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Abstract

Background: The artificial neural network (ANN) emerged recently as a potent diagnostic tool, especially for complicated sys-
temic diseases. This study aimed to establish a diagnostic model for the recognition of fatty liver disease (FLD) by virtue of
the ANN.
Methods: A total of 7,396 pairs of gender- and age-matched subjects who underwent health check-ups at the First Affiliated
Hospital, College of Medicine, Zhejiang University (Hangzhou, China) were enrolled to establish the ANN model. Indices
available in health check-up reports were utilized as potential input variables. The performance of our model was evaluated
through a receiver-operating characteristic (ROC) curve analysis. Other outcome measures included diagnostic accuracy,
sensitivity, specificity, Cohen’s k coefficient, Brier score, and Hosmer-Lemeshow test. The Fatty Liver Index (FLI) and the
Hepatic Steatosis Index (HSI), retrained using our training-group data with its original designated input variables, were used
as comparisons in the capability of FLD diagnosis.
Results: Eight variables (age, gender, body mass index, alanine aminotransferase, aspartate aminotransferase, uric acid, total
triglyceride, and fasting plasma glucose) were eventually adopted as input nodes of the ANN model. By applying a cut-off
point of 0.51, the area under ROC curves of our ANN model in predicting FLD in the testing group was 0.908 [95% confidence
interval (CI), 0.901–0.915]—significantly higher (P<0.05) than that of the FLI model (0.881, 95% CI, 0.872–0.891) and that of
the HSI model (0.885; 95% CI, 0.877–0.893). Our ANN model exhibited higher diagnostic accuracy, better concordance with ul-
trasonography results, and superior capability of calibration than the FLI model and the HSI model.
Conclusions: Our ANN system showed good capability in the diagnosis of FLD. It is anticipated that our ANN model will be of
both clinical and epidemiological use in the future.
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Introduction

Fatty liver disease (FLD), a leading cause of end-stage liver dis-
ease, hepatocellular carcinoma, and liver transplantation
worldwide [1–3], is characterized by the accumulation of fat
droplets in hepatocytes [4]. The disease encompasses a spec-
trum of liver pathology with different clinical prognoses, rang-
ing from simple steatosis to steatohepatitis, fibrosis, and
cirrhosis. Despite a lack of long-term prospective evidence, we
do have some insights into the natural history of this disease
[5]. Simple steatosis is at the most clinically benign extreme,
with a low risk of developing cirrhosis. However, the risk
increases as steatosis becomes complicated by histologically
conspicuous hepatocyte death and inflammation, known as
steatohepatitis. Such facts, along with the healthcare costs and
declining health-related quality of life associated with FLD,
make it a disease worth extensive attention by the common
people [6] and one that welcomes lifestyle modification and
medical intervention from the early stage [7].

However, how to recognize the ‘early stage’ remains a prob-
lem. Scarcely can suspicion be raised by clinical manifestations,
since most patients are asymptomatic. Even symptomatic
patients present unspecific complaints such as fatigue, abdomi-
nal discomfort, and, only seldomly, manifestations of advanced
liver disease [8]. Patients can rarely know whether they have
FLD or not except on occasions of routine health check-ups.
Considering the fact that a blood test is barely absent in health
check-ups in China and its pervasive, convenient nature com-
pared with radiographic or invasive examinations, this study
aimed to establish a model for the recognition of FLD using
solely blood tests.

To begin with, as there is as yet no one widely accepted
specific blood test for FLD, variables that have been proved or
suspected to be associated with FLD were taken into consider-
ation. Possible risk factors include increased body mass index
(BMI), insulin resistance/type 2 diabetes mellitus (T2DM), and
other parameters indicative of the metabolic syndrome (e.g.
systemic hypertension, dyslipidemia, hyperuricemia/gout, car-
diovascular disease) [2, 3]. On the other hand, a rapidly
expanding body of clinical evidence supports the concept of
FLD as a multisystem disease that affects extra-hepatic organs
and regulatory pathways, increasing the risks of T2DM, cardio-
vascular and cardiac diseases, and chronic kidney disease [9].
The complex bidirectional relationship between FLD and the
whole human-body system [10, 11] gives us the inspiration of
seeking help from artificial intelligence, which may help us to
make a good selection from candidate variables in an efficient
and effective manner.

