docking filter
in a pilot showing the number of known SHP2 inhibitors retrieved (%Enrichment) at any given
percentage of the top-ranked ligand library.

The pharmacophore query no. 4 was then tested in a seeding experiment (i.e., a pilot
virtual screening experiment) in order to check if it can be used as prior docking in a
conventional VS approach. To do this, a 5000-ligand library consisting of decoys and SHP2
active site inhibitors was created. We employed two virtual screening protocols: standard
virtual screening (SVS) and filter-based virtual screening (FVS), where the latter protocol
applies a pharmacophoric filter before docking. The % EF was calculated to determine the
efficiency of each protocol in retrieving SHP2 inhibitors over decoys among the top-ranked
ligands derived from virtual screening.

Table 2 compares enrichment factor values for both protocols at different portions
of ranked docked ligands. Although both protocols have an equal %EF of 4.5 in the top
1% portion, FVS showed a superior performance in the rest of the screening portions,
remarkably scoring more than double enrichment in the top 3% (%EF = 13.6 vs. 6.8 in SVS,
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and %EF = 52.27 vs. 20.5 in SVS). Additionally, FVS was able to retrieve almost all inhibitors
in the top 20% portion of the VS, compared to only 40% that was scored by SVS. Overall,
the % EF over various portions of the screen indicated that the FVS approach outperformed
the standard protocol (Figure 1d).

Table 2. Shows %Enrichment at various portions of the top-ranked library that was docked into the
SHP2 active site using standard protocol (SVS) vs. filter-based protocol (FS).

Top Ranked Portions of the Docked Ligand Library
% Enrichment (% EF)

SVS FVS

1% 4.5 4.5
3% 6.8 13.6
5% 13.6 18.2
10% 20.5 52.3
20% 40.9 95.5

2.2. Virtual Screening and Compounds Selection

VS was conducted to screen the NCI ligand library against the SHP2 active site using
our validated FVS protocol. As shown in Figure 2, the whole screening started with filtering
the ligand dataset based on the druglike rules, then it was screened through the previously
prepared SHP2 inhibitor pharmacophore. The druglike filtering downsized the ligand
library from 273,885 ligands to 191,929 ligands, while the pharmacophore filtering had the
biggest effect on the size of the library, significantly reducing its size by more than 4-fold
(i.e., 41,117 ligands remained). Hence, the use of pharmacophore as pre-docking filter in VS
seems to have a very positive effect not only on the quality of the results (i.e., enrichment
factors), but also on saving our computational resources and speeding up the overall
process [19,22].

Figure 2. The workflow of the filter-based VS used against the SHP2 active site.

Consequently, the final ligand dataset was docked into the SHP2 active site in a three-
step process, where precision and docking accuracy increased with time. These three steps
were conducted via the HTVS, SP, and XP mode in the GLIDE docking software. The final
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listed was ranked based on the GLID-XP scoring function and then visually inspected for
their fitting and interaction with the SHP2 key residues.

2.3. Inhibition of SHP2 Enzyme Activity by the Compounds NSC 13030, 24198, 57774,
and 137420

The validation of the docking results was first performed by an enzymatic assay.
Based on the ligand-SHP2 interaction profiles and the fitting into the catalytic pocket of the
target enzyme, 35 compounds were selected from the NCI ligand library (National Cancer
Institute Repository, Bethesda, MD, USA) and purchased. These compounds were screened
initially against their inhibitory effect on SHP2 enzyme. The colorimetric enzymatic testing
was carried out through an in-house validated assay. Amongst the 35 tested compounds,
four hits (i.e., NSC 13030, 24198, 57774, and 137420) showed good inhibition for SHP2
enzyme at 100 µM (Figure 3). The results of inhibitory potentials of these four compounds
are shown in Figure 3. The addition of the four hits compounds significantly reduced SHP2
activity (p < 0.05) toward its substrate, showing that they might be masking SHP2′s active
site. Interestingly, 57774 showed complete inhibition, 13030, 24198, and 137420 exhibited
98%, 99%, and 71% inhibition, respectively. Suramin (a known competitive inhibitor of
PTPs) was used as a positive control, and it showed 79% inhibition at 100 µM.

Figure 3. Remaining activity (%) of the SHP2 enzyme after treatment with the 35 tested compounds
(at 100 µM) along with the control suramin. Data presented are the mean +/− SEM of three
independent experiments.

