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Abstract
Introduction  Accurate prognostication is difficult in 
malignant pleural mesothelioma (MPM). We developed 
a set of robust computational models to quantify the 
prognostic value of routinely available clinical data, which 
form the basis of published MPM prognostic models.
Methods  Data regarding 269 patients with MPM were 
allocated to balanced training (n=169) and validation 
sets (n=100). Prognostic signatures (minimal length best 
performing multivariate trained models) were generated by 
least absolute shrinkage and selection operator regression 
for overall survival (OS), OS <6 months and OS <12 
months. OS prediction was quantified using Somers 
DXY statistic, which varies from 0 to 1, with increasing 
concordance between observed and predicted outcomes. 
6-month survival and 12-month survival were described by 
area under the curve (AUC) scores.
Results  Median OS was 270 (IQR 140–450) days. The 
primary OS model assigned high weights to four predictors: 
age, performance status, white cell count and serum 
albumin, and after cross-validation performed significantly 
better than would be expected by chance (mean DXY0.332 
(±0.019)). However, validation set DXY was only 0.221 
(0.0935–0.346), equating to a 22% improvement in 
survival prediction than would be expected by chance. 
The 6-month and 12-month OS signatures included the 
same four predictors, in addition to epithelioid histology 
plus platelets and epithelioid histology plus C-reactive 
protein (mean AUC 0.758 (±0.022) and 0.737 (±0.012), 
respectively). The <6-month OS model demonstrated 74% 
sensitivity and 68% specificity. The <12-month OS model 
demonstrated 63% sensitivity and 79% specificity. Model 
content and performance were generally comparable with 
previous studies.
Conclusions  The prognostic value of the basic clinical 
information contained in these, and previously published 
models, is fundamentally of limited value in accurately 
predicting MPM prognosis. The methods described are 
suitable for expansion using emerging predictors, including 
tumour genomics and volumetric staging.

Introduction
Malignant pleural mesothelioma (MPM) is 
an aggressive tumour of mesothelial cells 
associated with prior asbestos exposure. 
With the increased use of combination 

chemotherapy1 2 and a diverse range of clin-
ical trials, accurate prognostication is an 
important issue for patients with MPM, clini-
cians and researchers. However, MPM is an 
exceptionally heterogeneous disease and 
accurate survival prediction is hampered by 
a limited staging system,3 a difficult to image 
primary tumour4 5 and diverse biology.6 

Several previous survival prediction models 
based on routinely available clinical informa-
tion have been reported, including the Cancer 
and Leukaemia Group B (CALGB) score,7 
the European Organization for Research and 
Treatment of Cancer (EORTC) score8 and the 
Brims Decision Tree Model.9 However, the 
extent to which these basic data, with limited 
reference to tumour biology and no reference 
to disease extent, precisely predict observed 
survival has not been well described. Previous 
validation studies have generally tested the 
ability of each model to correctly allocate 
new patients to previously defined mortality 
risk groups, rather than testing whether the 
correct survival time is precisely determined. 
This translates into cautious use by clinicians 
who intuitively sense that existing models do 
not adequately describe survival outcomes in 
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at least some of their patients. Moreover, the methods 
used in previous studies cannot be easily upscaled to 
incorporate the vast array of evolving candidate predic-
tors on the horizon, particularly genomic data.

Our goal is to define in future studies an accurate and 
precise survival prediction tool that accounts for all rele-
vant biological factors in MPM, including genomics. In 
this preliminary analysis, we have developed and tested a 
set of new computational models based on routinely avail-
able clinical data using a method that can be upscaled 
to accommodate future predictors. The least absolute 
shrinkage and selection operator (Lasso) regression 
method is recommended by the authors of the Trans-
parent Reporting of a multivariable prediction model 
for Individual Prognosis or Diagnosis (TRIPOD) state-
ment for this purpose,10 but has not been used before 
in MPM. Since the outputs of Lasso regression include 
performance metrics, the main purpose of this study was 
to quantify the prognostic value of routinely available 
clinical data as a starting point for future studies.