The artificial neural network (ANN) emerged in recent years
as a potent diagnostic tool by virtue of its adaptability and
excellent problem-solving-oriented architecture [12]. Like its
biological counterpart, an ANN consists of a set of highly
interconnected processing units (neurons) tied together with
‘weights (synapses),’ which indicate the strength of the connec-
tion [13]. The network usually consists of an input layer, an
output layer, and one or more hidden layers [14]. During
the training process, the association between the input and its
corresponding output is explored by computer through the
network, where the connection weights between the units are
modified. As has been described by several studies [13, 15–18],
the ANN is highly admired for its ability to learn through exam-
ples. The workhorse of learning in a neural network, the back-
propagation algorithm [13, 19], helps to determine the weight
between units. Initially, the weights are set randomly, under

which circumstance the output is far from ideal. The algorithm
will make a comparison between the acquired output and the de-
sired one, and generate an error value. The error value is then
propagated backwards through the network, according to which
the connection weights will be updated to make the model better
agree with the ideal outcome. As learning proceeds, the overall
error of the network decreases until a minimum is reached.
In this way, the optimal network structure is established.

In this case, variables obtained from blood tests consti-
tuted the input layer and the output layer gave the diagnosis.
The study aimed to assess the capability of our ANN model
for the recognition of FLD on the strength of the blood-test
variables. We also compared its performance with that of
two other models: the Fatty Liver Index (FLI) and the Hepatic
Steatosis Index (HSI), proposed by other researchers before.

Patients and methods
Subject inclusion

Participants aged between 18 and 70 years who underwent
routine health check-ups at the First Affiliated Hospital,
College of Medicine, Zhejiang University (Hangzhou, China)
between January 2015 and February 2018 were retrospectively
included in this study. A complete health check-up report re-
quired by our study, which included anthropometric assess-
ment (height and body weight), laboratory results from blood
samples, abdominal ultrasonography, and a summary of his-
tory taken by qualified doctors about personal information
(age, gender, etc.). Participants with incomplete health check-
up information were excluded.

According to the criteria proposed by the Chinese Liver
Disease Association [20], the FLD diagnosis was made by the
presence of at least two of the following three abnormal find-
ings on abdominal ultrasonography: (i) diffusely increased liver
near-field ultrasound echo (“bright liver”), liver echo greater
than the kidney echo; (ii) vascular blurring; and (iii) gradual
attenuation of far-field ultrasound echo. Participants whose
ultrasonography results showed “mild fatty liver,” “hetero-
geneous fatty liver,” or “fatty liver tendency” were excluded.

Each subject diagnosed with FLD was randomly matched to
a subject without FLD, who was of the same gender and the
same age. A 1-year difference in age was acceptable. A total of
7,396 pairs of subjects with a mean age (standard deviation) of
49.35 (11.47) were then acquired (Supplementary Table 1). Those
who failed to get into matches were excluded.

Data collection

Height and body weight were measured with regularly
standardized digital scales. BMI was calculated using the
formula: BMI¼body weight (kg)/height squared (m2). Heart
rate was measured at a resting state (staying still for at least
10 min).

Indices measured from blood samples are listed as the
following: red blood cell (RBC), white blood cell (WBC), platelet
(PLT), neutrophil (NEUT), eosinophil (EOS), monocyte (MO), lym-
phocyte (LY), hemoglobin (HGB), hematocrit (HCT), plateletcrit
(PCT), fasting plasma glucose (FPG), total cholesterol (TC), total
triglyceride (TG), high-density lipoprotein cholesterol (HDL-C),
low-density lipoprotein cholesterol (LDL-C), very-low-density li-
poprotein cholesterol (VLDL-C), total protein (TP), albumin
(ALB), globulin, aspartate aminotransferase (AST), alanine
aminotransferase (ALT), gamma-glutamyl transpeptidase
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(GGT), glycylproline dipeptidyl aminopeptidase (GPDA), alpha-
L-fucosidase (AFU), creatinine (Cr), uric acid, and urea. All the
biochemical examinations above were performed in the same
laboratory using standard methods.

Abdominal ultrasound examination was conducted by well-
trained, experienced doctors specializing in ultrasonography
(with work experience of >5 years) who were blinded to clinical
assessments and laboratory results.

