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Deep learning for high-throughput quantification
of oligodendrocyte ensheathment at single-cell
resolution
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High-throughput quantification of oligodendrocyte myelination is a challenge that, if
addressed, would facilitate the development of therapeutics to promote myelin protection
and repair. Here, we established a high-throughput method to assess oligodendrocyte
ensheathment in-vitro, combining nanofiber culture devices and automated imaging with a
heuristic approach that informed the development of a deep learning analytic algorithm. The
heuristic approach was developed by modeling general characteristics of oligodendrocyte
ensheathments, while the deep learning neural network employed a UNet architecture and a
single-cell training method to associate ensheathed segments with individual oligoden-
drocytes. Reliable extraction of multiple morphological parameters from individual cells,
without heuristic approximations, allowed the UNet to match the accuracy of expert-human
measurements. The capacity of this technology to perform multi-parametric analyses at the
level of individual cells, while reducing manual labor and eliminating human variability, per-
mits the detection of nuanced cellular differences to accelerate the discovery of new insights
into oligodendrocyte physiology.
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specialized multi-lamellar membrane sheaths around axons. In

pathological conditions, like multiple sclerosis, leukodystro-
phies, or CNS trauma, myelin is progressively lost due to
inadequate repair of damaged sheaths!. Enhancing myelin pro-
duction and stability are critical clinical objectives, and several
in vitro systems have been established to study these dynamic
process®~4. In one particularly reduced system, oligodendrocytes
are cultured on axon-diameter electrospun polymer nanofibers.
Immature O4+ oligodendrocytes initially contact fibers, followed
by differentiation and expression of mature oligodendrocyte
markers like myelin-basic protein (MBP)®>. The extent of
ensheathment around these axon-like structures can be measured
in response to different treatments, ranging from substrate
coatings to the application of bioactive small molecules®=2.
Regardless of the culture system, however, oligodendrocyte
myelination is typically quantified manually, creating a bottleneck
and introducing human subjectivity.

To resolve this quantitative challenge, we developed automated
high-throughput methods that combine micro-engineered
nanofiber culture devices, automated microscopy, and analytic
algorithms to extract detailed morphological properties from
individual oligodendrocytes. Quantitative algorithms were
developed to assess myelin elaborated on electrospun 2 pm-dia-
meter poly-L-lactic acid fibers®”. Oligodendrocytes cultured on
nanofibers recapitulate biologically relevant features of myelin
development and the planar parallel fiber arrangement is con-
ducive to automated imaging and segmentation. In this report, we
describe optimized protocols for oligodendrocyte nanofiber cul-
tures and automated imaging, along with the development of a
heuristic algorithm whose limitations ultimately informed the
construction of a deep learning neural network to quantify
immunocytochemically labelled markers of oligodendrocyte
ensheathment.

Our initial heuristic approach targeted the general morpholo-
gical characteristics of oligodendrocyte sheaths, such as the pre-
sence of thick elongated structures, to segment fluorescently
labelled oligodendrocyte segments. Although the approximations
encoded in the heuristic MATLAB algorithm resulted in rapid
and accurate measurements of individual ensheathed segments,
this method revealed that reliably associating myelin-like
ensheathments with the corresponding cell bodies presented a
substantial challenge. To improve beyond this initial approach,
we developed a deep learning neural network with the ability to
extract and associate multiple morphological parameters with
individual oligodendrocytes.

To develop the convolutional neural network (CNN), we
employed a cell-by-cell training method and a UNet archi-
tecture!® (CNN-UNet) that enhanced the algorithm’s capacity to
perform segmentations on individual oligodendrocytes using
spatial and object specific information. Validation demonstrated
that the deep-learning approach performs beyond the accuracy of
the heuristic algorithm, particularly at single-cell resolution.
Further, the CNN-UNet reached a level of analytic accuracy
within the range of human experts on multiple parameters, while
reducing workloads and providing standardization that elim-
inates human variability.

We then tested the sensitivity of the heuristic and CNN-UNet
algorithms to detect a previously reported difference in the
number of sheaths formed per oligodendrocyte on poly-D-lysine
(PDL) versus laminin 1 coated nanofibers’. Both algorithms
successfully detected the difference in number of sheaths and, due
to the high number of cells analyzed, also revealed a previously
unidentified increase in the length of oligodendrocyte sheaths on
laminin 1 compared to PDL coated nanofibers. Our findings
highlight the power of this analytic approach to quantify large

I n the CNS, oligodendrocyte produce myelin by wrapping

numbers of cells, thereby providing sufficient sensitivity to detect
nuanced differences in cellular processes.

Overall, the analytic pipeline we describe allows for a 96 or 384
well plate to be imaged overnight and analyzed the following day
with a single computing station. By extracting multiple mor-
phological parameters at single-cell resolution, while obtaining
analytic quality similar to human segmentations, this high-
throughput system has the potential to accelerate the discovery of
therapeutics that promote myelin protection and enhance our
understanding of oligodendrocyte physiology.

