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Abstract

Interest in adoptive T-cell therapies has been ignited by the recent clinical success of genetically-

modified T cells in the cancer immunotherapy space. In addition to immune targeting for 

malignancies, this approach is now being explored for the establishment of immune tolerance 

with regulatory T cells (Tregs). Herein, we will summarize the basic science and clinical results 

emanating from trials directed at inducing durable immune regulation through administration of 

Tregs. We will discuss some of the current challenges facing the field in terms of maximizing cell 

purity, stability and expansion capacity, while also achieving feasibility and GMP production. 

Indeed, recent advances in methodologies for Treg isolation, expansion, and optimal source 

materials represent important strides toward these considerations. Finally, we will review the 

emerging genetic and biomaterial-based approaches on the horizon for directing Treg specificity to 

augment tissue-targeting and regenerative medicine.

Now over 20 years since the discovery of regulatory T cells (Tregs) within the CD4+CD25+ 

T cell fraction [1], investigations of adoptive Treg cellular therapies are well underway 

to restore or induce immunological tolerance in settings of autoimmunity, allogeneic 

transplantation, allergy, protein replacement therapy, graft versus host disease (GvHD), 

and more [2–19]. Though once thought to be a single T cell lineage, diverse Treg subsets 
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are now identified according to an array of surface proteins, transcription factors, and 

mechanisms of suppression. Indeed, there may be organ-specific autoimmune disease 

applications where FOXP3+Helios+ thymic-derived Tregs (tTregs) are optimal for adoptive 

cell therapies (ACT), whereas other diseases may preferentially benefit from the bystander 

mechanisms employed by peripherally-induced Tregs (pTreg) (reviewed in [20]), IL-10-

producing Tr1 cells (reviewed in [21]) or TGF-β secreting LAP+ Th3 cells [22]; hence, not 

all Tregs are equal and may need to be tailored to a given pathology.

In vitro suppression assays have been used to demonstrate the capacity for Tregs to attenuate 

responder cell proliferation through both antigen-specific and bystander mechanisms in a 

dose-dependent manner [23,24]; therefore, increasing the Treg ratio relative to pathogenic 

effector cells in vivo, through ACT, may bolster immunoregulation to achieve clinical 

benefits for immune-mediated diseases resulting from autoimmunity or allorecognition. 

Animal studies in various disease models have justified this rationale [25–28] and led 

to the initiation of human clinical trials in patients with type 1 diabetes (T1D) [2–4], 

Crohn’s disease [5], solid organ transplantation (i.e., liver [6] and kidney [7]), and allogeneic 

hematopoietic stem cell transfer (allo-HSCT) [13–18]. Herein, we review the lessons learned 

from these early-phase studies and the recent advances that will enable progress toward safe, 

efficacious, and cost-efficient Treg therapy for widespread use in the clinic.

CLINICAL APPLICATIONS OF TREGS

Tregs display wide-ranging mechanisms of action and have displayed efficacy in 

ameliorating a large number of inflammatory and autoimmune conditions. However, 

translating early proof-of-concept animal experiments into clinical practice raises a number 

of practical considerations, including:

• What are the specific target antigen(s)?

• Is the disease progressive or relapsing and remitting?

• Is there a potential for Tregs to reverse a disease process that is already 

underway?

In terms of antigen-specificity, polyclonal Tregs may be appropriate for systemic diseases 

such as systemic lupus erythematosus (SLE) [29], while other conditions with tissue or 

protein-directed pathologies might benefit from antigenic targeting via TCR or chimeric 

antigen receptor (CAR)-directed approaches [30,31] (discussed in greater detail below). 

CAR-modified T cell (CAR-T) immunotherapy has provided remarkable efficacy against 

various forms of cancer [32–38]. These cell-based therapies are more specifically targeted 

than traditional chemotherapeutic treatments, and strategies are being developed to manage 

the most common adverse events (e.g., cytokine release syndrome) [39]. Hence, there is 

clear incentive to apply these tissue-targeting principles toward ACT involving Tregs to limit 

potential off-target immunosuppression (Table 1).