Further screening was performed on these four hits to determine their IC50. As shown
in Table 3, while 137420 exhibited an IC50 value of 33 µM, the other three compounds
showed low IC50 values (3.2 µM for 13030, 1.9 µM for 24198, and 0.8 µM for 57774).
Interestingly, these values were even lower than the IC50 of the positive control, suramin
(IC50 = 4.5 µM), showing that these compounds were more potent inhibitors than suramin.

SHP2 has an analogue protein: SHP1. Both proteins have similar structure, two
tandem Src homology 2 domains at the N terminus, a single central catalytic domain, and
a C-terminal domain [22]. Therefore, the selectivity of these compounds for SHP2 was
investigated. As shown in Table 3, three compounds, and especially 57774, are selective for
SHP2, since the obtained IC50 values with SHP1 were very high (85.4 µM for 13030, 14.3 µM
for 24198, and 164.4 µM for 57774) in comparison with the ones obtained with SHP2.

In conclusion, the three compounds, 13030, 24198, and 57774 showed good IC50 values
and selectivity for SHP2. In particular, 57774 showed the best potency, with an IC50 value in
the sub-micromolar level (0.8 µM) and the best selectivity with 200-fold inhibition activity
towards SHP2 over its analogous enzyme, SHP1 (IC50 = 164.4 µM).
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Table 3. IC50 values of compounds NSC 13030, 24198, 57774, 137420, and the control, suramin, on
the activity of SHP2 and SHP1. NT: Not tested.

Compound ID Chemical Structures
SHP2 SHP1

Obtained IC50 (µM)

Suramin 4.5 15.4

13030 3.2 85.4

24198 1.9 14.3

57774 0.8 164.4

137420 33 NT

2.4. Compounds Inhibit Breast Cancer Cells’ Proliferation and Viability

SHP2 has been previously proposed as an important regulator in breast tumor progres-
sion with therapeutic potential [16]. Inhibiting SHP2 in breast cancer was correlated with
extending the survival of tumor-bearing mice and suppressing cell proliferation [23]. There-
fore, the proliferation inhibitory effects of 13030, 24198, 57774, and 137420 compounds on
two breast cancer cell lines, MCF-7 and MDA-MB-231, were measured. Interestingly, all
compounds showed anticancer activity against at least one type of cell lines. While 13030,
24198, and 57774 significantly reduced MCF-7 proliferation in a dose dependent manner
(Figure 4a), only 57774 reduced MDA-MB-231 proliferation (Figure 4a). At 20 µM, in com-
parison with the vehicle, 57774 reduced MCF-7 proliferation by 74.5% and MDA-MB-231
by 64%, 13030 induced a 42.1% reduction of MCF-7 proliferation, and 24198 reduced it by
34.7%. These results were in concordance with cells’ viability. As shown in Figure 4b, while
at 20 µM, compounds 13030 and 24198 reduced the viability of MCF-7 by 64.4% and 65.2%,
respectively, 57774 had an effect on both MCF-7 and MDA-MB-231 cell lines. At 20 µM of
57774, MCF-7 viability was reduced by 65.8% and MDA-MB-231 by 36.2%. It is worth not-
ing that MDA-MB-231 is a triple-negative (TNBC), and MCF-7 is an estrogen (ER) positive
breast cancer cell line. While finding potential novel solutions to treat ER positive breast
cancer is easier and shows a favorable outcome, treating TNBC has limited therapeutic
approaches [24]. Interestingly, here, in addition to the compounds which reduced MCF-7
proliferation and viability, we found novel compound 57774 to be able to inhibit not only
MCF-7 but also MDA-MB-231 proliferation and viability.

2.5. Molecular Dynamic Studies for Compounds Stability and Fitting inside the SHP2 Active Site

For a comprehensive understanding of protein-ligand binding mode, a 500 ns molecu-
lar dynamic simulation was conducted for the three top ligands that showed a promising
inhibitory activity and selectivity. As shown in Figure 5a, the acridine-based compound,
13030, had its RMDS values converged just after the 200 ns point, oscillating around the
2 Å value. It seems that this compound had changed conformation by the 200-ns step as it
was searching for a better binding mode, which is evident by the increase of the number
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of hydrogen bonding which increased from the range of 2–4 (0 to 200 ns) to the range
of 4–6 hydrogen bonds (200 ns to the rest of the simulation) (Figure 5b). Furthermore,
13030 seems to have a good fitting in the SHP2 active site (Figure 5c) and appears to form
several ionic and hydrogen bonds with the surrounding residues, including the key residue,
Arg465 (Figure 5d).