Results

Comparison of heuristic and CNN-UNet segmentations. To
extract detailed morphological properties from individual OLs,
we combined automated high-throughput methods, micro-
engineered nanofiber culture devices, automated microscopy,
and analytic algorithms (Fig. 1a). The heuristic algorithm devel-
oped to quantify oligodendrocyte ensheathments targeted two
primary morphological properties: linearity of ensheathments
and their continuity with cell bodies (Fig. 1b, c). In addition to
performing qualitatively valid ensheathment segmentations
(Fig. 1c), this algorithm revealed the challenge of associating
ensheathed segments with specific oligodendrocytes, as mor-
phological approximations of continuity and cell body size were
not always viable in images containing crowded cells, faded
fluorescence, or certain atypical morphologies. To resolve this, we
developed a deep learning approach using a single-masked-
nucleus training method (See “Materials and Methods: Training”,
Fig. 2) which exhibited an enhanced capacity to associate
multiple-morphological features with specific oligodendrocytes
(Fig. 3). A qualitative visual evaluation of the output of select
layers of the trained CNN-UNet confirmed that the network had
learned to identify ensheathments belonging to individual oligo-
dendrocytes when prompted with images of cells with masked
nuclei (Fig. 3¢, d). The capacity for the CNN-UNet to combine
spatial and object-specific information to reliably associate spe-
cific sheaths with individual cells highlights a key advantage of
our masked-nucleus training method over approximating mor-
phological features with heuristic algorithms.

CNN-UNet best matched expert human accuracy. After gen-
erating heuristic and deep-learning algorithms, the performance
of both systems was evaluated in relation to human researchers.
Three humans were employed for this analysis and were ranked
based on their experience with oligodendrocyte cultures—human
1 (H1) being a cell biologist, H2 a computer scientist with some
experience in cell biology, and H3 a summer medical student with
no previous experience working with oligodendrocytes. Initial
analysis of one test image containing ~1000 candidate cells
revealed that the output of either the heuristic or CNN-UNet
algorithms fell within the range of human quantification for
multiple parameters (Fig. 4). No statistically significant differ-
ences were detected between the log and absolute mean sheath
lengths, nor in the mean sheath length per cell (mSLC), between
H1-3 and machine algorithms (Fig. 4a, b, d). However, despite
predefined segmentation criteria (see “Materials and Methods:
Manual Segmentation Criteria”), variability between humans was
much higher at a single-cell level (Fig. 4c). Only the CNN-UNet
identified a mean number of sheaths per cell that did not differ
significantly from H1 (Fig. 4c). The overall number of
ensheathing cells identified was also consistent between groups,
except for H2 (Fig. 4e).

After evaluating global morphological parameters, we then
used Jaccard Index (JI) comparisons, a measure of the overlap
similarity ~between any binarized segmentation and a
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Fig. 1 Overview of analytic pipeline and heuristic MATLAB algorithm. a Graphic illustrating automated pipeline using nanofiber culture devices, automated
imaging, and analytic algorithms to quantify oligodendrocyte ensheathments. b Input images are pre-processed using CLAHE enhancement to increase
contrast before identifying ensheathments and oligodendrocyte cell bodies in two separate analytic streams. (Stream 1) a ridge-filter is applied to identify
ensheathed nanofiber segments and (Stream 2) cell-bodies are estimated using watershed segmentation with imposed local distance maxima. The middle
link (subtraction sign) subtracts the cell bodies from the ensheathments identified by the ridge filter to eliminate segments located within cell bodies. The
final outputs of both pathways are combined for ensheathment continuity analysis. € Input and output of the heuristic algorithmic approach. Cell nuclei
(blue), O4 (red), nanofibers (bright field in background). Scale bar 20 um. Yellow outlines in the output image indicate the algorithm’s segmentations

corresponding ground truthll, to ensure that the algorithmic
segmentations were similar to those of human researchers on a
single cell and whole-image level. To assess the similarity of
segmentations on individual cells, we selected the segmentations
provided by H1 as the ground-truth and computed the JI for
every cell that was commonly identified after pairing H1 with
each researcher or computer program. We found that the CNN-
UNet outperformed human participants and the heuristic
algorithm in matching H1 at single-cell resolution (Fig. 4f). We
also computed the global JI for the entire whole-well image and
found that the CNN-UNet best matched expert H1 (Fig. 4g).
Thus, the CNN-UNet outperforms the heuristic algorithm in
analysis at single-cell resolution and in global parameters due to
its heightened capacity to extract information from individual
oligodendrocytes.

CNN-UNet reduces variability and generalizes to experts. To
verify that the performance of the algorithms was not biased to

the specific ground-truth used for training, we introduced an
external expert (Ex1), from a different laboratory than H1, who
was not involved in the development of the analytic models.
Segmenting the same whole-well image, Ex1 matched the CNN-
UNet on several parameters, including: the mean number of
sheaths per cell, mSLC, single-cell JI values, global JI values, and
the number of total ensheathing cells (Fig. 4c-g). The heuristic
algorithm also matched Ex1 in identifying the mean number of
sheaths formed per cel, mSLC, and the number of total
ensheathing cells, but performed poorly in associating individual
sheaths and in overall segmentation overlap, as indicated by lower
single-cell and global JI values (Fig. 4c-g). Additionally, Ex1
reported a slight but significant shift of ~4pum in mean
ensheathment lengths (Fig. 4a, b) and differed from H1 in
identifying the mean number of sheaths per cell (Fig. 4c). This
difference shows that, while human experts matched each other
better than the non-expert (H3), there was still slight variability in
specific parameters of the analyses carried out by the two different
experts. Conversely, the CNN-UNet matched Exl on several
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Fig. 2 Pre-processing, network architecture and work-flow of CNN-UNet approach. a The yellow rectangular mask on the whole-well image (left) indicates
the portion of the image cropped around a candidate Hoechst center. That Hoechst center is then used as a mask to replace the green channel (middle) in
the “Input” image (right). Arrowhead on “Input” image indicates the nucleus of the masked cell of interest. This method is used to generate both the
training images and the input images when testing the algorithm. Scale bar on “Whole-well image"” corresponds to 1 mm. Scale bar on “Input” corresponds
to 100 um. b Starting from the left, a whole-well image is pre-processed to generate nuclei masks for candidate cells. These candidates are then piped into
the network architecture as an “input” image that is down-sampled on the left arm of the network, and then up-sampled on the right-arm of the network.
Spatial information from the down-sampling branch is also mixed into the up-sampling to allow the network to learn to associate ensheathments with
individual oligodendrocytes. The final “output” segmentation is then subjected to post-processing