Autoimmunity

Deficient numbers and/or functional suppression by Tregs have been reported as 

contributing factors in the pathogenesis of a number of autoimmune diseases (reviewed in 
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[40]). This concept emanates from the profound systemic autoimmune syndrome observed 

in subjects presenting with a mutation in the Treg lineage-defining transcription factor 

FOXP3 resulting in immune dysregulation, polyendocrinopathy, enteropathy, and X-linked 

(IPEX) syndrome (reviewed in [41]). Similar autoimmune symptoms have been observed in 

other monogenic disorders, such as autoimmune polyendocrine syndrome type 1 (APS-1) 

characterized by mutations in the Autoimmune Regulator (AIRE) resulting in defects in 

thymic negative selection as well as impaired Treg suppression with reduced FOXP3 

expression (reviewed in [42]). Genes controlling Treg development and function have 

also been identified as a source of heterogeneity related to immune regulatory defects 

in polygenic/multifactorial autoimmune diseases such as SLE, multiple sclerosis (MS), 

rheumatoid arthritis (RA), inflammatory bowel disease (IBD), T1D, juvenile idiopathic 

arthritis (JIA), and more [43–53]. Furthermore, Treg ACT has been reported to prevent 

or reverse autoimmunity in a variety of animal models [54–58]. Hence, human trials are 

planned or underway to treat a number of autoimmune and auto-inflammatory conditions 

including ulcerative colitis (UC) [59,60] and T1D [2–4,61] (Table 1).

Early clinical trials of ex vivo expanded autologous Treg from peripheral blood of adults 

or children with T1D have already provided evidence of safety with few or no adverse 

reactions [2–4]. Importantly, infused autologous adult peripheral blood (APB) Tregs were 

shown to persist in the circulation of T1D patients for at least one year following transfer 

and were not associated with increased risk of infection [4]. Although conclusions about 

efficacy (i.e., the capacity to preserve endogenous β-cell function) cannot be formally 

demonstrated from these small cohorts, early trials have not resulted in reversal of disease. 

This may be due to several factors, such as disease staging (i.e., the pre-symptomatic 

stage of T1D [62,63] prior to clinical diagnosis may represent a more suitable therapeutic 

window), but may also be related to challenges such as Treg specificity, engraftment, 

persistence, and/or trafficking, as discussed below.

Allergy

Analogous to the findings in autoimmunity, Tregs from patients with allergic asthma 

are reduced in number and exhibit compromised suppressive capacity [64–66]. For this 

application, Treg ACT is still in the preclinical testing phase. Initial efforts were directed 

at adoptive transfer of allergen-specific Tregs [8] or in vivo induction of pTregs and Th3 

cells via nasal delivery of soluble antigen [8,67]. Studies have since demonstrated adoptive 

transfer of polyclonal tTreg or polyclonal ex vivo induced Tregs to have similar efficacy in 

reducing allergic airway inflammation in mice [10]. More recently, Skuljec and colleagues 

reported that adoptive transfer of CAR-Tregs specific for carcinoembryonic antigen (CEA) 

expressed in lung epithelial tissues suppressed airway inflammation, mucus production, Th2 

cytokine production, allergen-specific IgE production, bronchoalveolar eosinophilia, and 

airway hyperreactivity more effectively than polyclonal Treg therapy in a murine model 

of allergic asthma (Table 2) [11]. Efforts to examine models of other allergic conditions, 

including contact hypersensitivity and food allergy, have focused primarily on in vivo pTreg 

and Th3 cell induction [68–70], though studies of Treg ACT are warranted in these settings 

given the efficacy observed in models of allergic asthma.
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Protein replacement therapy

Inhibitory antibody formation occurs in approximately 30% of patients receiving life-saving 

protein replacement therapy for the blood clotting disorder hemophilia; similarly, the 

development of neutralizing antibodies occurs in a subset of patients during enzyme 

replacement therapy for monogenic lysosomal storage disorders (e.g., Pompe disease) 

and monogenic metabolic disorders (e.g., Fabry disease) [71–74]. Hence, Treg-mediated 

tolerance induction represents a critical goal to prevent/overcome inhibitor formation for 

successful long-term disease management (reviewed in [75,76]). In murine models of 

Pompe disease and hemophilia, oral delivery of plants expressing the disease-relevant 

antigen (i.e., acid alpha-glucosidase (GAA) or coagulation factor VIII or IX, respectively) 

induced Tr1, Th3, and pTreg mediated tolerance and prevented antibody inhibitor formation; 

however, tolerance was lost upon cessation of oral treatment [77–80]. In contrast, exogenous 

polyclonal Treg therapy induced durable tolerance for two months post-infusion in 

mice with hemophilia [12]. Recently, two coagulation factor VIII specific human Tregs 

applications (i.e., TCR transgenic and ASN8 CAR-Tregs) were shown to suppress cognate T 

and B cell responses in vitro and in a humanized mouse model (Table 2) [31,81]. As Good 