Methods
Data collection
Baseline clinical information was collected regarding 
269 patients diagnosed with MPM in the West of Scot-
land Cancer Network between January 2008 and April 
2014. 280 patients were initially identified in the Queen 
Elizabeth University Hospital (Glasgow, UK) Pathology 
Department with an archived diagnosis of MPM. Eleven 
of the 280 patients  were subsequently excluded either 
due to incomplete or unavailable data (n=3) or a contrary 
diagnosis on review of the case records (peritoneal meso-
thelioma (n=6), lung adenocarcinoma (n=2)). The study 
database was populated retrospectively using electronic 
case notes and the prospectively collected records of the 
West of Scotland Mesothelioma Multidisciplinary Team 
(MDT) meeting. This forum reviewed all cases diagnosed 
after June 2012. The data held by the MDT (including 
demographics, histology, performance status (PS)) were 
supplemented by additional variables retrieved from 
electronic records, including baseline (pre-biopsy/pleu-
rodesis) inflammatory indices and other blood results, 
symptoms, treatment(s) received and survival data. Data 
regarding PS were inconsistently recorded. Therefore, 
the best estimate of PS was recorded where possible 
(based on a hierarchy of: documented at MDT, docu-
mented in baseline clinical letter, inferred from func-
tional description in clinical letter). 

Definition of predictor and outcome variables
Data regarding 20 potential predictor variables were 
collected (see table 1) in addition to the outcome variable 
overall survival (OS), in days, from the date of diagnosis 
and censoring information. Predictor variables included 
baseline demographics, histological subtype, PS, depriva-
tion (quantified by the Scottish Index of Multiple Depri-
vation 2012),11 comorbidity (quantified by the Charlson 

Comorbidity Index)12 and a range of inflammatory 
markers, some of which have previously shown some 
prognostic value in cancer (eg, neutrophil-to-lymphocyte 
ratio (NLR),13 platelet-to-lymphocyte ratio (PLR) and the 
modified Glasgow Prognostic Score (mGPS)).14 Aspirin 
use was also recorded given its previous efficacy in other 
inflammatory-linked cancers, including colon cancer15 
and the potentially important pathogenic role of one of 
its intracellular targets, high mobility group box protein-1 
(HMGB1), in MPM.16 EORTC score was computed for 
all patients.8 This was accounted for when balancing the 
training and validation sets but was not included in any 
subsequent survival models.

Data processing
Processing of outcome variables was performed to 
facilitate the use of Cox proportional hazards models, 
including imputation of missing values as applicable. 
The 269 patients were subsequently divided into 
balanced training (n=169) and validation sets (n=100) 
for assessment of model performance. The processing 
and balancing steps are covered in more detail in the 
online supplementary appendix.

Signature generation and validation overview
Signatures (minimal length best performing multivariate 
trained models) were generated for three survival varia-
bles of interest: OS, OS <6 months and OS <12 months. 
Each signature was generated using the training set only. 
Feature selection was performed using Lasso regression, 
implemented in the ‘glmnet’ package for R.17 18 In each 
case, the shrinkage parameter of the model was adjusted 
such that the number of features being used (the signa-
ture length) was reduced from 20 to 1. The performance 
of models based on different signal lengths was assessed 
using fivefold cross-validation and a statistic appropriate 
to that model. The best model was selected by balancing 
maximum model performance against minimum number 
of features. The generated models based on the training 
set were validated using the reserved validation set.

Signature generation details
Measurement of model performance
To measure the  performance of predictions relative to 
known values within cross-validation for OS, a censor-
ing-adjusted C-statistic was used.19 For ease of interpre-
tation this was transformed as Somers’ DXY=2.C−1. If the 
model provides predictions that, on average, have the 
same concordance with the observed values as expected 
by chance, then DXY=0. However, if they are on average 
more concordant, then DXY>0, tending to DXY=1 when 
there is perfect concordance with the real observations. 
Performance of the binary outcome models (OS  <6 
months and OS  <12 months) was quantified using the 
area under the curve (AUC) score, which is numerically 
equivalent to the C-statistic. AUC/C-statistics  ≤0.5 are 
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associated with null models. As general guidance, good 
models are typically associated with AUC scores/C-statis-
tics >0.7, very good models with values >0.8 and perfect 
models with values=1.0 (as is the case with DXY).20