All procedures performed in the study involving human par-
ticipants were in accordance with the ethical standards of the
Ethics Committee of the First Affiliated Hospital, College of
Medicine, Zhejiang University and according to the 1964
Helsinki Declaration and its later amendments. All participants
were informed of the possible research purpose of their health
check-up reports and gave verbal consent to their anonymized
health data being used in our ANN model.

ANN design and assessment

The 14,792 subjects enrolled in our study were randomly
assigned to a training group (n¼ 10,354; 70%) or a testing group
(n¼ 4,438; 30%). Baseline characteristics of the two groups were
compared by Student’s t-test. Within the training group, 7,396
subjects (50% of the entire study group) were randomly se-
lected to train the network and the remaining 2,958 (20%) was
used for cross validation. The training group was used to build
our ANN model while the testing group was used to evaluate
its diagnostic capability. The validation group was designed
to prevent the network from being overtrained, which means
deviation from the general predictive characteristics due
to specific cases.

The performance of our network was evaluated through a
receiver-operating characteristic (ROC) curve analysis. The area
under the ROC curve (AUROC) with 95% confidence interval (CI)
was calculated as a major indicator of the model’s diagnostic
performance in this binary classifier system.

Indices available in the health check-up reports were sorted
out as potential input variables for our ANN model. Our selection
of variables worked in a stepwise way. Assume that we have a
model with N input variables (for short, we name it “Nmodel”).
Then we randomly took away one input variable from it, produc-
ing N possibilities. In each case of possibility, the remaining
(N� 1) input variables will be trained to create a new network
model with its corresponding AUROC calculated. For the number
N, we obtain N new network models with N values of AUROC.
The model with the AUROC value most approximate to that of
the Nmodel will be reserved; in other words, the corresponding
input variable is then eliminated. The procedure will be repeated
until we find a statistically significant difference between the
newest Nmodel and the last one, which is the model we actually
need. In this way, our ANN model was eventually established.

The FLI and the HSI were used as comparisons with our ANN
model in capability of FLD diagnosis. Considering that the two
models were derived from foreign populations, we retrained
them using our training-group data with its original designated
input variables before comparison.

Statistical analysis

Categorical variables are presented as numbers of subjects and
percentages; continuous variables are presented as mean val-
ues and standard deviations. In particular, ALT, AST, GGT, TBA,
TG, FPG, VLDL, and EOS showed a highly skewed distribution
and were Log transformed (Log e) after which normal

distribution was achieved. All the variables were then normal-
ized. Output values would range from 0 (FLD absent) to 1 (FLD
present).

The relationship between variables and FLD diagnosis was
explored through univariate analysis by the Wald test and con-
firmed by multivariate analysis through principal-component
analysis. Variables that showed no statistically significant rela-
tionship were excluded, whereas the remaining ones were used
as potential input nodes to build the ANN.

Comparison of the three ROC curves was conducted using
the Hanley–McNeil method. Apart from AUROC, other evalua-
tion indicators, including overall accuracy (correct predictions
divided by total predictions), sensitivity, specificity, positive
predictive value, and negative predictive value, were calculated
for different cut-off points of outputs. The best cut-off point, de-
termined by Youden’s Index (sensitivityþ specificity – 1), was
used for classification in the testing group.

The Brier score—a function that measures the average
squared deviation between predicted probabilities for events
and their actual outcomes—was calculated in the testing group;
a lower Brier score represents a higher accuracy.

Agreement between the predictions of the three models and
ultrasonography results in the testing group was reported as
Cohen’s k coefficient using the formula: [Pr(a) – Pr(e)]/[1 – Pr(e)],
where Pr(a) is the relative observed agreement and Pr(e) is the
proportion of agreement expected to occur by chance alone.
Agreement is considered excellent if k is >0.80, good if k ranges
from 0.60 to 0.80, fair if k ranges from 0.40 to 0.60, and poor if k
is <0.40.

The degree of calibration was evaluated by the Hosmer-
Lemeshow test; a lower Hosmer-Lemeshow statistic indicates a
better calibration capability of the model.

All analyses were conducted through programs compiled on
Python with its scipy, sklearn libraries by qualified technicians.
A P-value of <0.05 was considered significant.