Manufacturing Practice (GMP) grade production of either polyclonal or antigen-specific 

exogenous Treg therapies becomes more streamlined, clinical investigation is clearly needed 

to test Tregs’ ability to prevent or suppress inhibitory antibodies in patients with Pompe 

disease and hemophilia. Beyond this, we anticipate that the knowledge gained from early 

studies in hemophilia and Pompe disease may translate effectively for a large number of 

rare metabolic, lysosomal, and clotting disorders for which protein replacement therapies 

exist [82]. In fact, these diseases may hold some potential advantages, including the capacity 

to control the timing of ACT therapy with protein replacement and the potential for more 

permissive background genetics when compared to individuals carrying autoimmune disease 

susceptibility alleles.

Allotransplantation & GvHD

There is a rapidly growing body of literature regarding the use of Treg ACT for applications 

in allotransplantation (reviewed in [83]) and GvHD. In a pilot study of ten adult liver 

transplant recipients, autologous polyclonal Tregs were expanded ex vivo in the presence 

of irradiated donor lymphocytes plus anti-CD80/86 monoclonal antibodies. Following Treg 

infusion, seven of the ten patients were completely weaned from immunosuppressive drugs 

while the remaining three continued taking low dose immunosuppression [6]. Importantly, 

isolation and expansion of Tregs was possible from kidney transplant recipients taking 

immunosuppressive drugs, and expanded polyclonal Tregs were stable, persistent, and 

efficacious in reducing kidney inflammation post-infusion [7]. Moreover, cryopreservation 

of expanded polyclonal human Tregs did not alter their phenotype or function, suggesting 

Tregs can be expanded, manipulated (genetically or otherwise), and banked for future use 

[84]. Finally, CAR-directed Tregs, specific for graft donor HLA class I, were recently shown 

to prevent cutaneous graft rejection in a model of xenograft transplantation, supporting 

human trials of these antigen-specific, “designer” Tregs in allotransplantation [85].

GvHD represents a severe and significant risk associated with allo-HSCT that confers 

lifelong and even terminal complications (reviewed in [86]). While first-in-man studies 
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of Treg ACT were performed in response to GvHD [13], the first report of Treg ACT 

prior to allo-HSCT prevented GvHD in the absence of immunosuppressive drugs in 24/26 

human leukemia patients who achieved full engraftment [15]. In a subsequent trial, co-

transfusion of Tregs with conventional T cells (Tconv) and CD34+ HSCs at the time of 

allo-HSCT, again without immunosuppressive drugs, prevented GvHD in 85% of patients 

with only 0.05 cumulative incidence of relapse, suggesting that Tregs do not impede 

graft-versus-leukemia efficacy and provide appreciable protection against GvHD [18]. In 

a dose escalation trial, Tregs isolated and expanded from non-autologous umbilical cord 

blood (UCB) significantly reduced the incidence of both acute and chronic GvHD following 

double UCB transplantation compared to controls who did not receive UCB Tregs [17]. 

Altogether, the data support polyclonal Tregs, obtained from autologous or donor peripheral 

blood or UCB, as a safe and effective cellular drug in settings of GvHD.

Regeneration

Tregs, commonly thought of as mediators of immunoregulation, are now being studied for 

their capacity to induce tissue regeneration and remodeling. Treg therapy may enhance 

hepatic recovery in fulminant or chronic hepatitis, the latter of which eventually results in 

liver cirrhosis and liver cancer (recently reviewed in [87]). Indeed, polyclonal Treg ACT 

prevented liver injury and enhanced hepatic regeneration in mouse models of fulminant 

hepatitis [88–90]. Endogenous memory tTregs become highly enriched in the liver of human 

patients with chronic Hepatitis B infection during phases of inflammatory relapse, likely 

signifying an attempt to control hepatic injury [91]. Hence, it seems plausible that adoptive 

Treg therapy combined with antiviral medication might improve clinical outcomes and 

reduce liver damage in patients with viral hepatitis; however, there is an ongoing debate 

as to whether Tregs might potentiate chronic infection by suppressing antiviral immunity, 

necessitating further investigation (reviewed in [92,93]).

A specific subset of muscle-resident Tregs expressing amphiregulin and IL-10 has been 

shown to support muscle regeneration and repair following acute injury [94]. Moreover, Treg 

depletion exacerbated muscle degeneration in the mdx mouse model of muscular dystrophy 

while Treg potentiating treatment with low-dose IL-2 reduced muscle inflammation [95]. 

