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Abstract: In nanofluidics, surface control is a critical technology because nanospaces are surface-
governed spaces as a consequence of their extremely high surface-to-volume ratio. Various surface
patterning methods have been developed, including patterning on an open substrate and patterning
using a liquid modifier in microchannels. However, the surface patterning of a closed nanochannel
is difficult. In addition, the surface evaluation of closed nanochannels is difficult because of a lack
of appropriate experimental tools. In this study, we verified the surface patterning of a closed
nanochannel by vacuum ultraviolet (VUV) light and evaluated the surface using streaming-current
measurements. First, the C18 modification of closed nanochannels was confirmed by Laplace pressure
measurements. In addition, no streaming-current signal was detected for the C18-modified surface,
confirming the successful modification of the nanochannel surface with C18 groups. The C18 groups
were subsequently decomposed by VUV light, and the nanochannel surface became hydrophilic
because of the presence of silanol groups. In streaming-current measurements, the current signals
increased in amplitude with increasing VUV light irradiation time, indicating the decomposition of
the C18 groups on the closed nanochannel surfaces. Finally, hydrophilic/hydrophobic patterning by
VUV light was performed in a nanochannel. Capillary filling experiments confirmed the presence
of a hydrophilic/hydrophobic interface. Therefore, VUV patterning in a closed nanochannel was
demonstrated, and the surface of a closed nanochannel was successfully evaluated using streaming-
current measurements.

Keywords: nanofluidics; nanofabrication; surface patterning; streaming current; Laplace valve

1. Introduction

Recent progress in the miniaturization of fluidic devices has led to the downsizing
of microfluidics to nanofluidics. A nanochannel has a typical diameter of 10–1000 nm
and a volume on the femtoliter to picoliter scale. Such ultrasmall channels have led to
the development of various new functional devices [1–5]. The basic technologies used to
develop these functional devices include fabrication, flow control, and detection. During
fabrication, in particular, surface modification is critical. The surface-to-volume (S/V) ratio
in a typical nanospace is extremely high, which means that molecules/ions on nanochan-
nel surfaces strongly affect the behavior of the liquid phase. For example, dissociated
protons from silanol groups on nanochannel surfaces were found to dramatically change
the concentration of liquids in the nanochannels [6,7], resulting in a pH value of ~5 when
a neutral solution was introduced into the nanochannels [8,9]. The high S/V ratio also
contributes to liquid motion in nanochannels. In accordance with the Young–Laplace
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equation, liquids in nanochannels can be moved by surface tension at the solid/liquid
interface, which depends on the nanochannel size. In a hydrophilic nanochannel, the
capillary pressure was found to reach the sub-megapascal order, which was confirmed by
capillary filling experiments in nanochannels [10,11]. In the case of hydrophobic surfaces,
the acceleration and deceleration of liquids—even a stop-and-go motion of the liquids—can
be induced in nanochannels [12,13]. The surface effect is enhanced by the nanostructure of
the nanochannel surfaces, which has led to more sophisticated fluidic control [14,15]. In
addition, molecules/ions on the nanochannel surfaces strongly affect molecules in the liq-
uid phase. Given that the diffusion length for typical molecules such as proteins in liquids
is in the order of 10 µm within 1 s, molecules in the liquid phase of the nanochannel can
frequently contact nanochannel surfaces. By exploiting such characteristics in nanochan-
nels, researchers have developed various novel devices with functionalized nanochannel
surfaces. For example, researchers have developed enzymatic reaction devices [16,17],
immunochemical reaction devices [18,19], and bioelectrochemical reaction devices [20] by
effectively utilizing reactions at the solid/liquid interfaces in nanochannels. In addition,
our group recently found that even small amounts of ions that remained on nanochan-
nel surfaces after the channel fabrication processes reacted with molecules in the liquid
phase, which affected the detection of signals from the main chemical reaction [21]. Thus,
nanospaces are surface-governed spaces, and surface control is therefore essential for
nanofluidics.