parameters, and even identified a mean number of sheaths per
cell that was not significantly different from either expert H1 or
Ex1 (Fig. 4c). This capacity to match Ex1 and H1 demonstrates
that the CNN-UNet is generalizable to external experts beyond
the training ground-truth and highlights the capacity for auto-
mated techniques to offer an unvarying analytic standard that
eliminates inherent human variability in quantification.

CNN-UNet generalizes to different orientations. We also
assessed the capacity of the deep learning approach to quantify
ensheathments at differing orientations by training a CNN-UNet
with images rotated at random angles. Notably, training a CNN-
UNet with rotated images dramatically decreased the training rate
and resulted in a lower plateau in JI after 16 days (1,000,000
epochs) (Fig. 5a). The performance of the CNN trained with
rotated images was then tested with a whole well image (“CNN-
UNet - rotated”), or by randomly rotating each “input” image
that was cropped around a candidate cell within a whole well
image (“CNN-UNet - rand rotated”). Interestingly, the random
rotations of cropped “input” images during testing did not
drastically affect the performance of the CNN-UNet (Fig. 5).

Regardless of the testing method, however, the mean length of
ensheathed segments identified by the CNN-UNet trained with
rotated images was significantly lower than that identified by H1
and the non-rotated control CNN-UNet (Fig. 5b, ¢). The number
of sheaths per cell, however, matched between all CNN’s and H1
(Fig. 5d). As well, the CNN-UNet trained with rotated images had
a slightly lower sensitivity towards ensheathing cells overall
(Fig. 5e), and matched H1 on global segmentations to a moderate
degree (Fig. 5f). Thus, our results demonstrated that a masked-
nucleus training method can allow our CNN-UNet to generalize
to both rotated and aligned sheaths without requiring a
researcher to model more heuristic features through computer
code. Notably, while training the CNN-UNet with rotated images
reduced sensitivity, the network still provides a useful quantifi-
cation that offers standardization to eliminate human variability
in analysis.

Subtle differences detected between nanofiber coatings. Having
validated the analytic algorithms on both whole-image and cell-
to-cell levels, we assessed the capacity of the algorithms to detect a
subtle biological effect by examining the difference between PDL
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Fig. 3 CNN-UNet training and demonstration of analysis at single-cell resolution. a Loss decreased continuously for all validation sets, however, the
spatially weighted network did see an increase in validation loss after ~301,000 epochs, indicating over-fitting. Thus, the training was stopped early for
testing. b Both class and spatial weighting improved learning rates dramatically, as indicated by an earlier and steeper increase in the JI of the validation
sets. However, class weighting appears to plateau without an improvement in the JI after ~180,000 epochs. The spatially weighted CNN-UNet was
therefore selected as our best model. € Sample outputs of specific layers leading to the final output “CNN-UNet segmentation”. “Layer 4" exhibited a binary
response to the distribution of MBP immunoreactivity, while “Layer 5" appeared to activate for different parts of the MBP image, suggesting the extraction
of features corresponding to linear ensheathments. Arrowhead shows nucleus of masked cell of interest. Scale bar “Input” 100 um. Scale bar
“Segmentation” and “Truth mask” 50 um. (d, left) Zoomed inset of the 10x whole-well image used for testing. The ensheathed fibers segmented by the
CNN-UNet are overlaid (white). Hoechst is shown in blue and MBP in red. Scale bar 100 um. (d, right) Ensheathed fibers segmented by the CNN-UNet are

annotated to indicate the specific cell they belong to, showing that the network learned to associate fibers with specific nuclei, rather than identifying
individual segments globally across a whole-image. e lllustration of spatial-weighting penalization to draw “attention” to object edges in training
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Fig. 4 Comparison of the performance of humans (H1, H2, H3, Ex1) and machines (CNN-UNet, Heuristic) on a whole-well image. a Log and b absolute
distributions of ensheathment lengths are not significantly different between machines and humans (H1-3) except Ex1 (one-way-ANOVA with Tukey's
post-test). € Only the number of sheaths per cell identified by the CNN-UNet matched that of H1 (the expert). Other humans with less expertise, and the
heuristic program, differed significantly from H1 (Kruskal-Wallis test with Dunn’s post-test). CNN-UNet also matched human Ex1, showing no bias towards
training ground truth data. Error bars and midline show mean = SEM. d No significant difference between mean sheath lengths per cell (mSLC). Error bars
and midline show mean = SEM. e The total number of ensheathing cells was identified similarly by all groups, except H2. Such variability in analysis by
human non-experts supports the need for standardized analytic systems. f Violin plots of the JI similarity measure when comparing the segmentations
from Human 1 (H1) with H2, H3, Ex1, CNN-UNet, and the heuristic algorithm on a single-cell level. Overall, the experts best matched one another (Ex1 and
H1), but the CNN-UNet also closely matched both Ex1 and H1 on a cell-to-cell basis. Middle dot of violin plots represents the median value of the
distribution, and the upper/lower box limits show the upper/lower quartiles. g The global JI was also computed across an entire whole-well image between
the same comparison groups. The CNN-UNet and Ex1 again had the highest match with H1. See also Supplementary Table 1