Muscle biopsies from human muscular dystrophy patients exhibit increased Treg frequencies 

versus healthy controls, similar to mdx versus control mice, suggesting endogenous repair 

mechanisms are insufficient to ameliorate the disease [95]. Hence, there is potential for ACT 

with Tregs modified to overexpress amphiregulin or other regenerative factors to support 

tissue repair in settings of injury or chronic degenerative disease such as muscular dystrophy.

PRACTICAL CONSIDERATIONS

Treg-based therapies hold great promise for inducing tolerance without many of the known 

toxicities observed with global immunosuppessive drugs (reviewed in [96–99]). In order 

to make Treg therapies feasible for widespread clinical use, it is essential to optimize the 

pipeline from isolation and expansion to infusion.

Treg purity of the final cell product will be a major factor determining therapeutic efficacy. 

Since most Treg therapy production strategies are likely to include expansions, elimination 
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of non-Treg contaminants during the isolation step (Figure 1) is the most efficient way 

to achieve the purest product. In addition, specific Treg lineage and source (i.e., UCB 

Tregs or naïve peripheral blood Tregs, discussed below) may be considered when designing 

an enrichment and purification approach. Therefore, lineage and source selection, as well 

as isolation and enrichment strategies must be optimized to minimize the incidence of 

unintended immune activation and inflammation induced by the Treg ACT. Herein, we will 

discuss isolation strategies capable of generating a high yield and purity Treg product.

Identification of human Treg

FOXP3 serves as a master regulator of Treg lineage commitment and function. In human T 

cells, however, it alone does not define a Treg cell given that Tconv also transiently express 

intermediate levels of FOXP3 following activation [100]. FOXP3 expression in combination 

with another transcriptional regulator, Helios, denotes a thymic-derived tTreg population 

noted for phenotypic stability, suppressive potency, and ability to bestow these qualities 

unto daughter cell generations [101,102]. Within tTreg, the high degree of demethylation 

of the Treg-specific demethylated region (TSDR), found within the conserved non-coding 

DNA sequence 2 (CNS2) enhancer in the FOXP3 locus confers lineage stability [101–105]. 

Additionally, tTregs express homing receptors, including chemokine receptors and adhesion 

molecules that enable trafficking both systemically and to disease-relevant tissues [106–

110]. As compared to pTreg populations, tTregs exhibit a higher degree of lineage stability 

upon in vivo transfer [101,104]. Hence, tTregs are commonly targeted for ACT, though 

head-to-head comparisons of Treg subsets are ongoing to determine which subset may be 

optimal in certain disease settings (reviewed in [111]).

With the identification of FOX-P3+Helios+ Tregs, numerous advances in our understanding 

of immune regulation have been achieved. Unfortunately, labeling intracellular proteins 

(including these transcription factors) renders cells inviable; therefore, Treg isolation must 

rely on surface markers. In 2007, human Tregs were found to express low surface levels of 

the alpha chain of the IL-7 receptor, CD127, compared to Tconv [112], thereby enabling 

identification and isolation of live Treg based on the CD3+CD4+CD25+CD127−/lo phenotype 

[61]. Importantly, cells isolated by this phenotype are highly enriched for FOXP3+Helios+ 

co-expression [113]. This observation represented a key step enabling future Treg cellular 

therapies in humans, given the ostensible importance of purity prior to reinfusion.

Human Treg isolation

Currently two methods exist for live Treg isolation: magnetic bead-based isolation or 

fluorescence-activated cell sorting (FACS). The former involves the closed-system isolation 

of CD4+CD25+ T cells and was widely used for early trials, given prior experience with 

CD34+ HSC sorting and ACT. Strategies can be implemented to increase Treg purity from 

magnetic isolation such as: 1) depletion of CD8+ and CD19+ subsets before Treg isolation 

[15,16,18] or from the final post-expansion product [60]; 2) depletion of CD127+ population 

[114]; 3) perform multiple rounds of CD25+-selection; or 4) limit the amount of anti-CD25 

antibody loaded on the bead [115]. Unfortunately, these strategies dramatically reduce the 

overall yield and fail to eliminate activated and memory CD4+CD25+ populations from the 

final product. Generally, this can be overcome by addition of rapamycin and/or all trans 
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retinoic acid (ATRA) to the Treg expansion media, which inhibit Tconv proliferation and 

promote conversion of naive T cells to induced Tregs, respectively [116].

