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Abstract

Background: The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of
conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian
origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians.
However, the existence of a ‘‘Hox code’’ predating the cnidarian-bilaterian ancestor and supporting the deep homology of
axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea
anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis.

Methodology/Principal Findings: Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic
analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in
the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral
ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7
examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-
aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the
medusa stage.

Conclusions/Significance: Cross species comparison reveals a strong variability of gene expression along the oral-aboral
axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code,
collinearity and conservative role along the antero-posterior axis are bilaterian innovations.
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Introduction

Since the discovery of mice and Drosophila Hox clusters [1–3] the

evolutionary conservation of the Hox axial patterning system has

been the starting point of a conceptual framework in evolutionary

developmental biology (evo-devo). The fact that orthologous genes

display similar genomic organisation and expression patterns with

comparable spatial and temporal characteristics in distantly

related species has provided clues for understanding the evolution

of the body plan. Indeed major morphological changes during

animal evolution, and notably those involved in the edification of

the body plan, are intimately associated with modified Hox gene

expression patterns and assigned to changes affecting develop-

mental regulatory networks (acquisition, loss or co-option of

functionalities) [4–7]. A hierarchical categorisation of variation in

Hox pathways has been proposed to be connected to the hierarchy

of taxonomic levels [8]. Each phylum could hence be char-

acterised by a particular Hox pattern responsible for the

establishment of its specific body plan. This particular pattern

establishes a ‘‘Hox code’’ consisting in a combinatorial informa-

tion of position along the antero-posterior axis [9].

This key concept has led authors to try reconstructing the

ground pattern of the bilaterian last common ancestor [10–12].

Hox genes and their conserved collinear expression are hence

believed to be part of the archetypal developmental genetic tool-kit

of Urbilateria (e. g. [13–14]). The ParaHox cluster, the

hypothetical evolutionary sister of the Hox cluster [15], is also

supposed to be part of this ancestral tool-kit, being implicated in

endoderm patterning whereas Hox genes are more specifically

expressed in ectoderm [16]. Under this hypothesis, body plan

evolution would be closely linked to the genomic organisation and

expression of the Hox/ParaHox gene family.

The role of Hox genes in patterning the antero-posterior axis is

strikingly conserved among bilaterians in spite of a huge

diversification of body plans, but the situation appears much

more complex outside Bilateria. As cnidarians were shown to be
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the sister-group of the Bilateria [17–18], they can give crucial clues

on the evolution of Hox/ParaHox genes, in particular to test the

origin of the Hox code patterning system. The Cnidaria constitute

a widely diversified taxon with a quite unified organisation. They

share a unique body plan with a single polarity axis (the oral-

aboral axis) but exhibit various life cycles, comprising a pelagic

(polyp) or a benthic form (medusa) or both alternating. The

Cnidaria encompass five main taxa [19]: the Anthozoa (corals, sea

anemone), Staurozoa, Cubozoa, Scyphozoa and Hydrozoa.

Anthozoans are the sister group to the remaining cnidarians,

which form together the medusozoans. Hox and ParaHox genes

have been identified from various cnidarian species [20–30].

Expression patterns of a number of genes have also been

investigated [24,27,29,31–37]. The interpretation of these data

have led authors to contradictory conclusions about the early

evolution of the Hox/ParaHox family and of their functions in

relation to axial polarity.

The Hox/ParaHox family was undoubtedly already present

and diversified in the cnidarian / bilaterian ancestor [25–30].

However recent studies have upheld conflicting views about the

composition of the cnidarian ancestral gene complement. Based

on phylogenetic relationships between cnidarian and bilaterian

sequences, most writers agree on the existence of true Hox genes

in cnidarians (e.g. [29,34,37,38]), even if a recent study claimed

the contrary [35]. There is also general agreement that the

common cnidarian / bilaterian ancestor possessed ‘‘anterior’’ Hox

(HOX1 and HOX2 paralogy groups) and ParaHox (GSX) genes,

but lacked HOX3 and ‘‘median’’ (HOX4-8) Hox genes (e.g.

[29,34,37,39]). On the contrary, the existence of ‘‘posterior’’ genes

is more controversial, different authors supporting their presence

[29,34,37] or absence [35,38] in cnidarians. These divergent

interpretations imply incompatible evolutionary scenarios: either

the cnidarian/bilaterian ancestor possessed both ‘‘anterior’’ and

‘‘posterior’’ Hox-like genes, or ‘‘non-anterior’’ genes result from

independent diversification in the bilaterian and cnidarian

lineages. The phylogenetic analyses discussed in these contradic-

tory studies often include few cnidarian taxa [35,37] and a reduced

or absent outgroup of non-Hox/ParaHox genes [33,35,38].

In addition, while a Hox code was almost certainly operating in

the bilaterian ancestor, the possible implication of cnidarian Hox

genes in a similar system remains unclear. Most studies have

interpreted Hox genes pattern restricted along the oral-aboral axis

as probably reflecting a role of cnidarian Hox genes in axial

patterning [29,31,33–35,37]. Expression data in the sea anemone

(Anthozoa) have even led to the conclusion that the bilaterian

antero-posterior and the cnidarian oral-aboral axes are homolo-

gous [34]. Concomitantly, Hox expression patterns in the sea

anemone have been used as a clue to advocate the existence of a

Hox code in cnidarians and in the cnidarian / bilaterian ancestor

[37]. However, expression data from other cnidarians (particularly

the hydrozoans Podocoryne and Eleutheria) cast doubt on the

conservation of a Hox code in cnidarians [35]. To uncover the

characteristics of Hox gene expression in the cnidarian ancestor (a

prerequisite for high-level comparisons with the bilaterians) more

data from various cnidarian species are needed.

We have isolated Hox-related genes in Clytia hemisphaerica, a

hydrozoan (Hydroidolina, Thecata) species that possess both

medusa and polyp stages, and investigated the diversity of

expression patterns during development and at the medusa stage.

Phylogenetic analyses have revealed instances of gene gain and loss

in the various cnidarian lineages and highlighted a diversity of

evolutionary histories among them. We have compared the

expression of Hox and ParaHox orthologues among cnidarians

and reconsidered the possible implication of cnidarian Hox genes

in axial patterning through a Hox code. Altogether, these results

allow a reappraisal of which characteristics are ancestral with

respect to the bilaterians and which ones are bilaterian novelties.