Model selection
A specific signature length was chosen to validate 
each of the generated models as described in the 

online  supplementary appendix. This was selected as 
the minimum length signature that delivered maximal 
performance within the training set. Models generated 
for dichotomised outcomes (OS <6 months and OS <12 
months) produce an estimated probability of class 
membership (survival vs not) for each sample. This prob-
ability may subsequently be dichotomised at a specific 
threshold to produce a binary prediction. To do this, an 

Table 1  Clinical characteristics and survival outcomes in 269 patients with malignant pleural mesothelioma, split into training 
(n=169) and validation (n=100) sets

Characteristic
Training set
n (%)

Missing
n (%)

Validation set
n (%)

Missing
n (%) P value

Age 73 (67–79) 0 (0) 72 (67–80) 0 (0) 0.877

Gender

 �  Male 136 (80.5) 81 (81) 1.000

 �  Not recorded 0 (0) 0 (0)

SIMD decile 3.0 (1.0–8.0) 17 (10) 3.0 (1.0–8.0) 15 (15) 0.956

Histological subtype

 �  Epithelioid 108 (63.9) – 68 (68) – 0.895

 �  Biphasic 12 (7.1) – 8 (8) –

 �  Sarcomatoid 33 (19.5) – 18 (18) –

 �  Not recorded 16 (9.5) – 6 (6) –

Performance status 1.0 (0.0–2.0) 49 (29) 1.0 (1.0–2.0) 27 (27) 0.831

EPS 1.7 (1.1–2.3) 53 (31) 1.7 (1.7–2.3) 27 (27) 0.947

CCI score 2.0 (2.0–3.0) 0 (0) 2.0 (2.0–3.0) 0 (0) 0.730

mGPS 1.0 (1.0–2.0) 32 (19) 1.0 (1.0–2.0) 17 (17) 0.990

Symptoms

 �  Weight loss 2 (1.2) – 1 (1) – 1.000

 �  SOB 81 (47.9) – 42 (42) –

 �  Cough 1 (0.6) – 0 (0) –

 �  Chest pain 22 (13) – 14 (14) –

 �  Abdominal swelling 3 (1.8) – 1 (1) –

 �  SOB and chest pain 16 (9.5) – 11 (11) –

 �  Not recorded 44 (26) 31 (31)

Fluid LDH 400 (240–680) 62 (37) 470 (260–890) 38 (38) 0.441

Serum LDH 190 (160–220) 127 (75) 190 (160–240) 73 (73) 0.319

White cell count 8.5 (7.1–11) 8 (5) 8.3 (6.8–11) 3 (3) 0.883

Albumin 32 (27–36) 10 (6) 32 (28–36) 6 (6) 0.801

C-reactive protein 41 (9.9–90) 30 (18) 35 (12–82) 17 (17) 0.624

NLR 4.2 (3.0–6.4) 8 (5) 4.1 (2.7–7.3) 3 (3) 0.842

PLR 240 (170–350) 9 (5) 250 (170–360) 3 (3) 0.884

Aspirin use 126 (74.6) 0 (0) 72 (72) 0 (0) 0.752

Neutrophils 6.0 (4.7–8.1) 8 (5) 5.7 (4.4–7.5) 3 (3) 0.831

Lymphocytes 1.4 (1.1–1.9) 8 (5) 1.3 (1.0–1.7) 3 (3) 0.898

Platelets 340 (260–430) 9 (5) 350 (240–420) 3 (3) 0.455

Survival (days) 270 (140–450) 0 (0) 220 (130–510) 0 (0) 0.522

Values are median (IQR). P values are for association tests between variables and allocation to training/validation sets.
CCI, Charlson Comorbidity Index; EPS, EORTC Prognostic Score; LDH, lactate  dehydrogenase; mGPS, modified Glasgow Prognostic 
Score; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SIMD, Scottish Index of Multiple Deprivation; SOB, shortness 
of breath.

https://dx.doi.org/10.1136/bmjresp-2017-000240
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optimal threshold for each model was defined based on 
sensitivity and specificity read from receiver operating 
characteristic (ROC) curves plotted for each. These 
thresholds (eg, 0.3) dichotomise samples into those that 
are predicted to survive versus not based on probabilities 
of survival at this value.