FACS allows for precise gating based on marker expression level in contrast to microbead 

bulk enrichments. Importantly, emerging GMP-compliant, closed-loop sorting systems 

for FACS are expected to enable optimized isolation of CD4+CD25+CD127−/lo Tregs. 

Soon to follow will likely be GMP-compatible reagents enabling the identification of 

precise cell subsets, potentially based on yet-to-be-defined surface proteins or technologies 

relying on transcriptional markers of phenotype [117]. For example, it is well recognized 

that CD4+CD25+CD127−/loCD45RA+ naïve Tregs exhibit greater stability during ex 
vivo expansion, while CD4+CD25+CD127−/loCD45RA-memory Tregs are more likely to 

downregulate FOXP3 and upregulate their expression of proinflammatory cytokines [118–

120]. We recently demonstrated that the co-inhibitory receptor T-cell immunoglobulin and 

immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) and Helios were highly 

co-expressed by tTregs [121]. Conversely, CD226, which directly competes with TIGIT to 

bind CD155, was most highly expressed by Tconv and FOXP3+Helios− pTregs. Of note, 

CD226 depleted Tregs exhibited comparable expansion kinetics and enhanced suppressive 

capacity compared to non-depleted cells. Eventually, protocols will narrow until the most 

functionally appropriate Treg, perhaps tailored to the disease/condition, can be delivered in 

the safest manner.

Expansion approaches

The number of peripheral blood mononuclear cells (PBMCs) that can be safely obtained 

from patients via peripheral blood draw or leukapheresis is limited according to body 

weight. Hence, obtaining clinically relevant numbers of Tregs sufficient to induce 

immunoregulation likely requires ex vivo expansion. Optimal conditions for Treg expansion 

involve multiple (i.e., 1-3) rounds of re-stimulation over the course of a 14-28 day culture 

in the presence of exogenous IL-2 [122–126]. Culture durations beyond this time frame are 

contraindicated because subsequent rounds of activation can compromise Treg suppressive 

function and stability [119]. Various stimulation approaches exist (i.e., antigen presenting 

cells [APCs] loaded with antigen, artificial APCs [aAPCs], allo-APCs, beads), each offering 

unique merits (Table 1, Figure 1).

The earliest aAPCs (K562 cells) are well described in the literature [127–129]. Briefly, 

K562 cells have been genetically modified to achieve long-term and stable expression of 

human CD32 and CD64 (KT32/64), which together bind the Fc region of anti-CD3 (OKT3) 

antibodies; hence, K562 aAPCs are capable of inducing robust Treg proliferation [128]. 

Moreover, Tregs stimulated through the CD28 pathway (by KT32/86 cells that constitutively 

express CD86) in addition to the CD3 pathway and in the presence of rapamycin showed 

1000-fold expansion in three weeks with consistent suppression of xenogeneic GvHD in 

immunodeficient mice [130]. Cell-based aAPC expansion approaches provide a standardized 

platform for consistent Treg expansion and thus, are attractive for therapeutic applications.

Importantly, anti-CD3 and anti-CD28 coated microbeads offer an off-the-shelf GMP-

compliant alternative to APC-based expansion. Just two rounds of activation (on day 0 

and day 9) and 300U/ml IL-2 replenishment every two days routinely achieved >1000 fold 
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Treg expansions [131,132]. We have also found that different GMP-grade products provide 

varying activation thresholds for TCR activation and co-stimulation impacting both the 

expansion efficiency and stability of the final Treg product [132].

Treg expansion capacity and lineage stability

The need to generate a sufficiently large, pure Treg population represents a significant 

challenge in Treg ACT. The optimal Treg dose is unknown and likely differs for each disease 

application. However, in mice that received a solid organ transplant, tolerance was achieved 

when approximately 30% of the organ-infiltrating CD4+T cells were Tregs [133]. Supposing 

this value might translate to Treg cell therapy in settings of autoimmunity, Tang et al. 
calculated a theoretical target dose of 53x109 Treg to achieve a systemic Treg frequency 

of 30% among total CD4+ T cells in human patients [134]. Such a high dose is likely 

unfeasible due to practical/technical limitations and far exceeds the highest doses tested to 

date (100 × 106 Treg/kg [17]) but may support cryopreservation of Treg cells for subsequent 

repeat dosing. Additionally, efforts to optimize Treg ACT by selecting optimal cell sources 

and/or modulating their specificity, trafficking, or function, prior to reinfusion are ongoing in 

order to circumvent this potential limitation.