Channel surface modification and patterning methods have been developed to func-
tionalize surfaces. Among patterning methods for open substrates, nanoimprint lithogra-
phy [22–24] and combined processes of lithography and lift-off [25–28] are well known.
In addition, some groups have developed devices by bonding a patterned substrate and
another substrate fabricated in a channel [12,29–31]. For nanochannel surface patterning, a
method that combines vacuum ultraviolet (VUV) light patterning [18] and low-temperature
bonding [32] was developed. However, with such patterning methods, only the top sur-
face and/or bottom surface can be modified by functional molecules. This limitation
is problematic for patterning the entire surface (i.e., top, bottom, and side surfaces) of
nanochannels. For example, the hydrophobic modification of the entire surface is required
for a hydrophobic Laplace valve, because liquid leakage occurs from hydrophilic parts
if the hydrophilic part remains on some surfaces. One method for modifying the entire
surface is to introduce modifier liquids into the closed channels [33]. For example, partial
modification was used to induce multiphase flow of modifier liquids [34,35]. Using this
method, Nakao et al. developed a novel nanofluidic device for a single-cell analysis [36]
patterned by several functional surfaces. Modification methods are not limited to the
introduction of liquids. Partial polymerization was achieved by introducing O2 gas to
partially inhibit a polymerization reaction [37]. Surface modification has also been achieved
by plasma treatment of a channel by introducing O2 plasma into it [38,39]. Even with these
methods, complicated patterns such as stripes across the flow direction are difficult to
form because the flow is basically continuous. Therefore, the surface patterning of closed
channels is still difficult, and an effective method for patterning closed channels is needed.

One approach to address surface patterning is photopatterning [40]. In photopattern-
ing, a device fabricated from transparent materials such as glass is used to introduce light
into the channel; as a result, the channel surface is activated by photochemical reactions.
In this method, the pattern can be easily designed via photomasking. For example, poly-
merization by UV light was carried out in part of a microchannel by partitioning with a
photomask [41–43]. These technologies are highly useful for use as surface patterning meth-
ods for microchannel surfaces. However, photo-based patterning for nanochannel surfaces
has not been reported. Because of the small dimensions of nanochannels, photochemical
reactions within them are controlled by still-unknown factors.

Surface evaluations to check whether small and closed nanochannels have been
successfully patterned are also difficult. For bulk samples, numerous tools are used
to evaluate the surface, including contact-angle measurements and X-ray photoelectron
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spectroscopy (XPS); however, such methods are difficult to apply to closed channels.
One approach to evaluating closed channels is to attach fluorescent molecules to their
surface [18,44]. However, in these methods, fluorescent probes should be introduced in the
channel. Thus, another approach has been proposed: a streaming current. A streaming
current is generated by pressure-driven flow in small spaces, and the magnitude of the
current depends on the surface charges [45,46]. In this method, the streaming-current
signals can be obtained just by water flow, which indicates that the addition of any probe is
not necessary and contamination of the channel by the probe does not occur. Previously, we
developed methods for measuring the streaming current in a nanochannel [47] and found
that the current signal properly reflected the surface charges [48]. Thus, the difference
in surface charges before/after surface modification can be evaluated using streaming
currents.

In the present study, we examined VUV-light-induced surface patterning of a nanochan-
nel. First, surfaces of a closed nanochannel fabricated on fused-silica substrates were
hydrophobically modified with C18 groups. The C18 groups were then decomposed by
VUV light, and the surface was rendered hydrophilic through functionalization with silanol
groups. During irradiation with VUV light, reactive oxygen species generated via O2 gas
molecules absorbing high-energy VUV light oxidatively decomposed the C18 molecules
on the nanochannel surfaces [34,49]. In this experiment, the dependence on the VUV light
irradiation time was varied. Principally, a C18 group has no charge, whereas a silanol group
has a negative charge because of proton disassociation when exposed to a liquid. We used
streaming-current measurements to evaluate the difference in the surface charge before and
after the modification. Finally, we demonstrated hydrophobic/hydrophilic patterning in a
closed nanochannel by the patterning of C18/silanol groups and verified the patterning via
capillary-filling experiments.