Figure 4. The effect of the compounds NSC 13030, 24198, 57774, and 137420 on MCF-7 and MDA-
MB-231 proliferation (a) and viability (b). Cells were incubated with increasing concentrations of
compounds in culture medium for 48 h. The viability and the proliferative response were assessed.
Data presented are the mean ± SEM of three independent experiments. * p < 0.05. Continuous lines
are for compounds, and dashed lines are for the vehicle DMSO.

Figure 5. (a) The RMSD plot of the 500 ns MD simulations of compound 13030 along with (b) the
hydrogen bonding plot, (c) the top-cluster conformation filling (blue spheres) in the SHP2 active
site (gray surface), and (d) the ligand 3D binding mode showing the key interactions made with the
surrounding residues.
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Compared to the above hit, 24198 seems too to be stable in the SHP2 active site
(Figure 6a), with a similar ability of hydrogen bonding throughout the course of the
simulation (4–6 hydrogen bonds, Figure 6b). The ligands fill in the binding site nicely
(Figure 6c) and appear to form several hydrogen bonds by its first carboxylate, particularly
with the backbone amide of the P-loop, and to make an important ionic interaction with
the key residue Arg465 by its second carboxylate (Figure 6d).

Figure 6. (a) The RMSD plot of the 500 ns MD simulations of compound 24198 along with (b) the
hydrogen bonding plot, (c) the top-cluster conformation filling (blue spheres) in the SHP2 active
site (gray surface), and (d) the ligand 3D binding mode showing the key interactions made with the
surrounding residues.

Finally, the phenoxazine-based compound, 57774, was able to demonstrate a very
stable binding mode in the SHP2 pocket, being able to keep the RMSD values oscillating
around 1Å over the course of the MD simulation (Figure 7a). It was able to keep at least
four hydrogen bondings with the SHP2 residues, which correlates very well with the
low RMSD values observed for this ligand (Figure 7b). Furthermore, it exhibited a very
promising fitting and interaction profile, being able to have a very good filling to the active
site (Figure 7c) and to form several ionic and hydrogen bonds with the P-loop residues
Ser460, Ala461, and Arg465, along with the WPD loop residue His426 (Figure 7d). The
MD simulation data of the compound 57774 came in line with its very promising in-vitro
enzymatic inhibition and anti-proliferative data. Although this hit has two carboxylate
groups that could hinder its cell permeability and oral activity, 57774 can still be viewed as
an interesting starting point as it has a small size and lead-like characteristics, providing
big room for future development. For instance, these carboxylate groups can be replaced
with a more viable isostere, such as tetrazole, which has less acidic characteristics and,
hence, better pharmacokinetic profile A [25,26].

It is worth mentioning that compound 13030 belongs to the acridines family which
usually demonstrates antitumor activity, particularly as intercalating agents. Due to the
planarity present in their tricyclic system, acridines are able to slide in between the DNA ni-
trogen bases, and block the DNA replication and transcription processes [27–29]. Similarly,
compound 57774 has a phenoxazine ring system in its structure which was experimentally
proven to bind to DNA and exert anticancer effect [30,31]. It was suggested by docking that
such compounds are able to interfere with the DNA vital processes either by an intercalat-
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ing mechanism or through binding to the DNA minor groove [32]. Hence, our compounds
13030 and 57774 might possess dual anticancer effect, possibly through acting as SHP2
inhibitors synergized by their potential activity as intercalating agents and leading to their
remarkable antiproliferative activity, previously shown in our cell-based assays (Figure 4).

Figure 7. (a) The RMSD plot of the 500 ns MD simulations of compound 57774 along with (b) the
hydrogen bonding plot, (c) the top-cluster conformation filling (blue spheres) in the SHP2 active
site (gray surface), and (d) the ligand 3D binding mode showing the key interactions made with the
surrounding residues.