Efforts to expand either peripheral blood [4,7] or UCB-derived Tregs [61] have yielded 

cellular products that far surpass clinical release criteria for viability and/or CD8+ T cell 

contamination [4,7]. However, we recently reported that post-expansion Treg stability (i.e., 

FOXP3 and Helios co-expression as well as TSDR demethylation), purity (calculated from 

CD8+ T cell contamination), and Treg naivety (assessed by CD45RA expression) were 

significantly greater when Tregs were derived from UCB versus adult peripheral blood 

(APB) [61]. UCB Tregs also exhibited greater proliferative capacity compared to APB Tregs 

[61]. Moreover, expansion kinetics and post-expansion assessments (i.e., purity, stability, 

naivety) were comparable for Tregs isolated from fresh or cryopreserved UCB [61]. Hence, 

UCB may represent an optimal Treg source for ACT, eliminating the need for leukapheresis 

procedures, with cryopreserved UCB offering the potential for autologous Treg treatment.

Treg Specificity

Tregs are classically considered to modulate Tconv responses through both antigen-

dependent and bystander suppression mechanisms [24], but they also exert their regulatory 

effects on the innate immune cells [135,136]. As a result, polyclonal Tregs may be 

particularly suitable for treatment of autoimmune or autoinflammatory conditions where 

the target antigen remains unknown or where a variety of autoantigens/tissues are targeted 

[137,138], but they might also offer a valuable treatment option for organ-specific diseases 

without the need for extensive ex vivo manipulation [4,7]. In contrast, antigen-specific 

Tregs, generated through TCR gene transfer, introduction of a CAR or selective expansion 

(Table 2), may traffic more efficiently to the site of cognate antigen expression and tissue 

draining lymph nodes [139–141], making it possible to achieve an efficient dose of Tregs 

in the target tissue/organ with a lower systemic Treg frequency In a humanized mouse 

model of allotransplantation, selectively expanded alloantigen-reactive autologous Tregs 

were more effective at preventing allograft rejection compared to polyclonally expanded 

autologous Tregs [142]. Similarly, compared to polyclonal Tregs, 10-fold fewer β-cell 
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antigen-specific Tregs were able to reverse autoimmune diabetes in NOD mice [143]. 

However, it is important to consider that in human T1D various epitopes are targeted, 

including native β-cell antigens (i.e., insulin, GAD, IA-2, ZnT8) as well as hybrid insulin 

peptides (HIPs) and defective ribosomal insulin gene products (DRiPs) [144–147], so 

polyclonal or oligoclonal Treg preparations may provide greater autoantigen coverage. 

Moreover, we recently demonstrated that two TCRs reactive against the same peptide 

epitope with different avidities exhibited significantly different capacity to suppress Tconv 

[24].

Additional considerations, such as location of antigen expression/mode of antigen 

presentation, must guide receptor selection for antigen-specific Treg ACT. TCR redirected 

Tregs offer the benefit of recognizing intracellular antigen presented in the context of HLA, 

but the requirement for HLA compatibility requires use of autologous cells. In contrast, 

CAR-Tregs, which express the antigen binding region of an immunoglobulin (Ig) fused to 

intracellular T cell signaling domains [37,38], do not engage HLA but rather, recognize 

extracellular antigen. Extensive studies of CAR-T cells in the cancer field have set the stage 

for CAR and TCR-redirected Tregs for ACT (summarized in Table 2). Ultimately, clinical 

studies are needed to identify the most appropriate Treg application (i.e., polyclonal or 

antigen-specific and TCRs or CARs) for use in various disease states.

Engraftment & trafficking

While the efficacious Treg dose has yet to be determined for the treatment of autoimmunity, 

a dose escalation study in adults with T1D demonstrated an exceptional safety profile even 

with high doses (up to 2.6x109 cells) of ex vivo expanded autologous peripheral blood 

Treg. Importantly, Bluestone et al. reported that Tregs labeled with deuterated glucose 

were still detectable from circulation 12 months following transfer [4]. This suggests Tregs 

may display a similar long-term engraftment potential observed in cancer immunotherapy 

settings [148–151]. Additionally, IL-2 adjunct therapy may enhance Treg engraftment, 

similar to the effect of Ibrutinib with CAR-T treatment of chronic lymphocytic leukemia 

[152].