and laminin 1 coated nanofibers. Compared to PDL coatings,
laminin has been shown to increase the number of sheaths
formed per cell without influencing the distribution of
ensheathment lengths’. Both machine programs recapitulated the
finding that a coating of laminin 1 increases the number of
sheaths per cell compared to PDL, while also identifying a dif-
ference in the distribution of sheath lengths, due to the increased
sample size of our automated approach. For the number of
sheaths formed per cell, the heuristic algorithm found a difference
of 0.74 £ 0.10 sheaths (p < 0.0001, Mann-Whitney U-test) and the
CNN-UNet found a difference of 0.30 + 0.08 sheaths (p = 0.0018,
Mann-Whitney U-test) between laminin and PDL coated

conditions (Fig. 6¢). For log length distributions, both the heur-
istic algorithm and the CNN-UNet identified a small but statis-
tically significant difference in means of 0.018+0.0032 (p <
0.0001, Student’s t-test) and 0.0137 +0.0037 (p =0.0002, Stu-
dent’s t-test) log units respectively (Fig. 6a, b).

While Bechler et al.” previously reported an upward trend in the
lower and upper bounds of the log length distribution in laminin
coated conditions, the difference was not statistically significant. Our
results demonstrate a key advantage of the high-throughput system:
by sampling ~43 times more ensheathments in each experimental
condition (~13,000 instead of ~300 ensheathments), we detected a
nuanced, yet significant, difference in the length of the myelin-like
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Fig. 5 CNN-UNet performance when trained with randomly rotated images. a Performance of CNNs during training as monitored through JI. Compared to
the control CNN-UNet (“Validation no rotate”), the JI of the CNN-UNet trained with rotated training images (“Validation rotated”) increased at a much
slower rate and seemed to plateau after 16 days of training (1,000,000 epochs) at a lower JI. The CNN-UNet was then tested using a whole-well image
("CNN-UNet - rotate”) or after rotating each candidate “input” cell within a whole-well image by a random angle (“CNN-UNet - rand rotate”). The random
rotation had no significant impact on testing performance. b, ¢ The length distribution identified by the rotated network differed significantly from H1 and
non-rotated control (CNN-UNet), but d the number of sheaths per cell matched between all CNN's and H1. Error bars and midline show mean = SEM.
Additionally, e the CNN's trained with rotated images also had a slightly lower sensitivity towards ensheathing cells overall, and f matched H1 global

segmentations to a moderate degree

ensheathments in the laminin 1 coated condition. A power analysis,
using Lenth’s Power Calculator!>13, demonstrates that a sample size
of 13,000 sheaths (from 10 wells with ~260 ensheathing cells and
~5 sheaths per cell) can detect a difference of 0.01 log lengths with
80% confidence, whereas a smaller sample size of 300 sheaths can
only discern a difference of 0.07 log units. Thus, only with the larger
sample size were we able to detect the difference of ~0.015 log lengths
between PDL and laminin coated nanofibers. This assessment verified
the sensitivity of our systems and highlights the importance of using a
large sample size to evaluate multiple morphological parameters when
assessing differences in forming myelin-like sheaths.

Automated pipeline permits high-throughput assessment.
Finally, we evaluated the speed of our analytic algorithms for

practical use. Our external expert (Ex1) took ~2h to trace all
MBP stained ensheathments (corresponding to ~100 ensheathing
cells) in a single well. Assuming that a researcher traces for about
8h per day, it would take ~24 days to analyze an entire 96-well
plate. In contrast, the heuristic algorithm and CNN-UNet (using
a NVIDIA GTX 1070 graphics card) analyzed the entire surface
of a 96-well plate in ~1 day (Table 1). Automated microscopy also
reduced the imaging time from approximately 77 manual hours
to 15 automated hours for a full plate (Table 2), with imaging
performed autonomously overnight after setting up and cali-
brating the system. Altogether, the automated pipeline dramati-
cally enhanced the speed of analysis while largely eliminating
manual-labor, thus providing the capacity to screen hundreds of
compounds within a week.
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Fig. 6 Detecting biological differences using the CNN-UNet and heuristic algorithm. a Absolute and b log length distributions had a small but significant
difference in means of 0.0137 £ 0.0037 log units (p = 0.0002, Student's T-test) as detected by the CNN-UNet, and a difference in means of 0.018 £
0.0032 log units (p < 0.0001) as detected by the heuristic algorithmic approach. ¢ Both systems detected increases in the number of sheaths formed per
cell between laminin and PDL coated nanofibers. The CNN-UNet found a significant difference in means of 0.30 £ 0.08 sheaths (p < 0.0018,
Mann-Whitney U-test), while the heuristic algorithm identified a significant difference in means of 0.74 £ 0.10 sheaths (p < 0.0001) between the two
conditions. Cells were pooled from six rats and cultured as 10 duplicate wells per coating condition. Error bars and midline show mean + SEM. See also

Supplementary Table 2

Discussion

To address the need for high-throughput systems that can
quantify multiple morphological properties of oligodendrocytes
and associate them with specific cells, we developed an analytic
pipeline using nanofiber cultures, automated imaging, and
quantitative algorithms. We demonstrate that this analytic para-
digm has the capacity to detect finely nuanced biological differ-
ences and to match the quality of quantification carried out by
human experts.