Signature validation details
Using the reserved validation set (n=100), the perfor-
mance of the finalised selected models was assessed. The 
same metrics were used as for the cross-validation tests 
performed on the training set. CIs for these performance 
metrics were generated by bootstrapping the validation 
set 5000 times by sample. For the 6-month and 12-month 
OS models, which involve a binary outcome, the contin-
uous predictions were dichotomised for a given optimised 
threshold value, chosen based on ROC curves, as above. 
These dichotomised predictions were compared with 
the known survival outcomes in the validation set using 
2×2 contingency tables.

Results
Clinical characteristics
Clinical and survival characteristics of the study popu-
lation are summarised in table 1. The mean age at diag-
nosis was 73 years and the majority (81%) were male. 
The most common histological subtypes were: epithe-
lioid (176/269 (65%)), sarcomatoid (51/269 (19%)), 
biphasic (20/269 (7%)) and not otherwise specified 
(22/269 (8%)). PS was 0–1 in 136/269 (51%), 2 in 
32/269 (12%), 3 in 18/269 (7%), 4 in 7/269 (2%) 
and not available in 76/269 (28%). EORTC Prognostic 
Score was low risk (<1.27) in 137/269 (51%), high risk 
(>1.27) in 52/269 (19%) and not available in 80/269 
(30%). The main symptoms reported at baseline were 
shortness of breath (48%), chest pain (13%) and 
combined shortness of breath and chest pain (10%). 
The median survival time was 270 (IQR 140–450) days.

Characteristics of the training and validation sets
There were no significant associations between selected 
assignments to the training or validation set and the 
results of any of the predictor variables (see table 1). Over 
50% of cases had missing data for serum lactate dehydro-
genase (LDH) (127 (75%) were missing for the training 
set and 73 (73%) in the validation set) and this variable 
was dropped from downstream analysis, based on 19/20 
predictor variables.

Signature generation results
Results of cross-validation combined with permutation 
analyses based on the three finalised models from the 
training set are presented in figure 1. Note that the scales 
vary in these plots since the AUC score used to describe 
the <6-month and <12-month OS models vary over a 

different range (0.5–1.0) than DXY (0–1), which is used to 
describe the primary OS model.

Selection of final signature lengths
To test the performance of each model in the reserved 
validation set, a signature length was selected for each 

Figure 1  Model performance as a function of the number 
of features for actual (red line) and permuted (blue line) 
data. Performance for overall survival (OS) is measured 
by DXY for OS (A) and area under the curve (AUC) for 
<6-month and 12-month OS (Band C, respectively). SDs 
from replicates of cross-validation are shown for each point 
as bars.
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model. This was based on the minimum length best 
performing signature. The final selected models are 
shown in table  2. For the <6-month and <12-month 
OS models, optimal model thresholds also had to 
be chosen based on the sensitivity and specificity 
for a range of possible threshold values. The ROC 
curves for each model are presented in figure  2 and 
the best performing binary classifiers were expected 
applying thresholds of 0.3 and 0.6 to the outputs of 
the <6-month and <12-month models, respectively (see 
table 3).

Overall survival (days)
The primary OS model performed significantly better 
than would be expected by chance based on cross-vali-
dation and permutation analyses (see figure  1A: mean 
DXY 0.332 (±0.019)). This model assigned high weights to 
four predictor variables: age, PS, white cell count (WCC) 

and serum albumin. The absolute value of each coeffi-
cient can be used to rank factors among each other (see 
table 2).

Models 2 and 3 (survival <6 and 12 months)
The <6-month and <12-month OS models also 
performed significantly better than would be expected 
by chance based on cross-validation and permutation 
analyses, see figure 1B,C. In addition to the four high-
weight predictor variables contained in the main OS 
model, high weights were also assigned to epithelioid 
histology and platelets in the  <6-month model (see 
figure  2A: mean AUC approximately 0.758 (±0.022)) 
and epithelioid histology and C-reactive protein (CRP) 
level in the <12-month model (see figure 2B: mean AUC 
approximately 0.737 (±0.012)). Table  2 highlights the 
coefficients associated with each predictor within these 
models.