Results
Development of the ANN diagnostic model by the
training group

Subjects who met the enrollment criteria stated above were
randomly assigned to the training group (10,354 subjects) and
the testing group (4,438 subjects). No significant difference was
found between these two groups in terms of baseline character-
istics (Table 1).

In the training group of 10,354 subjects, univariate analysis
showed that 27 of our original 29 variables were significantly as-
sociated with FLD (Table 2), which was also confirmed by multi-
variate analysis. Though serum TG showed a P-value of 0.076 in
multivariate analysis, given the commonly accepted impor-
tance of serum TG in FLD diagnosis, we did not exclude it. The
27 variables as well as age and gender were deemed as candi-
dates for stepwise elimination as described above, after which 8
variables (age, gender, BMI, ALT, AST, uric acid, TG, and FPG)
were eventually reserved to be nodes that constituted the ANN
input layer.

The performance of our ANN model in predicting FLD in the
training group was excellent, with an AUROC of 0.906 (95% CI,
0.902–0.911)—significantly higher (P< 0.05) than that of the FLI
model (0.871; 95% CI, 0.864–0.878) and that of the HSI model
(0.876; 95% CI, 0.871–0.881).

Diagnostic-accuracy details of the ANN model for different
cut-off points in the training group are outlined in Table 3. The
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best cut-off point turned out to be 0.51 according to Youden’s
Index. Applying a cut-off point of 0.51, the ANN prediction of
FLD showed a sensitivity of 83.3% and a specificity of 81.4%.
Likewise, the cut-off points for FLI and HSI were also deter-
mined, as 45 and 30, respectively.

Performance of the ANN model in FLD diagnosis in
the testing group

The ANN model, as well as the other two retrained linear mod-
els, was finally evaluated on the testing group of 4,438 patients
for the diagnosis of FLD. AUROC with 95% CI and other outcome
measures were calculated (Table 4). The AUROC of our ANN
model in predicting FLD in the testing group was 0.908 (95% CI,
0.901–0.915)—significantly higher (P< 0.05) than that of the FLI
model (0.881; 95% CI, 0.872–0.891) and that of the HSI model

(0.885; 95% CI, 0.877–0.893). The sensitivity and specificity of
ANN prediction in the testing group were 83.7% and 80.4%, re-
spectively—both higher than those of the FLI model (81.2% and
78.2%, respectively) and the HSI model (81.7% and 78.6%, respec-
tively). Particularly, when we tried to eliminate uric acid from
our eight-variable model, the AUROC dropped to 0.901 (95% CI,
0.897–0.906)—significantly lower (P< 0.05) than that of the
eight-variable one, which might illustrate the importance of
uric acid in predicting FLD.

The degree of concordance between ANN, FLI, HSI predic-
tions, and the ultrasonography results are shown in Table 5.
The ANN model correctly identified 82.1% of the subjects; the k-
statistic was 0.642, reflecting good agreement. The FLI model
showed a lower accuracy (79.6%); the k-statistic was 0.592, indi-
cating fair agreement. The HSI model showed a relatively higher
accuracy of 80.2%; the k-statistic was 0.604. Additionally, the
Brier score of the ANN model was 0.107—lower than that of the
FLI model (0.118) and the HSI model (0.114), suggesting a higher
diagnostic accuracy of the ANN in predicting FLD.

The Hosmer-Lemeshow test was performed to analyse the
degree of calibration. The ANN model showed a relatively lower
value of 4.85, whereas the values of the FLI model and the HSI
model were 5.07 and 5.01, respectively, indicating a better cali-
bration capability of the ANN model.

Discussion

Recent studies have demonstrated that ANN analysis is poten-
tially superior to traditional statistical approaches, especially
when the function of given variables remains unknown or
when the impact of a variable is influenced by other variables in
a complex multidimensional system [17, 19, 21]. Given FLD is a
complex systemic disease, where the ANN could give full play
to its unique strengths, we established a diagnostic model
based on the risk factors of FLD with the aid of the ANN.