The biological and computational techniques employed in our
experimental system have unique advantages and limitations. The
reduced complexity of the nanofiber culture system, which lacks
axons and other factors that may influence sheath stability and
extension!4-16, is advantageous to isolate oligodendrocyte
intrinsic responses while also substantially increasing the repro-
ducibility of quantification for high-throughput screening.

Oligodendrocytes cultured on nanofibers broadly recapitulate the
temporal and spatial progression of differentiation seen in vivo®,
forming compact myelin-like MBP positive layered sheaths that
wrap nanofibers’. Further, the parallel arrangement of the
nanofibers facilitated the development of our analytic programs,
as it was not necessary to disentangle myelin-like sheaths
crossing-over one another, as occurs in typical axon-
oligodendrocyte co-cultures. Nanofiber cultures are also highly
scalable, allowing many different conditions to be analyzed in
parallel.

A final advantage of the nanofiber system is that it facilitates
the assessment of multiple biologically relevant parameters, such
as the number of sheaths formed per cell, the distribution of
sheath lengths and widths, and the proportion of cells that form
ensheathments®17, Access to quantitative information for multi-
ple parameters per cell provides key insight into which cellular
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Table 1 Comparison of human and machine approaches for quantifying oligodendrocyte ensheathment

accelerated)®

Time per Time per Time 96 wells Benefits Limitations
cell (s) well (min) (days)?
Human 80 400b ~26.7 Adaptable Variable
Fast learner Slow and costly
MATLAB - 20¢ ~1.3 Fast Inaccurate due to approximations of cell-by-cell
Standardization analysis
User customizability
CNN-UNet 1.5 50d ~3.3 Moderate - Fast speed Uncertain generalizability across variations in
CNN-UNet (GPU 0.5 15d ~1 Standardization image quality when given insufficient training

Adaptable given time to
train

Analysis at level of single-
cells

data
Training time can be long

aAnalysis time similar for 384-well plates due to identical plate area
bAssume ~300 ensheathed cells per well

CProgram cuts single-well into 16 sections, taking ~1 min on each section
dAssume -2000 candidates per well

eNVIDIA GTX 1070 graphics card

Table 2 Comparison of imaging time

Time 96 wells (h) Benefits

Limitations

Manual imaging ~778 Able to selectively focus

Automated imaging ~16 Fast

bias

Whole-well imaging eliminates field selection

Extremely slow if imaging whole wells

Biased by human field selection

Automated focus may not always focus on the best
stack

216 fields with 4-5 z-stacks per well. Roughly 3 min/field

Automated imaging approach reduces manual labor significantly, while also reducing capture time due to automated focus and pre-defined acquisition area

process may be affected by any given treatment. For example,
changes in the number of ensheathing cells implies an effect on
OPC proliferation/differentiation, whereas changes in sheath
length suggest altered process extension or stabilization. Acquir-
ing multiple parameters may reveal unexplored correlations, such
as between the mean number of sheaths per cell and sheath length
per cell. In contrast, other existing high-throughput systems often
trade multi-parametric analysis for speed. For example, a multi-
well assay that measures the MBP intensity of oligodendrocyte
ensheathments around single micropillars obtains a high-
throughput level of analysis, but discards information pertain-
ing to sheath length and number®. Other automated methods to
analyze myelin have focussed on g-ratio quantification'8-24 or the
segmentation of myelin globally in images, without associating
internodes with specific cells?>~27. The automated pipeline we
developed retains analytic speed while extracting multiple para-
meters from individual oligodendrocytes, allowing the detection
of nuanced physiological processes that can then be further stu-
died in more complex systems.

Both computational approaches presented offer advantages
beyond reducing human workloads and extracting multiple
morphological features. For example, both algorithms provide
standardized reproducible analysis, eliminating the human
variability that may result from internal biases, mistakes, and
even environmental factors, such as screen brightness, back-
ground lighting, and time-constraints. Analytic speed may be
enhanced nearly indefinitely by employing parallel computing
workstations and faster GPUs. Limiting factors become the time
for sample preparation, rather than daunting hours of manual
analysis. Finally, the architectural design of the CNN-UNet also
offers a substantial advantage. Compared to the original UNet

architecture proposed by Ronneberger et al.,!0 which scaled to
1024 filters in the deepest layers, our reduced network structure is
computationally more efficient, scaling to only 50 filters in the
deepest layer, allowing our network to run in reasonable time on
common CPUs.

Aside from similar advantages, the two programs differed in
their accuracy and speed. The heuristic approach is limited as it
uses computational approximations to extract global parameters
from an image and then attempts to mimic cell-by-cell analysis by
associating ensheathments with nearby nuclei. In contrast, the
CNN-UNet provides a more human-like assessment of nanofi-
bers by performing high-level decisions using spatial and object-
specific information simultaneously to associate specific para-
meters with individual cells. Although the heuristic algorithm is
less accurate in this capacity, it is important to highlight that the
approach is still consistent, fast, and responds more readily to
user-specified parameters. The heuristic algorithm is particularly
appropriate for studies composed of insufficient data to train a
neural network, or for analyzing data-sets containing high-
variability that require rapid optimization of analytic algorithms.