2.6. Assessment of Pharmacokinetic and Druglike Characteristics

Our four compounds were assessed via the SWISSADME [33] software for their
pharmacokinetic and druglike characteristics. As shown in Table 4, all of our compounds
were predicted to have high GI absorption, except 57774, whereas none of them was
predicted to have the ability to pass through the blood brain barrier (BBB). Speaking about
their metabolic profile, only compound 13030 was predicted to have potential interference
with the cytochrome P450 enzymes, which means that it has to be further investigated in
the future for any potential drug–drug interactions. On other hand, all four compounds
appeared to enjoy very satisfactory druglike properties based on many previously described
rules (i.e., Lipinski’s [34], Veber’s [35], Ghose’s [36], Egan’s [37], and Mugge’s [38] rules).
Moreover, none of our top hits were predicted as PAINS [39], which suggests their innocence
of having potential pan assay interferences, or being frequent hitters or promiscuous
compounds (aggregates are not the inhibitory species [40]). As per Brenk’s [41] guidelines
for leadlike compounds, three of our compounds (13030, 24198 and 57774) appeared to
bear unwanted groups in their structures, such as polycyclic aromatic hydrocarbon, and
aniline or hetero-carbon-hetero groups. Although these functional groups can be seen in
many true inhibitors and drugs (such as the anticancer agent camptothecine and many
other intercalating agents), future development and optimization of these compounds
should consider replacing these potentially toxic or reactive groups with safer substitutions.
All in all, our top hits seem to have satisfactory pharmacokinetic properties and druglike
characteristics, which can introduce them as good candidates for future development of
SHP2 inhibitor and anticancer agents.
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Table 4. Shows the various pharmacokinetic, druglike, and leadlike properties of our best compounds,
as predicted by SWISSADME [33].

Compound ID

13030 24198 57774 137420

Pharmacokinetics

GI absorption High High Low High
BBB permeant No No No No

CYP1A2 inhibitor Yes No No No
CYP2C19 inhibitor Yes No No No
CYP2C9 inhibitor Yes Yes No No
CYP2D6 inhibitor No No No No
CYP3A4 inhibitor No No No No

Bioavailability score 0.56 0.56 0.56 0.56

Druglikeness

Lipinski’s rules Yes Yes Yes Yes
Veber’s rules Yes Yes No; TPSA >140 Yes
Ghose’s rules Yes Yes Yes Yes
Egan’s rules Yes Yes No; TPSA > 131.6 Yes

Muegge’s rules Yes Yes Yes Yes

Leadlikeness

PAINS No alert No alert No alert No alert

Brenk’s rules
1 alert;

(polycyclic_ aro-
matichydrocarbon_2

1 alert; (het_C_het_
not_in_ring)

2 alerts;
(aniline, poly-

cyclic_aromatic_
hydrocarbon_2)

No alert

3. Materials and Methods
3.1. Literature Review

Upon extensive literature review for SHP2 inhibitors, two set of libraries were iden-
tified and prepared; one consists of 49 active site inhibitors, and the other consists of
30 allosteric site inhibitors (to be used as true negatives). A 3D structure for all ligands in
both libraries were constructed using MOE software [42]. Both databases were subjected
for wash function by MOE, where all possible protonation states were generated [43].

3.2. Pharmacophore Generation and Validation

As a starting point, five compounds of active site inhibitors of various scaffolds, molec-
ular weights, IC50 values, and with the least number of rotatable bonds were picked as a
training set for pharmacophore generation. Pharmacophore elucidator of MOE software
was used for pharmacophore generation by bringing out different overlaying sets of the
superimposed conformations of the training set that sorted based on overlaying score. A
set of pharmacophore features were chosen for queries generation, represented by aromatic
center (Aro), H-bond donor (Don), hydrophobic centroid (Hyd), H-bond acceptor (Acc),
H-bond acceptor projection (Acc2), and H-bond donor projection (Don2). Pharmacophore
elucidator created a large number of queries, where the highest 50 scored queries were se-
lected for selectivity (Se) and specificity (Sp) assessment. Selectivity evaluates the efficiency
of the suggested pharmacophores in picking ligands of interest in the presence of other
undesired ligands, while specificity measures pharmacophore efficiency in excluding those
ligands that bind to the allosteric site [44]. The testing sets used in the pharmacophore
assessment comprises 44 known SHP2 active site inhibitors and 30 allosteric site inhibitors,
where the former set was considered as true positives and the latter set was employed as
true negative.

3.3. Validation of the Virtual Screening Protocol

A library consisting of 5000 compounds was created, 44 of which were known SHP2
inhibitors, and the remaining compounds were decoys obtained from a commercial ligand
library. To appraise the effectiveness of the proposed pharmacophore, the created library
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was used to test pharmacophore’s capability to choose inhibitors over decoys during
virtual screening.