Ex vivo expanded human Tregs were shown to downregulate their expression of CCR5 

[153], which directs T cell homing to sites of inflammation [154,155]. In contrast, human 

T cells exposed to the vitamin D analogue TX527 exhibited upregulated expression of the 

inflammatory homing receptors, CCR5, CXCR6, and CXCR3 [156]. CCR4+ human Treg 

migration into ovarian tumors was dependent upon CCL22 [157]. Furthermore, in a murine 

model of IBD, adoptive transfer of CCR4 competent Tregs prevented colitis, but CCR4 

deficient Tregs were unable to traffic to the mesenteric lymph nodes resulting in disease 

[158]. Modification of chemokine receptor(s) and integrin expression could further guide 

Treg trafficking post-infusion. These approaches theoretically offer the additional benefit of 

reducing the likelihood of off-target suppression, which might impair protective immunity 

against an infection or cancer.
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Regulatory requirements

Regulatory agencies, such as the U.S. Food and Drug Administration (FDA) and the 

European Medicines Agency [159], provide several guidelines about the cell therapy 

manufacturing process to ensure that each batch meets stringent quality standards concerned 

with cell collection, manufacturing area, the instruments and reagents used, and the release 

criteria of the final product prior to application. In addition to passing sterility screenings 

conducted throughout isolation and expansion, the final Treg product must satisfy purity 

criteria (e.g., composition of <5% CD8+ T cell contamination as well as >60% FOXP3+ 

Treg; or >96.7% cell viability, 99.6% CD4+, 98.9% CD25+, 0.0% CD127+, 0% CD8+, 0.0% 

CD19+ and 0.0% CD56/16+) [4,60] and potentially, confirmation of functional suppression 

in vitro [60] prior to infusion. Thought must also be given to the timing of Treg infusion, 

particularly in children, with relation to vaccination schedules.

For research use, FACS occurs in an open system; therefore, the clinical application requires 

a modified, closed instrument, in Grade A “clean rooms”, equipped with high efficiency 

particulate air (HEPA) filters to limit air particulates and avoid microbial contamination. In 

contrast, cell isolation using CliniMACS (Miltenyi) is performed in a closed system with 

disposable tubing limiting the potential for contamination inherent in droplet based FACS 

approaches. As a result, magnetic bead-based isolation currently offers better affordability 

and a shorter cell sorting process but is limited to basic bimodal sorts. However, as 

mentioned above, emergent closed-loop FACS technologies are highly anticipated. Indeed, 

this interface will enable more widespread application of cellular therapies offering more 

precise and affordable CMP isolation of CD4+CD25+CD127−/lo Tregs for a highly pure cell 

product.

FUTURE DIRECTIONS FOR TREG CELLULAR THERAPY

Moving forward, advances in isolation, expansion, and cellular engineering technologies are 

expected to enable precise engineering of optimal Treg products for various therapeutic 

applications (reviewed in [160]). Gene editing techniques, such as endogenous TCR 

ablation, are expected to reduce potential heterologous chain pairing. Moreover, allogeneic 

cell sources for TCR-redirected Treg or CAR-Treg therapies could eliminate the need for 

invasive leukapheresis procedures. Given the inherently different argument for equipoise 

in chronic conditions such as autoimmunity and allergy versus terminal cancer, efforts are 

underway to introduce additional safeguards, including suicide genes [37,161,162], to enable 

depletion of the cells post-infusion in the event of off target suppression or an unforeseen 

adverse reaction [161,162].

Gene editing could theoretically be used to optimize “designer Tregs” via knockdown 

of molecules known to inhibit suppressive function, introduction of regulatory elements 

(e.g., TIGIT [121,163]), expression of growth factors (e.g., amphiregulin [94,95]), and/or 

site-specific mutagenesis of single nucleotide polymorphism (SNPs) associated with disease 

risk/pathogenesis specific to the intended application. For example, Tregs from donors 

carrying a SNP risk variant in protein tyrosine phosphatase, non-receptor type (PTPN22), 

which confers risk in several autoimmune disorders and outside of HLA and insulin, has 

the highest odds ratio for T1D (reviewed in [164]), can be gene-edited to the protective 
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variant prior to ex vivo expansion. Ectopic overexpression of FOXP3 in autologous Tconv 

could transform our ability to treat IPEX syndrome (reviewed in [165]). Additionally, we 

envision that it may eventually be possible to treat both allograft rejection and autoimmunity 

in pancreas or islet transplant recipients with T1D via ACT of CAR-Tregs against donor 

HLA plus polyclonal or TCR redirected Tregs specific for β-cell autoantigens, albeit likely 

in combination with additional immunomodulatory agents.