A final consideration is the generalizability of these programs.
While the heuristic algorithm was designed explicitly for aligned
nanofiber cultures, it has the immediate capacity to analyze other
linear sheath-like objects. The major obstacle to this general-
izability is that such an application may require a researcher to
have programming experience to alter the program to fully suit
their needs. In contrast, the CNN-UNet can match human seg-
mentations on a variety of computational problems without
substantially altering the algorithm. For example, we demon-
strated that the masked-nucleus training method can generate a
CNN-UNet capable of segmenting aligned oligodendrocytes in
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multiple orientations (Fig. 5), suggesting that this technique may
be applied to more complex oligodendrocyte-neuron co-culture
systems. Given that the CNN-UNet performs well with evenly-
distributed parallel sheaths in our nanofiber culture system, this
quantitative approach could be reasonably applied to tissue sec-
tions from CNS regions with an aligned geometry. The major
limiting factor for generalizability with the CNN-UNet is the time
required to re-train the network and to create ground-truth data
for supervised learning. While training is ideally only performed
once using a variety images containing individually masked cells,
the full capacity of the CNN-UNet to generalize across larger
variations in experimental preparations and imaging systems
remains to be determined.

In this study, we have developed a powerful paradigm for high-
throughput screening of oligodendrocyte ensheathments through
the combination of state-of-the-art deep learning technology and
readily available imaging and cell culture systems. Our methods
extract multiple morphological parameters from individual oli-
godendrocytes, preserve human analytic quality, remove bias and
variability, and facilitate massive increases in sample size and
analytic speed. These new developments promise to advance the
understanding of fundamental oligodendrocyte physiology and
accelerate the discovery of new drugs for the treatment of
demyelinating diseases.

Methods

Oligodendrocyte progenitor isolation and differentiation. The study was con-
ducted in accordance with the guidelines of the Canadian Council for Animal Care
and approved by the McGill University Animal Care Committees. Oligodendrocyte
progenitor cells (OPCs) were isolated from P2 Sprague-Dawley rat brains via a
protocol adapted from McCarthy and de Vellis?8. Cortices of 12 pups from a single
litter were pooled and digested in 0.025% trypsin-EDTA and 0.2 mg/mL DNAsel
prior to mechanical dissociation via trituration. Dissociated cells were then plated
in PDL-coated T75 flasks in DMEM containing 10% FBS and 1% penicillin/
streptomycin (Gibco) and cultured for 2-3 weeks at 37 °C with 5% CO, and full
media changes every 2 days. In these conditions, glial populations rapidly expand
to confluency, permitting isolation of OPCs from other cell types based on dif-
ferential adhesion. Media in the flask was replaced with 37 °C 0.01% trypsin-EDTA
in HBSS for 5 min, then swirled and aspirated to remove weakly-adherent
microglia. DMEM was then added and the flasks were vigorously hit 20 times with
a styrofoam box to detach OPCs while leaving most astrocytes attached. The OPC-
containing supernatant was then passed through 70 um filters and centrifuged for
5 min at 677 x g using a swinging bucket rotor in a Centra CL2 centrifuge (Thermo
Fisher), and resuspended in oligodendrocyte defined medium (OLDEM) prior to
cell counting and seeding in nanofiber plates. OLDEM consisted of DMEM with 5
pg/ml insulin, 100 pug/ml holotransferrin, 30 nm sodium selenite, 30 nm triio-
dothyronine, 6.3 ng/ml progesterone, 16 pg/ml putrescine, 100 U/ml penicillin, 100
pg/ml streptomycin, 0.1% fetal bovine serum, and 2% GlutaMAX (Thermo Fisher;
all other components from Sigma).

Electrospun nanofiber culturing and immunostaining. 96-well plates with
Mimetix aligned ploy-L-lactic acid electrospun nanofibers (AMS.TECL-005-8X,
The Electrospinning Company), were pretreated with 20% EtOH in water for 5 min
prior to coating with 5 pug/mL PDL in PBS for 1h at room temperature (RT),
followed by 2 h at 37 °C with 10 ug/uL recombinant laminin 1 (Sigma) in HBSS.
OPC:s were seeded at 6000 cells per well in OLDEM and cultured at 37 °C with 5%
CO, for 7 or 14 days, with full media changes every 2 days or half changes every
4 days, for O4 and MBP-based experiments respectively. After the stated culture
period, live cells were incubated with the O4 antibody (1:200; R&D) for 15 min at
37°C and then fixed by adding 100 pL of chilled 4% paraformaldehyde in 20%
sucrose to each well for 15 min at RT. For MBP staining, cells were fixed the same
way and then blocked and permeabilized for 15 min with 5% heat-inactivated
normal horse serum in 0.1% Triton X-100 at RT, and then incubated with a
primary chicken anti-MBP antibody in 5% HINHS (1:1000; Aves labs) for 4 h at
RT. The oligodendrocytes were then washed in PBS before being incubated with
IgM Cy3 for O4 stained cells, or Alexa-546 conjugated goat anti-chicken
secondary antibody (1:1000; Molecular Probes) for anti-MBP stained cells, in
addition to 1 pg/mL of DNA-staining Hoechst 33342 (Sigma) for 2 h at RT in 5%
HINHS. Cells were washed again with PBS and kept at 4 °C until they were imaged.