Results

The Clytia Hox/ParaHox-extended complement is
representative of the cnidarian phylogenetic diversity

Sixteen ANTP homeodomain sequences have been retrieved by

tBLASTn search from our Clytia EST collection (figures S1 and

S2). Among them, 8 belong to the Hox-extended family, which

includes Hox, ParaHox, Mox, HlxB9, Rough and Eve genes

(figure 1). The Hox/ParaHox-extended complement retrieved

here from Clytia equates in gene number the complement present

in the full genomic sequence of Hydra (8 genes) but is less rich than

the repertoire present in the sea anemone genome (15 genes) [38].

This Clytia Hox/ParaHox complement well represents the

diversity generally encountered in this gene family in cnidarian

species. All cnidarian Hox or ParaHox groups contain at least one

sequence from Clytia, except HOX2 (figure 1). Among the 8 Hox/

ParaHox clades identified in our tree, the ‘‘anterior’’ (HOX1 and

HOX2 / GSX) and ‘‘posterior’’ (HOX9-14 / CDX) groups

contain cnidarian sequences, but sequences from Clytia or other

cnidarian species are absent from the ‘‘median’’ Hox and ParaHox

groups (HOX3, HOX4-8, XLOX), as previously noticed (e.g.

[29]). Hence, the Hox/ParaHox sequences from Clytia are

distributed as follows, in both the ML and the NJ trees (figures 1

and S2): one sequence in the HOX1 ‘‘anterior’’ Hox group,

subsequently named CheHox1, three in the ‘‘posterior’’ Hox

HOX9-14 group named CheHox9-14A, CheHox9-14B and Che-

Hox9-14C, one in the GSX ‘‘anterior’’ ParaHox group named

CheGsx and one in the ‘‘posterior’’ ParaHox group CDX named

CheCdx. In addition, a CheMox sequence and a CheEve sequence

were also identified.

Lack of statistical robustness is a classical difficulty when

inferring tree with short sequences, and this is particularly true of

homeodomain sequences (only 60 amino-acids). In addition, it has

been shown that bootstrap values are not reliable robustness

estimators for data sets containing less than 100 characters

(notably, ‘‘true clades’’ might be unsupported by bootstraps, [40]),

and paucity of characters is an intrinsic limitation of this kind of

data sets for which there is no solution. Thus, our tree contains

very few statistically supported branches; notably most of the

deepest nodes have bootstrap values lower than 50% (figures S1

and S2).

Among Hox/ParaHox groups, HOX9-14 contains the
highest diversity of cnidarian sequences

The wide range of cnidarian sequences integrated in our

analysis highlights the diversity of cnidarian HOX9-14 genes and

their complex phylogenetic relationships with bilaterian sequences.

Cnidarian sequences related to bilaterian ‘‘posterior’’ Hox

(HOX9-14) branch basally to the latter in paraphyly. Thus, the

HOX9-14 group is organised in four sub-groups: one bilaterian

and three cnidarian sub-groups which we propose to call Group A,

Group B and Group C (figure 1). The statistically supported

Group A is the sister-group to bilaterian sequences.

Interestingly the ParaHox groups classically defined as ‘‘ante-

rior’’ (GSX) or ‘‘posterior’’ (CDX) do not appeared phylogenet-

ically related to the so-called ‘‘anterior’’ or ‘‘posterior’’ Hox

groups, in contradiction with some of the former studies [15]. In

our global analysis of cnidarian and bilaterian data, GSX and

CDX are sister-groups (figure 1). Four cnidarian homeodomains

are related to the bilaterian ParaHox sequences CDX. They are
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branched in paraphyly, with no statistical support and rather long

branches. This result is in accordance with previous studies (e.g.

[29,37]) except for NveAnthox9 (also named NVHD117 in [41] or

HoxR in [38]) which has been previously described as a possible

pseudogene [37].

Globally, orthologies of the cnidarian sequences with their

bilaterian counterparts are clearer for the ‘‘anterior’’ groups

HOX1 and HOX2 (Hox) and GSX (ParaHox) than for the

‘‘posterior’’ Hox and ParaHox groups, cnidarian sequences

branching in paraphyly in the latters.

Diversification of Hox/ParaHox complements among
cnidarian lineages

By including genes from various cnidarian species belonging to

Anthozoa, Scyphozoa and Hydrozoa, our analysis allows to

identify lineage-specific gene duplications or losses through the

comparison of the topology within the gene tree with the known

phylogenetic relationships between included species [19,42–43].

In some cases, gene relationships among cnidarian groups are

congruent with the species phylogeny: hydrozoan sequences are

sister-group to scyphozoan sequences, with anthozoan sequences

branching basally to this ensemble. This occurs among the

cnidarian GSX and HOX9-14 B and C groups (figure 1).

In contrast, some cnidarian lineages are lacking in several gene

groups. Hence HOX2 genes are absent from the Hydra magnipapillata

full genome and have not been identified until now in other

hydrozoan or scyphozoan species, being only known from the

anthozoan Nematostella (figure 1). This can be taken as an indication

that HOX2 genes were lost at some time during the history of the

medusozoans. Similarly, anthozoans have probably lost their HOX9-

14A gene, a group that contains only hydrozoan sequences (figure 1).

Although scyphozoan sequences are lacking in the HOX1, HOX2,

HOX9-14A and CDX groups (figure 1), these absences could be due

to non exhaustive sampling from PCR surveys, a full genome

sequence being currently lacking for this cnidarian lineage [28].

Clytia HOX9-14 genes are expressed in opposite domains
along the oral-aboral axis during development

The three Clytia genes related to bilaterian HOX9-14 are all

expressed during development. However, they exhibit highly

distinct expression domains along the oral-aboral axis and

differing dynamic characteristics in the course of the life cycle

(figure 2A–O).

CheHox9-14A is expressed throughout development (figure 2A–E).

Transcripts are firstly detected in the unfertilised eggs in the whole

cytoplasm but they are absent from the area surrounding the

nucleus, corresponding to the animal pole and to the future aboral

end of the polyp (figure 2A). CheHox9-14A maternal transcripts

segregate in subsets of cells (data not shown). Consequently the

expression in the blastula is restricted to subgroups of cells without

clear orientation (figure 2B). At the onset of gastrulation, expressing

cells are localised in the oral hemisphere, where ingression takes

place (figure 2C). After gastrulation, in the 1-day old planula,

transcripts are dispersed throughout the ectoderm with a higher

concentration at the posterior/oral pole (figure 2D). At the medusa

stage CheHox9-14A has a maternal expression detected in the

maturing oocytes of the female gonads (figure 2E). This gene

exhibits also a somatic expression throughout the ectoderm of the

tentacle bulbs and in the manubrium (figure 2E).