2. Materials and Methods
2.1. Hydrophobic/Hydrophilic Patterning Using VUV Light

Figure 1 shows the hydrophobic/hydrophilic patterning procedure. In our previous
method, C18 modification and VUV light patterning were performed before bonding.
As a result, some channels had a partial C18 surface (only the bottom and side surfaces
were modified with C18 groups, as shown in Figure 1, left). In the present study, after
the channel fabrication and bonding procedures, the specimens were subjected to C18
modification and VUV light patterning. In this procedure, nanochannels with all-silica
surfaces and nanochannels with all-C18 surfaces were patterned. The details are as follows.
Nanochannels were fabricated on a fused-silica substrate by electron-beam (EB) lithography
and dry etching [50,51]. First, a Cr layer was deposited onto a fused-silica substrate (VIO-
SILSX, Shin-Etsu Quartz, Tokyo, Japan; 70 × 30 × 0.7 mm3) and an EB resist (ZEP-520A,
Zeon, Tokyo, Japan) was spin-coated onto the Cr layer. After EB lithography (ELS-7500,
Elionix, Tokyo, Japan), the EB resist was developed with o-xylene and the Cr layer was
wet-etched using a Cr etchant solution (Ce(NH4)2(NO3)6, FUJIFILM Wako Pure Chemical,
Osaka, Japan). Dry etching was performed using a dry-etching apparatus (NE-550, ULVAC,
Kanagawa, Japan). On another fused-silica substrate, microchannels for introducing liquid
into a nanochannel were fabricated. First, 1,1,1,3,3,3-hexamethyldisilazane (HMDS, Wako
Pure Chemical Industries, Osaka, Japan) was spin-coated, followed by spin-coating of a
photoresist (KMPR® 1035, Microchem, Round Rock, TX, USA). After photolithography,
dry etching was performed to form microchannels. After the channels were fabricated,
the two substrates were bonded together with their nanochannels and microchannels
aligned. After the bonding process, all the nanochannels were modified with C18 using
octadecyldimethyl-N,N-diethylaminosilane (ODS-DEA) synthesized from diethylamine
and ODS-Cl (Sigma-Aldrich, St. Louis, MO, USA). After the C18 modification process, the
nanochannel was modified with chlorotrimethylsilane (Tokyo Chemical Industry, Tokyo,
Japan) for end-capping. The nanofluidic device was then irradiated using a VUV-light
irradiation system with a wavelength of 172 nm (SUS713, Ushio, Tokyo, Japan).
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Figure 1. Procedure for nanochannel fabrication and surface patterning.

2.2. Streaming-Current Measurements

Figure 2 shows the principle of the streaming current corresponding to the surface
charges in a nanochannel. In a fused-silica nanochannel, the silanol groups on a surface
dissociate in a liquid phase. The negatively charged surface and the accumulated positive
ions near the surface form an electric double layer (EDL). The properties of the liquid
in the nanochannel are strongly affected by the EDL because the thickness of the EDL is
approximately 1–100 nm. Upon the application of external pressure, the pressure-driven
flow of the liquid induces an ion flow in the EDL, which produces a streaming current. After
the nanochannel surface is modified with C18, it lacks charges because of the conversion
of silanol groups to C18 groups. In this case, no streaming current is generated. Under
irradiation with VUV light, the C18 groups are decomposed by the VUV light and the silanol
groups are partially regenerated. The streaming current depends on the zeta potential of
the surface and its surface charge density [52,53]; therefore, the ratio of recovered silanol
groups can be estimated. The details of the streaming-current measurement system are
available elsewhere [47,48]. Currents were measured under applied pressures of 0, 0.1,
0.2, and 0.3 MPa. In addition, different surfaces were prepared by varying the VUV light
irradiation time from 0 to 17, 51, and 119 min; the streaming currents for each surface were
subsequently measured.
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Figure 2. Principle of streaming current corresponding to surface charge.

3. Results and Discussion

Figure 3 shows the fabricated nanofluidic device used to verify the C18 modifica-
tion and silanol recovery under irradiation with VUV light. The width and depth of
the nanochannel were 1380 and 1050 nm, respectively. The results of streaming-current
measurements before the C18 modification are shown in Figure 4A. For the first 100 s,
current signals were measured in the absence of applied pressure. Thereafter, a pressure of
0.1 MPa was applied. For dozens of seconds after the pressure was applied, the current
signals fluctuated, indicating that flow in the nanochannel was not stable. The current
signals stabilized thereafter. In a same manner, the applied pressure was increased to 0.2
and 0.3 MPa, and the current signal at each applied pressure was acquired. The obtained
current signals (average ± 3σ) were plotted as a function of applied pressure (Figure 4B).
A linear relationship was obtained between the applied pressure and the current signals,
indicating a successful measurement because they theoretically exhibited a linear relation-
ship. The slope in Figure 4B was recorded as the streaming current normalized by the
pressure.
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Figure 4. Streaming-current signals for unmodified nanochannel surface: (A) raw data for current signals and (B) pressure
dependence of current.