Automated imaging. Nanofiber plates were imaged using an LSM 880 inverted
confocal laser scanning microscope (Carl Zeiss) with a 10X (NA 0.45) Plan-
Apochromat objective. Alexa-555-conjugated secondary antibodies (Thermo-
Fisher) were used to ensure minimal spectral overlap so that Hoescht and MBP

signals could be acquired on a single track to reduce acquisition time. Acquisitions
were automated using Zen Black Systems v2.3 and the Tiles and Positions software
module. For each experiment, the user is only required to set the PMT gain to
account for differences in staining intensity and to calibrate the motorized stage to
target the center of the first well of each plate. In 16 h of acquisition, the system
imaged 4 x 4 frames centered in the middle of each well to cover a ~4 x 4 mm area
with a pixel resolution of 0.5 um, thereby acquiring >50% of every well with no
bias. Focus was performed automatically for each well with the DefiniteFocus.2
module (Carl Zeiss). Since the nanofibers are not perfectly planar, three to five
confocal slices covering 10-20 um in the Z-dimension were acquired for each
frame to ensure that all cells were sampled. At lower resolutions, each well took
<10 min to acquire, allowing the whole plate to be imaged in <16 h. Z-stacks were
stitched and compressed via the Extended Depth of Focus (maximum projection)
algorithm in Zen Black prior to exporting the images as TIFF files.

Manual segmentation criteria. A set of criteria was defined for classification of
oligodendrocyte ensheathments based on morphological characteristics visualized
using Hoechst, O4, and MBP staining: (1) The presence of an identifiable cell
body and nucleus; (2) The presence of ensheathing processes, defined as segments
of O4 or MBP running parallel to the nanofibers in the culture plate having a
length > 12 ym and a thickness > 2 um; (3) Continuity of the cell body with the
ensheathments; (4) Each ensheathed nanofiber may only be associated with 1 cell
nucleus. Human researchers were given these criteria and instructed to trace the
border of oligodendrocyte ensheathments using the ImageJ polygon tool. These
manual segmentations were then used to train and validate the deep learning
network.

Heuristic segmentation algorithm. A heuristic algorithm, written in MATLAB,
was first constructed to implement the manual segmentation criteria. To fulfill
criteria 1, cell bodies were identified through colocalization of Hoechst stained
nuclei with O4 or MBP-positive cytoplasm. To separate overlapping and crowded
cell bodies, the local maxima of a distance transformed O4 or MBP stained image
were used for watershed segmentation. For criteria 2, after convolution with second
derivative Gaussian filters, ensheathed nanofibers were segmented using a ridge-
filter that extracts the eigenvalues from the Hessian matrix of the O4 or MBP
stained image. The sensitivity of segmentation was user specified and the diameter
of fibers segmented could be modified by altering the sigma of the initial Gaussian
filters. The algorithm then cycled through each cell body to associate segmented
fibers with corresponding nuclei, thereby satisfying criteria 3 and 4 (Fig. 1b). An
important limitation of this heuristic algorithm is that the identification of
ensheathments and the association of segments to individual cells is performed as
two separate quantitative steps. The ridge-filter is applied to extract ensheathments
globally from an image and then the local distance maxima of cell bodies is used to
associate those segments to individual oligodendrocytes based on proximity to
mimic a cell-by-cell level of quantification (Fig. 1b). By separating the analysis into
two streams, however, the algorithm does not perform relatively high-level deci-
sions required to reliably associate ensheathments to specific cells when faced with
over-crowded images or when fluorescent staining is faded. In contrast, the deep
learning approach overcomes these challenges by using spatial and object-specific
information simultaneously to analyze and associate oligodendrocyte ensheath-
ments with individual cells.

Neural network training data. To train a neural network to extract morphological
features from individual oligodendrocytes, we generated 3-channel images for our
input data, with the middle channel replaced by a mask over a specific nucleus of
interest (Fig. 2a). This mask prompted the network to learn to associate oligo-
dendrocyte ensheathments with individually masked nuclei. The input data was
also appended with a ground-truth image, containing the human tracings of oli-
godendrocyte ensheathments. To create the ground-truth images, human
researchers: (1) manually traced a single cell nucleus with its corresponding
ensheathments, saved that as an ROI file in Image], and then repeated the process
for every cell in a whole-well image; (2) The ROIs were then used to generate two
16-bit images, one containing all manually traced nuclei, and the other containing
all manually traced ensheathments; (3) A Python script then looped through the
nuclei-containing image, using each nucleus as a center to crop/create input and
ground-truth images for every cell in a full-well image. Cropping input data using
individual cell nuclei increased the number of training images, generating ~40,000
input examples from a dozen full-well images.

Neural network architecture. Google’s open source Tensorflow?? was used to
implement a CNN with a UNet architecture!?. The U-shaped design was selected
for its capacity to learn to associate ensheathments with individual oligoden-
drocytes, as the down-sampling arm of the network learns features at a variety of
scales, and the up-sampling arm combines spatial information from earlier layers to
produce a high resolution final segmentation (Fig. 2b). The down-sampling branch
contained five two-dimensional convolutional layers with 5 x 5 pixel kernels and a
stride of 2. The number of filters at each subsequent layer increased by 10 sequen-
tially from 10 to 50. The up-sampling branch of the network was symmetric to the
down-sampling branch but used fractional strides to up-sample the information
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back to the original size. The up-sampling convolutional layers had 5 x 5 pixel
kernels and a decreasing number of filters that dropped sequentially by 10 from 50
to 10. The up-sampling branch also mixed in spatial information by concatenating
data from earlier layers with similar resolution prior to each convolution. The
output of the up-sampling branch was then passed through a softmax convolutional
layer with a 1 x 1 pixel kernel to generate two mutually exclusive probabilistic
output categories corresponding to background and fibers. This probabilistic output
was then thresholded at a value of 0.5 to produce a binary segmentation containing
the ensheathments identified by the network for a single cell.