The expression pattern of CheHox9-14B is very similar to that of

CheHox9-14A (figure 2F–J). However transcripts seem not to be

excluded from the nucleus area (figure 2F). During later

developmental stages, CheHox9-14A and CheHox9-14B expression

profiles are undistinguishable (figure 2G–H compared with 2B–C).

In the 1-day-old planula, CheHox9-14B mRNA are restricted to the

posterior/oral half of the larva (figure 2I). At the medusa stage,

CheHox9-14B is only expressed in the maturing oocytes and no

somatic expression is detected (figure 2J).

The expression of CheHox9-14C is much more temporally

restricted during the life cycle (figure 2K–O). No expression has

been observed during early development (figure 2K–M) and signal

is firstly detected in the 1-day-old planula (figure 2N). At this stage

transcripts are localised at the anterior/aboral pole, in a few

ectodermal cells (figure 2N). No signal has been detected at the

medusa stage (figure 2O).

The Clytia HOX1 gene is not expressed along the oral-
aboral axis but specifically in medusa sensory organs

Expression of CheHox1, the only ‘‘anterior’’ Hox gene known

from Clytia, was only detected at the medusa stage (figure 2P–Q)

while no expression has been observed during development or in

the planula (not shown). CheHox1 mRNA are specifically localised

in the statocysts (figure 2P), the equilibration organs regularly

arranged on the bell rim of the medusa. The CheHox1 expressing

cells are localised in the basal epithelium of the statocyst, near the

bell margin (figure 2Q). According to this localisation they are

interpreted as ciliated mechano-sensory cells. Hence, Clytia

statocysts are ectodermal derivatives consisting in a closed pocket

limited on the distal side by a thin epithelium and on the proximal

side (near the bell margin) by a monociliated sensory epithelium

(figure 2R) expressing CheHox1 (figure 2Q).

The Clytia GSX gene is exclusively expressed at the
medusa stage whereas CheCdx is also expressed during
development

The ParaHox gene CheGsx is expressed specifically at the

medusa stage (figure 3A) and no expression has been detected at

other stage during the life cycle (not shown). CheGsx transcripts are

localised in scattered cells in the tentacles and in the tentacle bulbs

(figure 3A), spherical enlargements on the bell margin that bear

tentacles. The tentacle bulb is a specialised region devoted to the

continuous production of tentacle cells, the latter being perma-

nently used and destroyed because of prey capture. This structure

has been recently shown to be a site of intensive nematogenesis

characterised by an ordered progression of cell stages along its

proximo-distal axis [44]. Nematocyte progenitors are localised in

the proximal region of the bulb, near the bell margin, and the

nematoblasts move during their differentiation towards the

tentacle, where they maturate. The CheGsx-expressing cells are

not homogeneously distributed along the proximo-distal axis of the

Figure 1. Phylogenetic relationships between cnidarian, placozoan and bilaterian Hox/ParaHox related homeodomains inferred by
ML analysis. Support values higher than 50% for each Hox/ParaHox related group are shown on the branches. Numbers above the branches
indicate ML bootstrap values (100 replicates). Numbers below the branches indicate NJ bootstrap values (1000 replicates). Abbreviations: Ami,
Acropora millepora; Bfl, Branchiostoma floridae; Che, Clytia hemisphaerica; Csa, Cupiennus salei; Csp, Capitella sp.; Cvi, Chlorohydra viridissima; Cxa,
Cassiopeia xamachana; Dme, Drosophila melanogaster; Edi, Eleutheria dichotoma; Esc, Euprymna scolopes; Hma, Hydra magnipapillata; Hru, Haliotis
rufescens; Hsy, Hydractinia symbiolongicarpus; Hvu, Hydra vulgaris; Mse, Metridium senile; Ner, Nereis virens; Nve, Nematostella vectensis; Pca,
Podocoryne carnea; Tr, Trichoplax adhaerens.
doi:10.1371/journal.pone.0004231.g001
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tentacle bulb. They form, in the ectodermal layer, isolated basi-

epithelial spots concentrated in the more distal part of the bulb

and in the tentacle base, and also more concentrated on the

abaxial side of the bulb (figure 3B). This position does not

correspond to the crescent-shaped distribution of nematocyte

precursors, but rather to the neuron and sensory cell-rich area of

the bulb ectoderm. Furthermore, CheHox1 is not co-expressed with

the minicollagen CheMcol3-4 (figure 3C), a nematocyte capsule

structural component expressed during differentiation of the

tentacle main nematocyte type [44]. In addition, we have failed

to identify nematocyte capsules (easily distinguishable using DIC

optics) inside the CheGsx expressing cells (figure 3B–C). Thus,

CheGsx is probably expressed in neural cells or precursors rather

than in nematoblasts.

Contrary to CheGsx, the other Clytia ParaHox gene CheCdx is

expressed during development (figure 3D–F). Staining is observed

in unfertilised eggs around the nucleus at the animal pole

(figure 3D). Expression is maintained after fertilisation and during

cleavage (not shown). When gastrulation starts, CheCdx transcripts

are observed in the whole embryo, except at the oral pole

(figure 3E). In the 1-day old planula they are concentrated in the

ectoderm at both the oral and aboral poles (figure 3F).