Table 2  Survival models were generated using Lasso regression in 269 patients with malignant pleural mesothelioma

Predictor variables included in final 
model OS OS <6 months OS <12 months

Age 0.086070 0.146336 0.176899

White cell count 0.245527 0.436034 0.182477

Albumin −0.198633 −0.264057 −0.273290

Epithelioid subtype −0.311515 −0.191842

C-reactive protein 0.110628

Platelet count 0.000774

Cells report coefficients associated with each predictor; these are weighting factors relative to the units of the variable after scaling. Positive 
coefficients describe a positive association between the predictor variable and mortality risk; negative coefficients describe the opposite. The 
sum of the weighted coefficients produces an estimate for the outcome of interest.
Lasso, least absolute shrinkage and selection operator; OS, overall survival. 

Figure 2  Receiver operating characteristic curves (true positive rates as a function of false positive rates) for (A) <6-month 
overall survival (mean area under the curve (AUC) 0.758 (±0.022)) and (B) <12-month overall survival (mean AUC 0.737 
(±0.012)).
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Model validation
Consistent with the results from cross-validation during 
signature generation, the main OS model performed 
significantly better than expected by chance, as indicated 
by 95% CI lower limits of DXY above zero (0.221 (0.0935–
0.346)). The performance of the OS model in the valida-
tion set was also consistent with that estimated from the 
training set, as indicated by a non-significant difference 
between the cross-validation mean DXY (0.332) and the 
validation set mean DXY 0.221 (0.0935–0.346).

The <6-month and <12-month models also performed 
well in the validation set, with 95% CI lower limits for 
AUC well above 0.5. In addition, the performance of 
each model was consistent between training and valida-
tion sets. For the <6-month model there was a non-signif-
icant difference between the cross-validation mean AUC 
(0.758) and the mean AUC in the validation set 0.74 
(0.638–0.836). Similarly, for the <12-month model, there 
was a non-significant difference between the cross-valida-
tion mean AUC (0.737) and the validation set mean AUC 
(0.794 (0.688–0.883)).

The performance of the dichotomised predictions 
of the 6-month and 12-month models, relative to the 
observed survival outcomes, was summarised using 
contingency tables (see table 3). These demonstrated that 
the <6-month model had 74% sensitivity and 68% speci-
ficity for predicting death within 6 months of diagnosis. 
The accuracy of this model was 70%. The  <12-month 
model had 63% sensitivity and 79% specificity for 
predicting death within 12 months, with an accuracy of 
69%.

Discussion
In this study, we have derived a set of robust computa-
tional models for survival prediction in MPM. To our 
knowledge, this is the first MPM study to use Lasso 
regression analysis, as recommended in the TRIPOD 
statement.10 In a test set of 169 cases, we defined a prog-
nostic OS signature based on WCC, serum albumin, PS 
and age, and successfully validated this in a reserved 
set of 100 cases. We dichotomised the outcomes of this 
model to create <6-month and <12-month OS models. 

These incorporated the four original predictors and also 
assigned high predictor weights to epithelioid histology 
(both models), platelet count (<6-month model) and 
CRP level (<12-month model).

At validation, each model performed better than 
would be expected by chance, as indicated by 95% CI 
lower limits of DXY above zero (for model 1) and AUC 
values above 0.5 (for models 2 and 3). However, the 
overall predictive value of each model was relatively 
poor. This is best reflected by the quantitative DXY score, 
which was only 0.221 (0.0935–0.346) in the validation set, 
suggesting that the concordance between the observed 
and predicted survival outcomes was only 22% better 
than would be expected by chance. Similarly, for the 
<6-month and <12-month OS models, the observed sensi-
tivities and specificities for each (<6 months: 74% sensi-
tivity and 68% specificity,  <12  months: 63% sensitivity 
and 79% specificity) are insufficient to be of reliable clin-
ical value given the potential impact of adverse survival 
predictions. These might include advising a patient 
against an attempt at palliative chemotherapy or involve-
ment in a clinical trial, and would frequently result in 
considerable emotional distress. Future Lasso regression 
models, incorporating much denser MPM phenotyping 
(eg, genomic data and volumetric tumour imaging), 
should seek to exceed these metrics to deliver clinically 
useful prognostic tools. Ideally these would deliver highly 
individualised survival predictions, such as those recently 
reported in breast cancer and melanoma.21