After a deliberate training process, eight variables (age, gen-
der, BMI, ALT, AST, uric acid, TG, and FPG) were eventually
adopted as the input nodes of our ANN diagnostic model. Our
ANN model exhibited a good performance in predicting FLD in
the testing group, as illustrated by high AUROC (0.908; 95% CI,
0.901–0.915), high accuracy (82.1%; Brier score 0.1073), good con-
cordance (k-statistic 0.642), and good calibration (Hosmer-
Lemesho statistic 4.85).

The utilization of FLD risk factors has been pursued by clini-
cians and various statistical models have been established to
predict FLD following this line of reasoning. The FLI model and
the HSI model, two among the well-known FLD models, were
retrained using our data for comparison with the ANN model.

Bedogni et al. [22] first proposed FLI in 2006. Derived from an
Italian population, the index, ranging from 0 to 100, is calculated
through an algorithm incorporating BMI, waist circumference,
TG, and GGT. The model showed an AUROC of 0.84 (95% CI,
0.81–0.87) in detecting FLD in its original study and 0.881 (95%
CI, 0.872–0.891) in our study; it has been validated in several
other populations [23–26]. Lee et al. [27] proposed HSI in 2010
from a Korean population. The index is calculated through an
algorithm taking in BMI, ALT/AST ratio, and the presence/ab-
sence of diabetes mellitus. When being tested in the original
study, HSI had an AUROC of 0.812 (95% CI, 0.801–0.824), while, in
our study, the AUROC was 0.885 (95% CI, 0.877–0.893). Compared
with the two previous FLD models based on linear statistical
analysis, our ANN model showed higher AUROC, better diagnos-
tic accuracy, greater concordance, and superior capacity of cali-
bration in the testing group.

Table 1. Baseline characteristics of the study population stratified by
ANN groups

Variable Training group Testing group P-value
(n¼ 10,354) (n¼ 4,438)

Heart rate (/min) 76.32 6 11.09 76.49 6 11.05 0.4
BMI (kg/m2) 24.83 6 3.33 24.77 6 3.32 0.293
TP (g/L) 73.53 6 3.90 73.60 6 3.80 0.644
ALB (g/L) 47.56 6 2.69 47.58 6 2.65 0.524
Globulin (g/L) 25.97 6 3.23 25.98 6 3.24 0.987
ALT (IU/L) 27.81 6 22.98 27.49 6 21.82 0.43
AST (IU/L) 23.88 6 12.41 23.74 6 11.38 0.506
GGT (IU/L) 42.42 6 55.34 42.07 6 49.71 0.72
Cr (lmol/L) 75.41 6 14.92 75.10 6 14.52 0.24
Urea (mmol/L) 5.45 6 1.24 5.43 6 1.22 0.229
Uric acid (lmol/L) 356.84 6 87.56 357.29 6 86.99 0.778
TG (mmol/L) 1.84 6 1.50 1.84 6 1.48 0.783
TC (mmol/L) 4.84 6 0.91 4.83 6 0.92 0.444
HDL-C (mmol/L) 1.24 6 0.34 1.23 6 0.34 0.672
LDL-C (mmol/L) 2.81 6 0.76 2.81 6 0.78 0.856
VLDL-C (mmol/L) 0.80 6 0.56 0.79 6 0.54 0.441
FPG (mmol/L) 5.25 6 1.33 5.23 6 1.27 0.495
AFU (IU/L) 28.65 6 7.64 28.59 6 7.58 0.691
GPDA (IU/L) 77.00 6 17.56 76.38 6 17.58 0.051
WBC (�109/L) 6.25 6 1.56 6.25 6 1.65 0.944
NEUT (�108/L) 56.54 6 8.13 56.43 6 8.04 0.469
LY (�108/L) 34.18 6 7.56 34.27 6 7.49 0.469
MO (�108/L) 6.45 6 1.76 6.45 6 1.78 0.813
EOS (�108/L) 2.40 6 1.88 2.41 6 1.92 0.848
HGB (g/L) 150.23 6 14.60 150.34 6 14.65 0.676
PLT (�109/L) 221.10 6 53.07 221.19 6 54.59 0.93
RBC (�1012/L) 4.95 6 0.46 4.96 6 0.46 0.601
HCT (%) 44.74 6 3.86 44.77 6 3.88 0.669
PCT (%) 0.24 6 0.05 0.24 6 0.05 0.825
Age (years) 49.40 6 11.47 49.22 6 11.23 0.357
Male gender 7,403 (71.50%) 3,178 (71.6%) 0.923

Continuous variables are presented as mean values and standard deviations.