Figure 2. Developmental and medusa-specific expression of Hox genes in Clytia hemisphaerica. A–E: CheHox9-14A expression; A: non-
fertilised egg with animal pole on the top; B: blastula; C: gastrula with ingression pole ( = animal and future oral pole) on the top; D: one-day-old
planula with oral/posterior pole on the top; E: medusa. F–J: CheHox9-14B expression; F: non-fertilised egg with animal pole on the top; G: blastula
(animal pole on the top); H: gastrula with ingression pole ( = animal and future oral pole) on the top; I: one-day-old planula with oral/posterior pole
on the top; J: medusa. K–O: CheHox9-14C expression; K: non-fertilised egg with animal pole on the top; L: blastula (animal pole on the top); M:
gastrula with ingression pole on the top; N: one-day-old planula with oral/posterior pole on the top; O: medusa. P–R: CheHox1 expression; P: general
view of the adult medusa; Q: higher magnification of the statocyst of the medusa delineated by the dotted line; R: Statocyst structure (delineated by
dotted line) highlighted by immunohistochemistry, with dapi staining of nucleus in blue, anti-acetylated-a-tubulin immunostaining of cilia in green
and anti-FMRF-amide immunostaining of nerve cells in red. Scale bars: P: 500 mm; E, J, O: 100 mm; A–D, F–I, K–N: 50 mm; Q, R: 10 mm. Legends: bm:
bell margin; cc: cilia of the circular canal digestive cells; csc: cilia of the statocyst sensory cells; er: external nerve ring; g: gonad; ir: internal nerve ring;
m: manubrium; s: statocyst; t: tentacle; tb: tentacle bulb.
doi:10.1371/journal.pone.0004231.g002
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The Clytia CDX ortholog is also expressed at the medusa stage

where transcripts are concentrated in maturing oocytes of the

female gonads and in tentacle bulbs (figure 3G). In the latter,

CheCdx positive cells are located in the ectodermal layer and are

more densely packed than CheGsx expressing ones (figure 3H).

They form a crescent shaped pattern in a median position along

the poximo-distal axis, interrupted on the external side of the bulb.

This expression is more extended and proximal than that of

CheGsx and identical to that of dickkopf-3 (CheDkk-3) or minicolla-

gens (CheMcol3-4), as previously described [44]. The CheCdx

expression pattern in tentacle bulbs is thus compatible with a

localisation in differentiating nematoblasts.

The Clytia MOX gene is expressed in restricted areas of
the medusa endoderm

CheMox is exclusively expressed at the medusa stage (figure 3I)

and no transcripts have been detected at other stages (not shown).

CheMox expression is restricted to endodermal tissues, in particular

areas of the gastrovascular system. Hence CheMox transcripts have

been detected in the manubrium in four regions adjacent to the

radial canals (figure 3I). CheMox expressing cells are also present in

the radial canals against the gonads (figure 3J) and in the ring

canal near the tentacle bulbs (figure 3K).

Discussion

The complex history of cnidarian Hox genes and its
bearing on early Hox evolution

Our rooted analysis of the Hox-extended family (figure 1) agrees

with previous studies [45–49] concerning the presence of true Hox

genes in cnidarians and bilaterians and their probable absence

from sponges, ctenophores and placozoans, leading to the

conclusion that this gene family originated in an exclusive

cnidarian / bilaterian ancestor, or was lost in other metazoan

lineages [50]. Also consistent with previous analyses, the

‘‘anterior’’ HOX1 and HOX2 groups have clear cnidarian

Figure 3. Expression of ParaHox and Mox genes in Clytia hemisphaerica. A–C: CheGsx expression; A: general view of the medusa; B: higher
magnification of the distal part of the tentacle bulb; C: distal part of the tentacle bulb after double in situ hybridisation with CheGsx (in blue) and
CheMcol3-4 (in red) riboprobes. D–H: CheCdx expression; D: unfertilised egg with animal pole on the top; E: gastrula with ingression pole ( = animal
and future oral pole) on the top (arrow); F: expression in one-day-old planula with oral/posterior pole on the top; G: general view of the medusa; H:
higher magnification of the tentacle bulb. I–K: CheMox expression; I: general view of the medusa; J: higher magnification of the radial canal
(delineated by dotted lines) crossing the gonad; K: higher magnification of the tentacle bulb showing the ectodermal and endodermal layers
separated by a dotted line. Scale bars: A, G, I: 100 mm; B, C, H, J, K: 20 mm; D–F: 50 mm. Legends: ec: ectoderm; en: endoderm; g: gonad; m:
manubrium; t: tentacle; tb: tentacle bulb.
doi:10.1371/journal.pone.0004231.g003
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orthologues, while ‘‘median’’ genes (HOX3-8) are on the contrary

absent from cnidarian genomes (figure 1; [29,34,37–38]). For the

latter, our topology suggests an origin before cnidarian / bilaterian

divergence and subsequent losses of HOX3/XLOX and HOX4-8

in cnidarian lineages, albeit without statistical support (figure 4A).

Thanks to the integration of a wide range of cnidarian taxa, our

tree highlights a diversification of cnidarian ‘‘posterior’’ Hox genes

that was not previously noticed. We recovered a monophyletic

HOX9-14 group comprising cnidarian genes organised in three

groups (called here group A, B and C) arranged in paraphyly with

respect to bilaterian HOX9-14 (figure 1). This topology suggests

that the cnidarian / bilaterian ancestor possessed two or three

posterior Hox-like genes, only one (related to cnidarian HOX9-14

group A) being retained in the bilaterian lineage (figure 4A).

However, given the lack of statistical support of the tree,

alternative topologies cannot be excluded. These hypotheses

imply differences in the ancestral Hox/ParaHox complement

and in lineage-specific gene gains or losses. Hence three main

topologies, and their corresponding inferred evolutionary scenar-

ios, must be considered (figure 4B). First of all, cnidarian groups A,

B and C may form a monophyletic group, instead of a

paraphyletic one, orthologous to bilaterian HOX9-14 (figure 4B-

1). This would imply an ancestral Hox complement with only one

‘‘posterior’’ Hox-like gene, the diversification of HOX9-14

occurring further independently in cnidarians and bilaterians.

This ‘‘monophyly’’ hypothesis (figure 4B-1) requires the same

number of gene gains or losses as the ‘‘paraphyly’’ hypothesis

sustained by our phylogeny (figure 4A), both being thus equally

parsimonious. Secondly the position of cnidarian sequences

related to bilaterian HOX9-14 may result from long branch

attraction artefact between rapidly evolving sequences. Hence,

cnidarian A, B and C groups could rather branch in paraphyly

(figure 4B-2) or in monophyly (figure 4B-3) as sister-group to the

whole Hox/ParaHox clade. This would imply a reduced ancestral

Hox complement without true ‘‘posterior’’ Hox-like genes and the

presence of at least one ancestral Hox/ParaHox-like gene further

lost in the bilaterian lineage (figure 4B-2 and 4B-3). These

hypotheses necessitate a higher number of bilaterian-specific gene

duplications giving rise to HOX9-14, HOX3/XLOX and HOX4-

8, and are hence less parsimonious than the former ones (figure 4A

and B-1). Furthermore the absence of cnidarian orthologues of the

bilaterian ‘‘posterior’’ (HOX9-14) genes has been sustained by

some authors [35,38], but these assumptions were based on non-

rooted (neighbour-net method in [38]) or poorly rooted [35]

analyses. Hence, we consider the existence of cnidarian Hox genes

orthologue to bilaterian HOX9-14 as the most reliable hypothesis

(figure 4A), postulating an ancestral Hox complement with two

‘‘anterior’’ Hox genes (one HOX1-like and one HOX2-like) and

one to several ‘‘posterior’’ Hox genes (HOX9-14-like).