Model composition and comparison with previous studies
Our primary OS signature assigned high weights to four 
predictor variables: WCC, serum albumin, PS and age. 
The Lasso method penalises inclusion of large numbers 
of predictor inputs and signatures are minimised as 
part of the process. Within our analyses, retention of 
additional variables beyond these four proved to be 
of no discriminative advantage (see figure  1A). These 
four key predictors were retained in the dichotomised 
outcome models regarding 6-month and 12-month 
survival, but these benefited from additional retention 
of histological subtype (epithelioid reducing the proba-
bility of death) and a measure of systemic inflammation, 
which increased the probability of death (as platelets in 
model 2 (survival <6 months) and CRP level in model 3 
(survival <12 months), see table 2). The content of these 
signatures is generally concordant with previous MPM 
studies, which have consistently demonstrated the prog-
nostic impact of age,22 PS,8 albumin,23 WCC,20 epithelioid 
subtype,24–27 CRP28–30 and platelets.31 Our models also 
closely resemble the two best validated MPM prognostic 
scores, the CALGB score7 and the  EORTC score.8 The 
concordance of our results, which are based on unse-
lected registry data analysed using Lasso regression, with 
these studies, which involved highly selected clinical trial 
populations and were analysed using different statistical 
methods, emphasises the apparently universal prognostic 

Table 3  Dichotomised survival prediction models were 
generated using Lasso regression in 269 patients with 
malignant pleural mesothelioma

Model 2 
(survival <6 months)

Model 3 
(survival <12 months)

Optimal threshold: 0.3 Optimal threshold: 0.6

False True False True

False 40 10 False 27 22

True 19 28 True 7 38

The performance of dichotomised predictions (rows) at selected 
optimal threshold values relative to the observed survival 
outcomes (columns) is reported in contingency tables.
Lasso, least absolute shrinkage and selection operator. 



Kidd AC, et al. BMJ Open Resp Res 2018;5:e000240. doi:10.1136/bmjresp-2017-000240 7

Open Access

importance of WCC, serum albumin, PS, age and histo-
logical subtype.7 8 32

Our models also closely resemble the Brims model, 
in which the key prognostic variables were PS, serum 
albumin and histological subtype, weight loss and 
haemoglobin (Hb) concentration.9 We did not select 
Hb as a potential candidate predictor for the current 
study because the prognostic impact of Hb levels had 
been contradictory in MPM studies which have reported 
negative,33 positive34 and no prognostic association 
with thrombocytosis.35 In the current study, integrated 
measures of systemic inflammation, such as NLR, PLR 
and mGPS, appeared less prognostically important than 
some previous studies have suggested.13 14 Meta-anal-
yses in lung and other cancers have also previously 
suggested that socioeconomic factors are associated with 
less access to treatment,34 increased comorbidity and 
poorer outcomes.36 37 Similar studies in MPM have been 
inconclusive38 39 and we failed to identify deprivation as a 
major prognostic factor in this study. We included aspirin 
use as a potential candidate predictor given the poten-
tial link between cyclo-oxygenase biology40 and MPM 
survival and the HMGB1 pathway.16 However, we found 
no evidence of a clinically important prognostic effect. 
Serum and pleural fluid biomarkers (eg, mesothelin) are 
not routinely used in MPM as they offer no reliable prog-
nostic information41 and were not considered here.

Subsequent chemotherapy administration was not 
included as a candidate predictor since this was not a 
baseline factor. Of note, only 67/269 patients (24.9%) 
received chemotherapy over subsequent follow-up, 
contrasting significantly with previous prognostic model 
studies (61.4%–100% of patients received chemotherapy 
in the Brims,9 EORTC7 and CALGB studies8). In a 
previous Dutch registry series, increased age was associ-
ated with decreased chemotherapy use.42 The mean age 
in our cohort (73 years) was higher than in the Dutch 
series (68 years) and age may have been a factor in the 
chemotherapy rate reported. However, median age in 
recent English national audit data (75 years) was similar 
to ours and chemotherapy use was higher (36.5%).43 
It therefore appears highly likely that other factors are 
involved.