A co-crystallized structure of SHP2 with an inhibitor was downloaded from protein
data bank RCSB (PDB ID: 4RDD) [45]. The protein was stripped of all water molecules
and then subjected to the protein preparation wizard in the MOE software, in order to
correct the protein structure for any missing atoms, residues, and loops. The structure was
then processed by the Maestro software [46] for further protein adjustments, by setting up
partial charges for atoms and protonation states for ionizable groups. The docking site was
defined as a grid box via the GRIDE module in Maestro, considering the bounded inhibitor
as a centroid of the box [47].

Energy minimized 3D structures of all possible conformations and tautomeric forms of
library’s compounds were generated by LigPrep module of Maestro [48]. For the purpose
of protocol validation, two virtual screening protocols were applied for the prepared
ligands: a filter-based virtual screening (FVS) and a standard virtual screening (SVS). In
both protocols, the previously prepared library was docked into the SHP2 active site using
the standard precision mode GLIDE-SP [49], which was also used to score and rank the top
ligands. However, in the FVS protocol, the generated pharmacophore was used as filter
before the docking step while, in the standard protocol, docking was carried out directly
with no pre-filter step. Subsequently, the enrichment factors were calculated for the two
protocols to evaluate their efficiency in picking the correct active ligands. EF for the top n%
was calculated using the following equation:

EFtop n% =
number o f inhibitors ranked in the top n% o f screened library

total number o f known inhibitors
× 100% (1)

3.4. Virtual Screening

The ligand database of National Cancer Institute/USA NCI was employed in the
validated filter-based virtual screening protocol. Thereafter, the ligand library was filtered
for their drug-like characteristics based on Veber’s rules [35] and Lipinski’s rules of five [34].
Utilizing LigPrep module in Maestro, protonation states and tautomer forms of ligands
were generated. In line with our approach, the prepared database was proceeded for one
more filtration step where the created pharmacophore was used to eliminate any ligand
that is less likely to act as a SHP2 inhibitor.

A three-steps screening protocol was utilized to select potential lead compounds [49].
To begin with, all ligands in the filtered database was docked into the previously prepared
SHP2 active site via the high HTVS mode in GLIDE. For more accurate and precise docking
results, the highest 20% scored ligands (8221) were re-docked using GLIDE-standard
precision (SP). Lastly, a third docking step was applied for the top 20% SP docked ligands
using the extra-precision algorithm (GLIDE-XP) [50]. As a result, the database was reduced
to 1645 ligands, where a total of 35 compounds were visually inspected and selected by for
enzymatic assay.

3.5. Molecular Dynamic (MD) Simulations

The crystal structure of SHP2 (PDB ID: 4RDD) was prepared using pdb4amber, where
all water molecules and bounded ligands were taken off using the ff19SB force field. The
best-docked conformation of the selected compounds was picked and proceeded for MD
simulations. Ligands were prepared through the Antechamber program [51], applying the
Generalized Amber Force Field (GAFF) and AM1-BCC [52]. Protein-ligand system was
constructed using Xleap program of Amber tool. System’s charge was neutralized by Na+
counter ions and then soaked in a truncated octahedral box of TIP3P water that was 14 Å
from the border.

Utilizing the pmemd program from the AMBER 18 [53], starting with a restrained
complex, the system was energy minimized with a force constant of 500 kcal mol−1 Å−2,
followed by minimizing the whole system without restrains. Applying molecular dynamics
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simulation, the energy-minimized system was then heated under NVT condition to the
desired temperature of 300 K with a 10 kcal mol−1 Å−2 restraint on ligand atoms over
20 ps. The SHAKE algorithm was applied to all bonds, including hydrogen atoms, using
the Langevin thermostat with a collision frequency of 1.0 ps-1. Finally, a production MD
run of 500 ns for all selected compounds was carried out under NPT conditions with a
target temperature of 300 K and pressure of 1 atm. Coordinates were recorded every 2 ps
throughout the trajectory. We calculated binding energy using MM-GBPSA scoring [54].

3.6. Clustering Analysis

To find out which residues predominantly interact with ligands over the 500 ns
simulation, a clustering job was run using DBSCAN by Amber’s cpptraj module for each
complex [55]. Through the clustering process of the resultant MD simulation frames, ions
and solvents molecules were removed for each protein-ligand system, and a distance cutoff
of 3.0 was set between points to construct a cluster while leaping every 10th frame.