Categorical variables are presented as numbers of subjects and percentages.

ANN, Artificial Neural Network; BMI, body mass index; TP, total protein; ALB, al-

bumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT,

gamma-glutamyl transpeptidase; Cr, creatinine; TG, total triglyceride; TC, total

cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density li-

poprotein cholesterol; VLDL-C, very-low-density lipoprotein cholesterol; FPG,

fasting plasma glucose; AFU, alpha-L-fucosidase; GPDA, glycylproline dipeptidyl

aminopeptidase; WBC, white blood cell; NEUT, neutrophil; LY, lymphocyte; MO,

monocyte; EOS, eosinophil; HGB, hemoglobin; PLT, platelet; RBC, red blood cell;

HCT, hematocrit; PCT, plateletcrit.
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The HSI study recruited a total number of 10,724 indi-
viduals—more than 20 times that of the FLI study. In gen-
eral, a larger cohort study tends to formulate a more
convincing model. In our study, we recruited even more
participants, which helped us to obtain a model with better
performance. Of note, in our model, a relatively new vari-
able, namely serum uric acid, was included as one of the
input nodes in an attempt to improve the diagnostic effi-
cacy. As researchers probe further into the relationship be-
tween FLD and metabolic disorders, the value of uric acid

as a predictor of FLD has come into the spotlight. A large
cohort study of 8,925 participants previously conducted by
our research group clarified that an elevated serum uric
acid level could be an independent risk factor for FLD [28].
The association has also been observed by large
population-based cross-sectional studies conducted in
Western populations [29, 30]. Though the underlying
mechanisms stay unclear and await further research [31,
32], the variable is anticipated to be of potential diagnostic
and therapeutic value in the future [33, 34].

Table 2. Relationship between variables and FLD diagnosis by univariate and multivariate analysis in the training group

Variable Training group (n¼ 10,354) P-value by univariate analysis P-value by multivariate analysis

Heart rate (/min) 76.32 6 11.09 <0.001 <0.001
BMI (kg/m2) 24.83 6 3.33 <0.001 <0.001
TP (g/L) 73.53 6 3.90 <0.001 <0.001
ALB (g/L) 47.56 6 2.69 <0.001 <0.001
Globulin (g/L) 25.97 6 3.23 <0.001 <0.001
ALT (IU/L) 27.81 6 22.98 <0.001 <0.001
AST (IU/L) 23.88 6 12.41 <0.001 <0.001
GGT (IU/L) 42.42 6 55.34 <0.001 <0.001
Cr (lmol/L) 75.41 6 14.92 0.224 0.342
Urea (mmol/L) 5.45 6 1.24 0.659 0.564
Uric acid (lmol/L) 356.84 6 87.56 <0.001 <0.001
TG (mmol/L) 1.84 6 1.50 <0.001 0.076
TC (mmol/L) 4.84 6 0.91 <0.001 0.013
HDL-C (mmol/L) 1.24 6 0.34 <0.001 <0.001
LDL-C (mmol/L) 2.81 6 0.76 <0.001 <0.001
VLDL-C (mmol/L) 0.80 6 0.56 <0.001 <0.001
FPG (mmol/L) 5.25 6 1.33 <0.001 <0.001
AFU (IU/L) 28.65 6 7.64 <0.001 <0.001
GPDA (IU/L) 77.00 6 17.56 <0.001 <0.001
WBC (�109/L) 6.25 6 1.56 <0.001 <0.001
NEUT (�108/L) 56.54 6 8.13 0.003 0.005
LY (�108/L) 34.18 6 7.56 <0.001 <0.001
MO (�108/L) 6.45 6 1.76 <0.001 <0.001
EOS (�108/L) 2.40 6 1.88 0.010 0.004
HGB (g/L) 150.23 6 14.60 <0.001 <0.001
PLT (�109/L) 221.10 6 53.07 <0.001 <0.001
RBC (�1012/L) 4.95 6 0.46 <0.001 <0.001
HCT (%) 44.74 6 3.86 <0.001 <0.001
PCT (%) 0.24 6 0.05 <0.001 <0.001