The nanochannel was next modified with C18. To verify the C18 modification, we
measured the Laplace pressure (hydrophobic pressure) in the nanochannel. Figure 5A
shows water introduced under an applied pressure of 45 kPa. The water was stopped at
the interface between the microchannel and the nanochannel due to the Laplace pressure.
Figure 5B shows water introduction under 48 kPa of applied pressure. Under this condition,
the visual appearance of the nanochannel differed from that in Figure 5A because of
the difference in refractive index between the air and water. Therefore, 48 kPa was the
breaking pressure for the Laplace pressure of the nanochannel. As a result, water was
introduced into the nanochannel. Given that the advancing contact angle on a C18 surface
is 104 ± 4◦ [15], the calculated Laplace pressure was 58 ± 16 kPa, which indicates that the
Laplace pressure obtained from experiments corresponded well with the calculated value.
Thus, C18 modification of the nanochannel was successful.
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Figure 5. Images of water introduction into hydrophobic nanochannel: (A) before water was intro-
duced under an applied pressure of 45 kPa; (B) after water was introduced under an applied pressure
of 48 kPa.

Streaming-current measurements were performed using the C18-modified nanofluidic
device and also using the device after irradiation with VUV light. Figure 6 shows the
pressure-normalized streaming-current values for the unmodified and modified nanochan-
nel surfaces. Compared with the current on a fused-silica surface before C18 modification,
the current on the C18-modified surface was greatly decreased to approximately zero. This
result also indicates that the C18 modification was successful: no streaming current was
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observed because of a lack of surface charges on the C18 groups. For the VUV-irradiated
specimens, the current increased with increasing VUV irradiation time. These results are
consistent with surface charges being recovered upon C18 decomposition under VUV light.
After 119 min of irradiation, the current was 37% of that on an unmodified fused-silica
surface. These results suggested that apporoximately 37% of the silanol groups were
recovered after 119 min of VUV irradiation. However, the estimation of the recovery ratio
needs further investigation. Using bulk chemical parameters to calculate the surface charge
density is difficult because the properties of liquids in nanochannels differ from their bulk
properties. For example, compared with bulk liquids, liquids in nanochannels have been
reported to exhibit a lower pH [8,9], lower dielectric constant [9,54], and enhanced proton
dissociation [48]. Therefore, obtaining an accurate recovery ratio is difficult. Nonetheless,
the phenomenon of surface charges being recovered upon the conversion of C18 to silanol
groups was confirmed. To increase the recovery ratio, a longer irradiation time, an increase
in light power, and the optimization of O2 concentration were considered. In addition, the
streaming current was successfully measured in 50 nm channels [51] at the minimum; thus,
the surface evaluation method in the present study is applicable for smaller nanochannels.
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In our previous experiments, we found that almost the entire surface was recovered in
approximately 12 min under VUV-light irradiation of the open substrate on an aminopropy-
ltriethoxysilane (APTES)-functionalized surface [18]. To explain the difference between
the effect of VUV light on the APTES-functionalized and C18-functionalized surfaces, we
considered two possibilities. The first is that the difference is attributable to the differences
between the properties of molecules on the substrate surface. APTES has a three-carbon
chain, whereas C18 has an 18-carbon chain; the decomposition of C18 would reasonably
require a longer irradiation time than the decomposition of APTES. The second possibility
is that the difference is attributable to the difference in reaction fields. In a nanochannel, O2
molecules are not readily provided because of their small diffusion flux. Consequently, a
prolonged time was needed for recovery from the C18 functionalization of the nanochannel
surfaces compared with the time need for recovery from APTES on open substrate surfaces.
The results and discussion in the present study are useful for understanding chemical
reactions at the gas/solid interface in a nanochannel.