Important events of gene loss or duplication affected Hox

genes later on during the evolution of the Cnidaria, leading to a

diversification of the gene sets among cnidarian lineages. For

example, hydrozoans have lost their HOX2 genes (present in

anthozoans; inconclusive data for scyphozoans; figure 1). In

turn, anthozoan species seem to have lost their group A HOX9-

14 gene (present in hydrozoans; inconclusive data for scypho-

zoans; figure 1). Furthermore, each major cnidarian lineage

experienced specific duplications: group C HOX9-14 genes

were independently duplicated in the Scyphozoa and in the

Hydrozoa, and several duplications increased the number of

HOX2 genes in the Anthozoa (figure 1). An important

consequence is that no single cnidarian species can be taken

as representative of the cnidarian ancestor in terms of the Hox

gene complement.

Hox gene expression data in Clytia and other cnidarians
do not support the conservation of a ‘‘Hox code’’

The proposal that cnidarian Hox genes have a role in patterning

the oral-aboral axis, reminiscent of the ‘‘Hox code’’ conserved

among bilaterian species, was initially prompted by the direct

comparison of Hox expression patterns obtained in Nematostella

(Anthozoa) with what is known of their orthologues in bilaterian

species [34,37]. Hox expression was claimed to be collinear in the

sea anemone and to support homology between the cnidarian oral

end and the bilaterian head [51]. Thanks to the availability of data

concerning other cnidarian species, it becomes now feasible to

address the role of Hox genes in the common ancestor of Cnidaria,

before extending the comparison to the more distantly-related

Bilateria, a task for which two distinct levels of interrogation should

be distinguished. First, is Hox gene expression in cnidarian species

collinear, as expected of a cnidarian ‘‘Hox code’’? The second

pivotal question is whether or not there is conservation, among the

major cnidarian lineages, of the region along their main body axis

where a given Hox orthologue is expressed, as expected if cnidarian

Hox genes have a conserved role in patterning this axis.

Collinearity has been initially defined for non-fragmented Hox

clusters as a correlation between the physical order of Hox genes

in the genome and their expression domains along the antero-

posterior axis of bilaterian animals [52], ‘‘cis-collinearity’’

according to Duboule [53]. However, in the case of a partially

or totally dispersed cluster or when no genomic data are available,

Hox expression domains along the antero-posterior axis can be

correlated with the phylogenetic position of the genes with respect

to paralogous groups in species with an intact cluster (‘‘trans-

collinearity’’ according to Duboule [53]). The only reported

instance of a genomic linkage between several Hox genes in

Cnidaria concerns the Nematostella genome, which contains a 50 kb

cluster of five genes arranged in the following order: the HOX1

gene NveAnthox6, the EVE gene NveEve and the three HOX2 genes

NveAnthox8b, NveAnthox8a and NveAnthox7 [38]. However, the

expression of these four Hox genes along the oral-aboral axis

shows no evidence of cis-collinearity, Anthox6 being expressed in

the pharyngeal endoderm and NveAnthox8a-8b-7 being expressed

all along the axis in the body wall endoderm (figure 5; [37]). For

the remaining cnidarian species (and for the remaining Nematostella

genes), lack of physical linkage or of information about it leaves

trans-collinearity (with the order of orthologous Hox gene

expression in bilaterians taken as a reference) as the only potential

form of collinearity to be considered.

The expression of Clytia Hox genes in the planula larva reported

here (figure 2) is clearly not trans-collinear. The ‘‘anterior’’ HOX1

gene CheHox1 is apparently not expressed in the larva. ‘‘Posterior’’

(HOX9-14) genes have restricted expression sites along the oral-

aboral axis of the planula, but with two paralogues (CheHox9-14A

and B) mainly expressed at the oral pole and the third one

(CheHox9-14C) expressed at the opposite aboral pole (figure 2), a

situation clearly incompatible with collinearity. Total absence of

trans-collinearity was previously reported for the hydromedusae

Eleutheria (in which Hox genes are physically dispersed; [35]) and

Podocoryne (no genomic data), since their HOX1 and HOX9-14

genes are not expressed at the same stage of the life cycle (figure 5;

[33,35]). In contrast, expression of ‘‘anterior’’ vs. ‘‘posterior’’ genes

in different domains along the oral-aboral axis, potentially evoking

trans-collinearity, has been reported in Nematostella (NveAnthox6

(HOX1) and NveAnthox1 (HOX9-14) expressed at opposite poles;

figure 5; [34]) and more arguably in Hydra (with a difference in the

extension along the polyp axis of the overlapping expression

domains of HvuCnox1 (HOX1) and HvuCnox3 (HOX9-14); figure 5;

[29]). It must be noticed that in Nematostella, the HOX2 genes
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PLoS ONE | www.plosone.org 7 January 2009 | Volume 4 | Issue 1 | e4231



Figure 4. Evolutionary origin of cnidarian and bilaterian Hox/ParaHox complements. A: Evolutionary scenario (on the right) inferred from
phylogenetic relationships between cnidarian and bilaterian Hox and ParaHox genes (on the left, simplified topology of figure 1). Cnidarian groups A,
B and C branch in paraphyly in respect to bilaterian ‘‘posterior’’ Hox genes (Hox9-14) and form a cnidarian ‘‘posterior’’ Hox group. B: Evolutionary
scenarios deduced from alternative phylogenetic position for the cnidarian ‘‘posterior’’ Hox genes (groups A, B and C from figure 4A). B1: A, B and C
form a monophyletic group orthologue to bilaterian ‘‘posterior’’ Hox genes (Hox9-14); B2: A, B and C branch in paraphyly in respect to all other
cnidarian and bilaterian Hox/ParaHox genes, with thus no orthology with a particular bilaterian Hox or ParaHox group; B3: A, B and C form a
monophyletic group orthologous to all other cnidarian and bilaterian Hox/ParaHox genes but not to a particular Hox or ParaHox group.
doi:10.1371/journal.pone.0004231.g004

Clytia Hox Patterning

PLoS ONE | www.plosone.org 8 January 2009 | Volume 4 | Issue 1 | e4231



(NveAnthox7, NveAnthox8a, NveAnthox8b) and the other HOX9-14

gene (NveAnthox1a) are widely expressed all along the oral-aboral

axis in the body wall endoderm (figure 5; [37]) and are hence

excluded from the potential ‘‘trans-collinearity’’.