Pre-processing data for CNN-UNet analysis. An image first undergoes pre-
processing by watershed segmentation to identify Hoechst stained nuclei. These
nuclei are then used to generate “input” images (Fig. 2a). To avoid redundancy, we
recognized that some cells are clearly not ensheathing—defined as having zero
positively-stained cell membrane markers, such as MBP, near the cell nucleus. Such
cells are excluded to save analytic time by binarizing the cell membrane image
followed by morphological closing, then opening to generate blobs. Only nuclei
within cell membrane blobs were considered “candidates” for quantification,
thereby avoiding analysis of unstained cells.

Post-processing after CNN-UNet analysis. After the network cycles through
each candidate cell within a full-well image, we applied three post-processing steps
to assign overlapped ensheathments—associated to more than one cell—while
removing sticky connections (see below) and setting a minimum threshold for
ensheathment length (Fig. 2b). The first post-processing step is a method of unfair
distribution. This method operates under the assumption that it is more likely that
the uncertain segment will belong to the larger cell, given the choice to assign an
ambiguous overlapped ensheathment to a large cell with multiple ensheathed
nanofibers, or a small cell with only a single ensheathment, Next, we applied a
sticky-removal method. To separate sticky-segments—adjacent ensheathments that
overlap and are wrongly identified as a single object—the method skeletonized the
output image and removed all branch points. It then cycled through all the broken
segments to eliminate any that were horizontal. Branch points were then re-
inserted to restore the vertical connectivity of the ensheathments without their
sticky horizontal connections. Lastly, we applied a user-specified min-length
threshold, where ensheathments below a minimum length (~12 um) were elimi-
nated. As well, since we noticed that human non-experts exhibited a slight over-
sensitivity toward cells with only one or two ensheathments, we programmed a
sensitivity measure to reduce variability across experiments. We adopted a length
threshold that is three to four times more strict for single and doubly-ensheathing
cells to reduce the chance of identifying false positives, but this value can be
adjusted to suit a researcher’s needs. Length was determined by fitting the objects
with an ellipse and calculating the distance of the major axis, as defined in
regionprops OpenCV30.

Training. To train a deep learning model to match the cell-by-cell analysis per-
formed by human researchers, we presented the network with ~40,000 input
images that each contained a masked nucleus of interest (Fig. 2a, b). 1111 of these
cropped images were utilized for validation during training, allowing the perfor-
mance of the model to be followed as it learned. The performance of our CNN-
UNet in task-learning was monitored through the loss value and JI. Loss functions
serve as a numerical representation of the magnitude of error for a prediction made
by the CNN-UNet. Here, we used the categorical cross-entropy, on a per-pixel
basis, as the loss function to measure the difference between the output of the
network and the manually traced ensheathments generated by cell biologists
(ground truth). In our model, a decrease in loss and increase in JI, calculated on the
set of 1111 validation images, served as an indicator of successful task-learning and
the generalizability of the network to new data (Fig. 3a, b).

To improve learning speed and accuracy, we also trained two CNNs with
differently weighted loss functions. We implemented “class weighting” for the first
network, whereby the loss at every pixel corresponding to ensheathments was
multiplied by a factor of 10. This placed more emphasis on decisions
corresponding to oligodendrocyte sheaths, thereby helping to balance the training
dataset by increasing the importance of the small number of images that contained
ensheathing cells. For the second network, in addition to class weighting, we also
implemented “spatial weighting” to enhance the sensitivity of the network to learn
about the edges of objects, weighing the loss function with the following
exponential decay formula:

w= el—'f—’+b (1)

w refers to the weighted loss at each pixel, f modifies the rate of falloff from the
edge, and b prevents the weights from reaching zero. D is the distance from the
edge of the oligodendrocyte ensheathments, calculated by computing the
Chebyshev distance transform of the inverted ground-truth mask. Overall, this
formula weights the training loss such that it decays exponentially with distance
from the margins of the ensheathed segments of interest, thus helping the network
focus on correctly identifying the edges of objects (Fig. 3e). Although both
weighting schemes dramatically improved CNN performance, indicated by an
earlier and steeper increase in ]I, the spatially weighted network was superior, as its

JI continued to improve while the class weighted network plateaued at ~180,000
training epochs (Fig. 3b). Using these parameters, along with testing at progressive
checkpoints, we found the best model was generated at ~301,000 epochs by the
spatially weighted network (Fig. 3a, b). Finally, after training was performed for
350,000 epochs (about 6 days) on an NVIDIA Tesla P100-PCIE, one entire whole-
well image (containing 1667 input cells traced by a human researcher) was used to
test the network for its performance on global parameters and generalizability to
new data.

Statistics. Data are presented as mean + standard error of the mean (SEM). Sig-
nificance was set at *p < 0.05, **p < 0.01, **p <0.001. Statistical analyses were
completed with Graphpad Prism 5 and all Student’s ¢-tests are two-tailed. The log
of ensheathment length was used as described’ previously because sheath length
data was log normal (log lengths were Gaussian distributions). Power analysis was
performed using Lenth’s power calculator software!?13,

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed in the current study are available from the
corresponding author on request.

Code availability

The CNN-UNet resources in this paper will be made available through www.
deepdiscovery.org. Early access, useable version of both the heuristic and CNN-UNet
algorithms are available at www.github.com/yxu233/Myelin.
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