Our lab and others are currently pursuing biomaterials applications to optimize Treg 

survival and function in vivo following infusion. Poly(d-lactide-co-glycolide) (PLGA) 

is degraded in the body via bulk erosion and hydrolysis into glycolic acid and lactic 

acid, conferring no harmful side effects [166]; consequently, PLGA is used in numerous 

devices/therapeutics approved by the FDA, such as biodegradable surgical sutures and 

drug delivery products, which makes it extremely attractive for development of products 

quickly translatable to clinical use. PLGA can be used to produce micro- or nanoparticles 

(NPs), which have been widely investigated for delivering immunotherapeutics [167,168]. 

By altering the lactide/glycolide ratio, PLGA NPs can be designed to provide tunable 

sustained release of encapsulated immunomodulatory molecules [169]. Moreover, NPs can 

be engineered to simultaneously deliver therapeutic factors and adjuvant drugs, each with 

tailored release kinetics while maintaining the tissue-targeting capacity of a CAR or TCR. 

Indeed, controlled release of immunomodulatory agents by PLGA particulate systems are 

being explored as immunotherapeutic tools for treatment of cancer, autoimmunity and 

transplant-related complications [170–172]. An attractive strategy is to focus drug and 

growth factor action on adoptively-transferred, therapeutic Tregs through the conjugation 

of agent-loaded NPs directly onto the cell surface via the incorporation of reactive groups 

into the PLGA formulation [173]. This flexible approach allows for concurrent in vivo 
delivery of therapeutic agents in both an autocrine and paracrine manner. As result, it may 

be possible to simultaneously conjugate Tregs to PLGA NPs loaded with Treg growth 

factors (e.g., IL-2) and to PLGA NPs loaded with therapeutic agents designed to impact the 

extracellular milieu upon Treg migration to sites of inflammation.

Clearly, a vast number of possible targets for cellular manipulation exist, supporting a 

synthetic biology approach to therapeutic T cell engineering [174]. By establishing a 

standardized series of ex vivo modifications for each target tissue/disease application, 

scientists and clinicians will be able to ensure infusion of a consistent therapeutic product, 

essential for both safety and efficacy. The feasibility of using Tregs as a future ACT 

to restrain inflammation is supported by numerous studies utilizing either allogeneic or 

autologous effector T cells to augment immunity in cancer patients (reviewed in [175–177]). 

The therapeutic potential of these cells has been further augmented by genetic engineering, 

conferring upon T cells the ability to target a specific tumor-associated antigen while 

simultaneously increasing their lifespan and reducing potential toxicity [32–38]. As a result, 

ACT-based immunotherapies have been extraordinarily successful in treating cancer and 

infectious diseases, and the lessons learned from those efforts will afford an advantage 

toward the design and implementation of novel Treg therapies.
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Figure 1. Ex vivo human Treg expansion protocols reported in the literature.
Isolation of Tregs from UCB or APB is accomplished by either MACS or FACS. FACS 

is often used to sort out an enriched population of CD4+CD25+CD127lo/-CD45RA+ cells 

directly from the starting sample, but MACS can be employed prior to sorting to remove 

contaminating CD8+ and CD19+ cell types [84,114,125]. Likewise, MACS can be utilized 

to pre-enrich for CD25+ cells prior to FACS to obtain a highly enriched population of 

CD4+CD25+CD127lo/-CD45RA+ cells. Regardless of the isolation protocol, these highly 

enriched cells are then cultured in the presence of cytokines to support Treg proliferation 

and inhibitory compounds such as rapamycin to maintain Treg purity. Expansion of the Treg 

population is dependent on the introduction of stimulatory agents in the form of either anti-

CD3/CD28 monoclonal antibody coated beads, allogenic DCs, or artificial APCs. Expansion 

of Treg populations requires up to 28 days of culture with multiple re-stimulations and 

frequent cytokine supplementation of the growth media. Expanded cells are validated for 

fold expansion, stable expression of Treg markers, purity, and stability before being used 

in therapeutic applications or experimental studies designed to enhance Treg specificity and 

potency.

APB: Adult peripheral blood; APC: Antigen presenting cell; DC: Dendritic cell; FACS: 

Fluorescence activated cell sorting; GVHD: Graft versus host disease; MACS: Magnetic 

activated cell sorting; NK: Natural killer; PBMC: Peripheral blood mononuclear cell; UCB: 

Umbilical cord blood.
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