Under the hypothesis of a conserved role for Hox genes in

patterning the cnidarian main body axis, not only their expression

should be collinear, but orthologous Hox genes from different

cnidarian species are expected to be expressed in similar domains

Figure 5. Comparison of Hox expression patterns among cnidarian species. Each expression pattern is represented by a red shading on the
planula, polyp or medusa diagrams. The diagrams illustrate a schematic view of each stage after theoretical longitudinal section to expose the
ectodermal layer (dark gray) and the endodermal layer (light gray) separated by the mesoglea (black line). All published expression data for cnidarian
species were mapped on the ML phylogenetic tree. Branches for bilaterian sequences were compressed to simplify the figure. Black disks indicate
statistically supported nodes.
doi:10.1371/journal.pone.0004231.g005
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along the oral-aboral axis. This is clearly not the observed situation

when expression data from various cnidarian taxa are compared.

Firstly, in some cases orthologous genes are not expressed at the

same stage of the life cycle. For example, the Clytia HOX9-14

group A gene CheHox9-14A is expressed at the oral pole of the

planula (figure 2D) whereas its counterpart in an other hydrozoan,

Eleutheria (EdiCnox3), is only expressed in the medusa (figure 5;

[35]). The Clytia HOX9-14 group C gene CheHox9-14C, expressed

at the aboral pole of the planula, is orthologous to Eleutheria Cnox1,

which has no detected expression at the planula stage. In addition,

when orthologous genes are expressed at the same stage, their

transcripts are often localised at opposite poles along the oral-

aboral axis. Hence, among HOX9-14 group B genes, CheHox9-

14B is expressed at the oral pole like its Podocoryne orthologue

PcaCnox4 [33], but their Nematostella counterpart (NveAnthox1) has

an aboral expression [34,37]. Finally, orthologous genes that have

similar expression domains are often expressed in different tissues.

PcaCnox1 has an expression in the larva localised at the aboral pole

in both the endoderm and the ectoderm [33], but the expression of

its orthologue in Eleutheria EdiCnox5, although similarly aboral, is

restricted to the ectoderm [35].

Thus, current evidence indicates (i) that collinearity of Hox

expression is absent in some cnidarian species (e.g. Clytia

hemisphaerica), implying that a ‘‘Hox code’’ as previously defined

for the Bilateria (a positional information along the main body axis

specified by a combination of functionally active Hox proteins) is

not operating at least in these species, and (ii) that there is no

conservation of the expression domains along the oral-aboral axis

of orthologous Hox genes among cnidarian species. Cnidarian

Hox genes have experienced a wide diversification in their

expression sites, with orthologous genes being expressed at

different stages during life cycle, in different germ layers, and at

different locations, notably with respect to the oral-aboral axis.

The evolutionary lability of Hox gene expression sites is further

illustrated by the comparison of HOX1 expression at the medusa

stage between the two hydrozoan species Clytia hemisphaerica and

Podocoryne carnea: while the Clytia CheHox1 gene is specically

expressed in the sensory cells of the statocysts (this study,

figure 2), its orthologue in Podocoryne PcaCnox1 is expressed in

striated muscular cells [24]. Curiously, in cnidarians we are faced

with the opposite situation to that observed in bilaterians: while

among the later, Hox gene expression along the AP axis is

conserved in spite of a tremendous disparity of body plans, their

cnidarian orthologues have highly plastic expression territories in

animals that share the same basic body plan. Thus, future

functional studies in cnidarian models should explore the

possibility that, rather than acting in wide range patterning of

the body, the cnidarian homologues of the Hox genes might

regulate developmental processes at lower (tissue-level and/or cell-

level) scales.

An additional conclusion is that Hox genes are inappropriate to

decipher body axis homology between bilaterians and cnidarians:

for instance they do not tell us which extremity of a cnidarian polyp

is homologous to the bilaterian head, if such homology exists.

Recent expression studies of cnidarian Otx and Emx, two

transcription factors involved in anterior patterning of the central

nervous system in bilaterians, gave similarly unconclusive results

with respect to cnidarian/bilaterian ‘‘head’’ homology [54–55].

The comparative study of signalling molecules operating in the

earliest events of axis specification probably represents a more

promising approach to the problem of body axis homology between

distantly-related metazoans. Notably, Wnt genes are expressed in

staggered domains along the oral-aboral axis in Nematostella [56] and

in Clytia [57], evoking a ‘‘Wnt code’’ [56,58–59]. Based on the

position of the Wnt centre, the oral end of cnidarian planulae and

polyps seems homologous to the rear end of the Bilateria [60], not to

their anterior extremity contrary to earlier claims based on Hox

gene expression in the sea anemone [34].

Origin and early evolution of the ParaHox genes
In the Bilateria, ParaHox genes constitute three groups, GSX

(genomic screened homeobox), XLOX (Xenopus laevis homeobox

8/insulin promoter factor 1) and CDX (caudal type homeobox),

phylogenetically nested within Hox genes. A widely popularised

scenario of ParaHox origin postulates that a ‘‘ProtoHox’’ cluster of

2 or 3 genes duplicated into Hox and ParaHox sister-clusters

(hypothesis from Brooke [15] also favoured by e.g. [16,61–63]).

This scenario was initially proposed based on an unrooted

neighbour-joining phylogeny [15] in which GSX, XLOX and

CDX sequences appeared as the sister-groups to HOX1/HOX2,

HOX3 and HOX9/HOX10 respectively, and on the identifica-

tion of a ParaHox cluster in the amphioxus genome [15].