FLD, fatty liver disease; BMI, body mass index; TP, total protein; ALB, albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl

transpeptidase; Cr, creatinine; TG, total triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol;

VLDL-C, very-low-density lipoprotein cholesterol; FPG, fasting plasma glucose; AFU, alpha-L-fucosidase; GPDA, glycylproline dipeptidyl aminopeptidase; WBC, white

blood cell; NEUT, neutrophil; LY, lymphocyte; MO, monocyte; EOS, eosinophil; HGB, hemoglobin; PLT, platelet; RBC, red blood cell; HCT, hematocrit; PCT, plateletcrit.

Table 3. Diagnostic accuracy at different cut-off points of ANN
output in the training group

ANN output
cut-off point

Sensitivity Specificity PPV NPV Accuracy

0.1 0.985 0.411 0.626 0.964 0.698
0.2 0.965 0.553 0.683 0.94 0.759
0.3 0.934 0.66 0.733 0.909 0.797
0.4 0.893 0.734 0.77 0.873 0.813
0.5 0.839 0.808 0.814 0.834 0.823
0.6 0.768 0.868 0.853 0.789 0.818
0.7 0.672 0.92 0.893 0.737 0.796
0.8 0.543 0.954 0.922 0.676 0.749
0.9 0.348 0.983 0.954 0.601 0.666

Table 4. Performance of ANN, FLI, and HSI in terms of AUROC
with 95% CI in both the training group and the testing group

Model AUROC 95% CI

Training group
ANN model 0.906 0.902–0.911
FLI model 0.871* 0.864–0.878
HSI model 0.876* 0.871–0.881

Testing group
ANN model 0.908 0.900–0.915
FLI model 0.881* 0.872–0.891
HSI model 0.885* 0.877–0.893

*Significant difference compared with ANN model.
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Potential clinical uses of our ANN model include the selec-
tion of subjects for further examination and the identification
of patients for lifestyle counseling. Recognizing underlying
chronic disease and promoting a healthier lifestyle constitute
a pivotal component of the ‘Healthy China 2030’ blueprint
proposed by the Chinese government [35]. Our ANN model,
based on potential risks, may provide hospitals with an
effective and economical strategy to detect FLD from mere
blood tests—an ordinary and convenient part of routine health
check-ups. Furthermore, from the viewpoint of epidemiological
research, our model can be used to select subjects at a greater
risk of FLD for the design of observational or interventional
studies [22].

There are some limitations in the present study. First, a
potential criticism could be the use of ultrasonography as our
standard for FLD diagnosis. As the most common choice in
clinical practice for the diagnosis of hepatic steatosis, ultraso-
nography is non-invasive, safe, widely available, inexpensive,
sensitive (�94%), and specific (�95%) [8, 36] in detecting fatty
liver as demonstrated in previous studies. However, it cannot
perform ideally when fatty infiltration is below a threshold of
30% [8, 37], which means that an undefined number of FLD
cases might be missed in our study. Second, histological fea-
tures, which are closely associated with disease progression,
such as inflammation and fibrosis, are not discussed in our
study. Considering our data resource as well as the invasive na-
ture and potential risks of liver biopsy, it is neither feasible nor
ethically reasonable to ask for liver biopsy from a health check-
up population [38]. Though patients with steatohepatitis require
a closer follow-up due to their worse prognostic implications,
all FLD patients should receive interventions in lifestyles and
corrections in metabolic disturbance. Third, our ANN model
was built and tested on an internal cohort and it could thus be
argued that data from other populations might lead to a de-
crease in its diagnostic ability. Nonetheless, as has been de-
scribed above, we believe that the distinctive learning ability of
the ANN will make it feasible to give a diagnosis on data sets
that it has never seen before [13]. We sincerely welcome any
further validation of this model from external cohorts.

In conclusion, the ANN helped us to present an effective di-
agnostic model for FLD, based on easily obtainable clinical data.
The ANN is superior to conventional statistical linear
approaches and it could be of both clinical and research value in

tackling the global health problem of FLD. The performance of
the ANN could be further improved by including new cases
from other populations [13].

Supplementary data

Supplementary data is available at Gastroenterology Report
online.
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