3.7. Cell Proliferative Assay

The 5 × 103 cells/well of MCF-7 or MDA-MB-231cell-lines were seeded in 96 well
plates. The next day, cells were treated with 0.16, 0.8, 4, and 20 µM of NSC 13030, 24198,
57774, 137420, or DMSO (Sigma-Aldrich–Cat D9170, St. Louis, MO, USA) as control. After
48 h of incubation, cells were stained with DAPI (Thermo Fischer–Cat R37606, Waltham,
MA, USA) and images of the entire wells were taken with a 20× objective and a DAPI filter
cube using Lionheart FX automated microscope. The image analysis and cell counts were
done using Gen5 software. All conditions were done in triplicates.

3.8. Cell Viability Assay

The percentage of viable cells was determined using The CellTiter 96® AQueous
One Solution Cell Proliferation Assay (Promega–Cat G3580, Madison, WI, USA). Briefly,
5 × 103 cells/well of MCF-7 or MDA-MB-231 were plated in a 96 well culture plate in a
total volume of 100 µL/well. The next day, cells were treated with 0.16, 0.8, 4, and 20 µM
of NSC 13030, 24198, 57774, 137420, or DMSO as control. After 48 h, 20 µL of CellTiter
96 AQuoeus one solution reagent was added in each well, and incubated for 4 h in a
CO2 incubator at 37 ◦C. The percentage of living cells was calculated by dividing the OD
(490 nm) of treated cells by the same concentration of DMSO controls. All conditions were
done in triplicates.

3.9. Enzymatic SHP2 Inhibition Assay

Phosphatase Activity Assay (PTP) using p-nitrophenyl phosphate (pNPP) as a sub-
strate was carried out in a total volume of 100 µL. This was done by monitoring the
increase in phosphatase absorbance at 405 nM in the presence of the substrate using 96-well
microplate reader (Thermo Scientific Multiskan GO, Waltham, MA, USA). The standard
reaction mixture consisted of PTP buffer (100 mM NaCl, 2 mM EDTA, 50 mM HEPES, 3 mM
DTT, pH 7.4), 100 nM of Shp2 (BPS Bioscience, Inc., San Diego, CA, USA), and 1 mM of
pNPP incubated for 90 min at 30 ◦C. The enzymatic reaction was stopped by the addition
of 50 µL of 5 M NaOH. For inhibition reaction, SHP2 enzyme was preincubated with
100 µM compound or their vehicle (DMSO) for 5 min at 37 ◦C, prior to the incubation with
pNPP substrate for 90 min at 30 ◦C. The same method was used to calculate IC50 values
using GraphPad Prism software 8.0 (San Diego, CA, USA). Wells with SHP2 substrate and
without compounds were considered controls (enzyme activity is 100%).

3.10. Statistical Analysis

Experiments were carried out in triplicates, three independent times, and were an-
alyzed by two-tailed Student’s t-test using Statistical Package for Social Science (SPSS)
version 26 (IBM 165 Corporation, Armonk, NY, USA). A p value of < 0.05 was considered
to be statistically significant.
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4. Conclusions

The search for novel therapeutic approaches for aggressive tumors is an actual chal-
lenge and the identification of new molecular targets is an urgent priority. In this study, we
discovered novel SHP2 inhibitors for breast cancer development and progression.

A validated structure-based virtual screening was carried out against the SHP2 cat-
alytic pocket. Consequently, a total number of 35 hits were selected for experimental testing,
three compounds, NSC 13030, 24198, and 57774, were found to fit nicely in the SHP2 active
site, with a very stable binding mode and to inhibit SHP2 in a selective manner. These three
hits significantly decreased the viability and proliferation of the estrogen positive breast
cancer, MCF-7. Furthermore, the compound 57774 was found to dramatically decrease
the proliferation and viability of the highly aggressive triple-negative breast cancer. MDA-
MB-231. The latter compound was found to have a very stable binding mode in SHP2,
with a very promising fitting and interaction profile with the active site. This was in line
with its in-vitro enzymatic inhibition showing complete SHP2 inhibition at 100 µM, and
its IC50 value in the sub-micromolar level (0.8 µM). To our knowledge, these acridine and
phenoxazine-based compounds have been tipped for the first time to have anticancer activ-
ity through a dual effect, acting as SHP2 inhibitors and potentially as intercalating agents.
Therefore, a lead optimization for this compound should assist us and other researchers in
the future in converting them into clinically useful anticancer agent.
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