Model performance and comparison with previous studies
In the recent study reported by Brims et al,9 which used 
decision tree analysis, the C-statistic was used to assess 
model performance (validation C-statistic: 0.68 (95% CI 
0.60 to 0.75)). This value is numerically equivalent to the 
AUC score20 used here to describe the performance of 
the dichotomised models for <6-month and <12-month 
survival (validation AUC 0.74 (0.638–0.836) and 0.794 
(0.688–0.883), respectively), and similar to the censor-
ing-adjusted C-statistic used here to assess our primary OS 
signature (validation C-statistic 0.6106 (0.5468–0.673)). 
These performance metrics are broadly similar and are 
consistently below the AUC/C-statistic threshold (>0.8) 

generally required of a strong survival model.20 The 
performance of the EORTC and CALGB scores cannot 
be directly compared with the currently reported models 
because the primary metrics used to describe these 
were HRs, reporting the relative risk of death between 
different risk groups.

Based on these comparable performance metrics, the 
Lasso regression models reported here therefore appear 
to offer similar prognostic performance to previous 
models and are based on many of the same predictors. 
The uniquely quantitative value of DXY demonstrates that 
the routinely available clinical data used to define these 
models are fundamentally unable to describe the bulk of 
the variability in survival outcomes seen in real patients. 
This is reflected in a validation DXY value for our primary 
OS signature of only 0.221, which equates to only a 22% 
improvement in concordance between the observed and 
predicted survival outcomes than would be expected by 
chance.

Methodological considerations and clinical applicability
Both the  decision tree analysis and  the multivariate 
logistic regression are prone to model overfitting.44 This 
may lead to poor model performance in external, new 
patient groups and limits the clinical utility of predic-
tive modelling approaches in general. Lasso regression, 
combined with an appropriate cross-validation method-
ology, alleviates some of the problems of model over-
fitting45 and can be more readily upscaled to deal with 
more deeply phenotyped descriptor data. This makes this 
technique uniquely suited to future prediction model-
ling in MPM incorporating these additional predictors. 
However, Lasso regression is associated with complex 
outputs and requires important data processing steps to 
analyse new data within the finalised model. We sought to 
overcome this by creating dichotomised outcome models 
predicting the probability of survival at 6 and 12 months, 
but a relatively simple electronic or web-based program 
would still be required to translate input predictor values 
into results interpretable to clinicians. However, this need 
not be developed until a model with sufficient precision 
and accuracy has been defined.

Study limitations
This study involved retrospective data collection for 
some of the variables, although many were prospectively 
collected as outputs from a regional mesothelioma MDT. 
Nevertheless, this design introduces potential recall and 
omission bias. The latter might be important since the 
cases were identified from a pathology archive depart-
ment;  therefore frail patients in whom a histological 
diagnosis was not pursued will not have been included. 
In addition, the validation performed used an internal 
cohort and further external validation is required to 
confirm the generalisability of the models created. Our 
analysis is also limited by a significant number of cases 
with missing data for some variables. The influence of 
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these missing data was minimised by imputation and 
exclusion of variables with too many missing variables 
(eg, fluid LDH).

Conclusions and future studies
Prognostic models are being increasingly used in medi-
cine for investigating patient outcome in relation to 
patient and disease characteristics. Such models should 
have a sound statistical and clinical validity, rely on a 
limited number of objective parameters and be generalis-
able to a heterogeneous group of patients.45 Most studies 
describing the natural history and prognostic factors for 
MPM antedate accurate pathological diagnosis, optimal 
staging22 and a range of emerging predictors, including 
genomic data. This study suggests that routinely avail-
able clinical data alone are insufficient to accurately 
predict prognosis in MPM. The computational models 
defined here are suitable for expansion and upscaling 
using genomic data and other predictors, for example, 
including volumetric imaging results.
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