Our phylogenetic analysis (figure 1) supports an origin of

ParaHox genes by tandem duplications, in agreement with Ryan

et al. [37], rather than by duplication of an ancestral ‘‘ProtoHox’’

cluster (figure 4A). In our tree (figure 1), XLOX arises as the sister

group of HOX3 as in most previous studies (e.g. [29,33,37,39,64–

65]), but GSX and CDX are more closely related to each other

than to ‘‘anterior’’ and ‘‘posterior’’ Hox respectively. This

topology suggests an independent origin for XLOX and for

(GSX+CDX), although we recognise that this scenario is

extremely fragile, given the lack of node support, and the

notorious instability of GSX position in Hox trees [65]. The

important point is that the scenario of a ProtoHox cluster

duplication receives no support from phylogenetic analyses.

Indeed, only a few previous unrooted neighbour-joining analyses

retrieved the (GSX+anterior Hox) and (CDX+posterior Hox)

clades [64,66–67], while analyses using an outgroup and/or other

reconstruction methods (as in the present study) systematically

failed to recover these relations [29,37,39,46,65,68–70]. In

addition, genomic data is not compelling in favour of the cluster

duplication scenario, since ParaHox clusters have been identified

in only two mammalian species (mouse and human; [67]) in

addition to amphioxus, whereas they are absent in other examined

deuterostome species [69,71] and in protostome genomes [72].

The fact that GSX (NveAnthox2) and CDX (NveHD065) are linked

together in the Nematostella genome [38] does not represent an

argument for an ancient origin of the ParaHox cluster, since it is

equally compatible with the scenario favoured by our tree

(figure 4A), in which GSX and CDX are sister-genes issued from

a duplication independent from the anterior/posterior Hox

duplication. Thus, ParaHox clustering might have arisen second-

arily in the chordates by intercalation of XLOX between GSX

and CDX.

With respect to expression and function, ParaHox genes have

been proposed to be implicated in bilaterian antero-posterior

patterning of the endoderm in a collinear fashion comparable to

Hox genes in the ectoderm [16]. This assumption was based mainly

on the spatial and temporal collinearity observed in amphioxus [15]

and on the mostly endodermal expression of ParaHox genes

observed in amphioxus [15] or in the mouse [73–74].

However, the expression of CheGsx and CheCdx in Clytia reported

here (figure 3) does not support an ancestral association of

ParaHox expression with the endoderm, since both genes are

expressed ectodermally, CheCdx during development from the

blastula stage onwards, and CheCdx and CheGsx in the medusa

tentacle bulbs. In the latter structure, CheCdx is probably involved

in nematogenesis (the production of the ectodermally located
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stinging cells), while CheGsx expression most likely characterises

neuronal precursors.

Our observations in Clytia join a wide array of data from other

cnidarians and from bilaterians suggesting that ParaHox gene

expression is in fact not particularly associated with the

endodermal layer. In cnidarians, endodermal GSX expression

was only observed in the medusa of Eleutheria and in the planula of

Podocoryne (figure 5; [33,36]). Neuronal GSX expression, as

reported from several hydrozoan and anthozoan species, is clearly

more significant. Thus, it has been demonstrated that Hydra Cnox2

is expressed in bipotent neuronal progenitors giving rise to

nematocytes and apical neurons [75], and in anthozoans

(Nematostella [65] and Acropora [32]) Gsx expression seems to be

restricted to neuronal populations. Since in bilaterians a neural

expression of GSX genes is also observed [15,69–70,76–78], GSX

is the only Hox-extended gene group showing clear conservation

of expression characteristics between cnidarians and bilaterians.

Remarkably, GSX is also statistically the best supported group and

the only one for which sequence conservation extends outside

from the homeodomain [61]. The expression of CDX is similarly

not specifically associated with the endoderm. Hence the CDX

gene is only expressed in the ectodermal layer in Clytia (figure 3)

and in Eleutheria (figure 5; [35]), whereas it is also exclusively

expressed in endoderm in Nematostella (figure 5; [37]). Furthermore

CDX gene expression is generally extended to the whole posterior

end in bilaterians, and not confined to the posterior endoderm

(e.g. [15,70,79]). Finally, XLOX is the more endoderm-specific

ParaHox gene (e.g. [69–70,74]) but this gene has also a neural

expression in Nereis [80] and Branchiostoma [15] and is to date

unknown in ecdysozoans and cnidarians.

Finally, collinearity does not seem to be a rule for ParaHox

expression. Absence of collinearity is clear for Clytia CheGsx and

CheCdx expression (figure 3), the latter being expressed at both

extremities of the planula and the former being undetectable at the

same stage. GSX / CDX expression is also clearly not collinear in

Nematostella (figure 5; [37]). Eleutheria is to date the only cnidarian

exhibiting collinearity since EdiCnox4 (CDX) and EdiCnox2 (GSX)

are expressed at opposite poles in the polyp (figure 5; [36]). Among

bilaterians, temporal and spatial collinearity was observed in the sea

urchin Strongylocentrotus purpuratus [69] and the cephalochordate

Branchiostoma floridae [15] while the polychaete annelid Nereis virens

displays only spatial collinearity [80] and ParaHox genes are

expressed in a non-collinear manner in the urochordate Ciona

intestinalis [71] and in the polychaete annelid Capitella sp. I [70].

Altogether, these data seem to exclude an ancient role for ParaHox

genes in patterning the endoderm along the main body axis.

Conclusions
Our analyses of the Hox-extended family sequences and

expression patterns in the hydrozoan Clytia hemisphaerica confronted

with available data from other cnidarian species and from the

Bilateria led us to reassess the early evolution of Hox and Hox-

related genes family. Hox / ParaHox gene implication in axial

patterning does not appear as a conserved feature among

cnidarians and the Hox code seems more likely to be an

innovation of the Bilateria (in agreement with Kamm et al.

[35]). Hox/ParaHox paralogous groups underwent diverging

histories among cnidarian lineages, both in terms of gene

duplications and losses, and in terms of gene expression, probably

reflecting diversification of functions.

Even if not particularly associated with axial patterning,

transcription factors of the Hox-extended family probably played

important roles in the evolution and diversification of the body

plan during cnidarian evolution, through extensive gene co-option.

Notably, they were probably involved in shaping the medusa

(clearly a modified body plan derived from within the cnidarians),

as suggested by HOX1 gene expression in mechanosensory cells of

the statocysts (in Clytia, figure 2P) or in striated muscular cells (in

Podocoryne [24]), and by the restricted expression of Clytia CheMox

in particular areas of the medusa gastro-vascular system. Future

progress in our understanding of the significance of Hox/ParaHox

family genes for cnidarian and eumetazoan body plan evolution

will require data from understudied cnidarian classes (Scyphozoa,

Cubozoa, Staurozoa), as well as more experimental work,

including gene surexpression / inactivation studies and the

characterisation of target genes, in order to determine the exact

roles of these transcription factors in cnidarian development and

morphogenesis.