Finally, liquid introduction was demonstrated using a VUV-light-patterned nanochan-
nel. As shown in Figure 7, the 200 µm wide and 300 nm deep channel was fabricated. After
C18 modification of all the nanochannels, a part of the 300 nm channel area was irradiated
by VUV light for 17 min. After the VUV light irradiation, water was introduced under an
applied pressure of 90 kPa; the water only filled the hydrophilic area and stopped at the
hydrophilic/hydrophobic interface. There was a gap of approximately 100 µm between
the edge of VUV light irradiated area and hydrophilic/hydrophobic interface. It was
considered that excited O2 gas molecules were diffused during the VUV light irradiation,
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and their diffusion lengths were to a similar scale as our previous results [18]. From the
results, to produce hydrophilic surfaces, it was confirmed that 17 min of VUV irradiation
was enough, and more hydrophilic surfaces can be principally considered in the case of
a longer VUV irradiation time. In light of the fact that that no streaming-current signals
in 17 min of VUV irradiation were obtained, the following suggestion was considered:
carbon structures in C18 were partially decomposed by VUV light, and the remaining
partial carbon structure on the surface showed hydrophilic patterning, but a streaming
current was not observed because they did not induce a surface charge. On the basis
of this discussion, useful practical information was obtained as follows. To produce hy-
drophilic/hydrophobic patterning alone, 17 min VUV irradiation is required. In addition,
to produce silanol/C18 patterning, a longer VUV irradiation time is required, as shown
in streaming-current results with 51 min and 119 min VUV irradiation. When the applied
pressure was increased to 95 kPa, the gas/liquid interface was moved to the gas area
and water filled the hydrophobic area. The breaking pressure of 95 kPa was reasonable
compared to the calculated Laplace pressure of 116 ± 33 kPa using a channel width of
200 µm, a depth of 300 nm and a contact angle of 104 ± 4◦ [15]. Therefore, the proposed
VUV patterning method achieved hydrophilic/hydrophobic patterning. This work thus
represents the first report of hydrophilic/hydrophobic patterning of a closed nanochannel
by VUV light. Principally, the irradiation of VUV light was considered to be independent
of channel width; thus, this method is promising for the patterning of a shallower channel
such as a square-type nanochannel in which width and depth are at the 100 nm scale.
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4. Conclusions

In the present study, we verified the surface patterning of a closed nanochannel by
VUV light. First, surfaces of a closed nanochannel fabricated on fused-silica substrates
were hydrophobically modified with C18. The C18 modification was confirmed by Laplace
pressure measurements, and the results showed a reasonable Laplace pressure compared
with the calculated pressure. In addition, no streaming-current signal was obtained for the
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C18 surface, further indicating the successful modification of the surface with C18 groups.
The C18 groups were subsequently decomposed by VUV light, and the surface became
hydrophilic in nature because of the formation of silanol groups. Streaming-current mea-
surements showed that the current signals increased in intensity with increasing VUV light
irradiation time, indicating the decomposition of the C18 groups on closed nanochannel
surfaces. Compared with the streaming-current signals before C18 modification, 37% of the
signal was recovered after 119 min of VUV irradiation. To increase the recovery ratio, a
longer irradiation time, an increase in light power, and the optimization of O2 concentration
were considered. In addition, on the basis of our previous streaming-current results, the
surface evaluation method in the present study is applicable for 50 nm channels at the
minimum. Further investigations are needed to estimate the recovery ratio of surface
charge on the nanochannel on the basis of the unique properties of liquids in a nanochan-
nel compared with those of the corresponding bulk liquids. Hydrophilic/hydrophobic
patterning by VUV light was performed in a nanochannel. Capillary-filling experiments
confirmed the formation of a hydrophilic/hydrophobic interface. The results showed that
17 min of VUV irradiation was required to produce hydrophilic/hydrophobic patterning,
and VUV irradiation longer than 51 min was required to produce silanol/C18 patterning. In
summary, VUV patterning in a closed nanochannel was demonstrated for the first time, and
the surface of a closed nanochannel was successfully evaluated using streaming-current
measurements.
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