Materials and Methods

Animals
Colonies of Clytia hemisphaerica were cultured in the laboratory

and polyps, medusa, eggs, embryos and larva were obtained as

previously described [81].

Clytia cDNA library and ESTs
Hox-related sequences were retrieved from a collection of

80.000 EST (Expressed Sequenced Tag) sequences generated from

a mixed-stage normalised cDNA library as previously described

[81]. EST sequencing was performed at the Genoscope (Evry,

France).

Hox-related sequence identification
A systematic search for sequences of the Antp super-class was

performed on the Clytia ESTs. The identification was based on

sequence similarity in the Antp-homeodomain as revealed by

BLAST searching (tBLASTn with a 1e27 expected value

threshold) with representatives from all known Antp sub-classes

(Hox-extended, BarH, Dlx, Emx, Hlx, NK, Tlx) from Nematostella

[41] and Drosophila.

Phylogenetic analysis
Homeodomain sequences from Clytia were aligned with sequenc-

es from a wide range of cnidarian and bilaterian homeodomains

obtained by BLAST search in the GenBank and CnidBase

databases. In the present study, the adopted strategy was to

maximise taxonomic sampling among the cnidarians in order to

have a representative view of their diversity and to allow discussions

about Hox/ParaHox evolution within cnidarian lineages. Thus a

matrix was built with 117 cnidarian and 94 bilaterian Antp

homeodomain sequences and was completed by 5 sequences from

the placozoan Trichoplax adherens [46], the 8 available sequences from

the demosponge Amphimedon queenslandica [47] and the 4 available

sequences from the ctenophore Mnemiopsis leidyi [48].

The cnidarian dataset included the full Antp complements from

Nematostella vectensis [41]. The matrix was completed with published

Hox and Hox-related complete or near complete homeodomain

sequences from three main cnidarian groups: the anthozoans

Acropora millepora [32,82] and Metridium senile [26], the scyphozoan

Cassiopeia xamachana [28] and the hydrozoans Eleutheria dichotoma

(Capitata, [25]), Podocoryne carnea (Filifera, [31,33]), Hydractinia

symbiolongicarpus (Filifera, [27,83]) and several Hydra species (Hydra

magipapillata, Hydra vulgaris, Hydra viridis formerly Chlorohydra

viridissima (Aplanulata), [22,29,38]). These sequences were named

after their published names and for Nematostella Hox sequences, for

which several names have been proposed, after the nomenclature

used by Ryan et al. [37]. The bilaterian data set comprised
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sequences from representative species of Deuterostomia (the Antp

complement of Branchiostoma floridae, and one Not sequence from

Gallus gallus), Ecdysozoa (the Antp complement from Drosophila

melanogaster and one Hox3 sequence from Cupiennius salei) and

Lophotrochozoa (Nereis virens Antp sequences, one Xlox sequence

from Capitella sp., one Xlox sequence from Euprymna scolopes and

one Mox sequence from Haliotis rufescens). Accession numbers are

available in figure S3.

In this study, we have chosen an outgroup including all Antp

non-Hox/ParaHox sequences known from the included species.

Indeed, our preliminary phylogenetic analyses have shown that the

internal topology is very sensitive to rooting sequence selection and

the only way to avoid rooting bias was to perform a global

phylogeny of the Antp homeodomains (see full tree with non-

compressed outgroup in Additional file 1).

ML analysis was performed using PhyML [84] with the JTT

amino acid substitution model, 8 categories of substitution rates

with an estimated Gamma distribution parameter and an

estimated proportion of invariable sites. Statistical support was

evaluated by 100 replicates of bootstrap. NJ analysis was

performed using PAUP4.0b10 [85] uncorrected distance. Statis-

tical support for the NJ topology was assessed by 1000 bootstrap

replicates.

In Situ Hybridisation
DIG-labelled antisense RNA probes synthesis, samples fixation

and in situ hybridisation were carried out as previously described

[81], except for colour development which was performed using

BM purple reagent (Roche). After postfixation 30 min. in 4%

paraformaldehyde/PBStween, the nuclei were stained with Dapi

(1 mg/ml) during 15–30 min followed by several washes in

PBStween. Samples were then mounted in 60% glycerol/PBS.

Double in situ hybridisation were performed as previously

described [44].

Immunostaining
Animals were fixed in 4% paraformaldehyde in PBS (10 mM

Na2HPO4, 150 mMNaCl, pH 7.5) for 15 min, at room temper-

ature, then samples were washed several times in PBS, dehydrated

through a graded series of ethanol and stored in methanol at

220uC. After stepwise re-hydration to PBS, samples were

permeabilised with Triton-X100 (0.2% in PBS, then 0.01% in

PBS, 10 min at room temperature). After blocking with 1% bovine

serum albumin, samples were incubated with the following primary

antibodies for 2 hours at room temperature: rabbit polyclonal anti-

FMRFamide (ABcam, 1/1000) and mouse monoclonal anti-

acetylated a-tubulin (6-11-B1, Sigma, 1/1000). After washing in

PBS triton-X100 0.01% solution (PBST), samples were incubated

overnight at 4uC with the following secondary antibodies (1/1500):

Alexa Fluor H 568 goat anti-rabbit IgG or Alexa Fluor H 488 goat

anti-mouse IgG (Molecular probes). Primary and secondary

antibodies were diluted in 16 PBS containing 0.01% Triton-

X100. Samples were stained finally with DAPI (1 mg/ml) for

15 mn, in PBST and mounted in Vectashield H solution.

Imaging
Fluorescence and most DIC images were acquired with an

Olympus BX61 microscope using a Q-imaging Camera with

Image Pro plus software H (Mediacybernetics).

Supporting Information

Figure S1 Phylogenetic relationships between cnidarian, pla-

cozoan and bilaterian Hox/ParaHox related homeodomains

inferred by ML analysis. Same tree as figure 1 but with a non-

compressed outgroup. Numbers above branch indicate percent-

ages of 100 bootstrap replicates in the ML analysis. Abbreviations:

Afo, Acropora formosa; Ami, Acropora millepora; Aqu, Amphi-

medon queenslandica; Bfl, Branchiostoma floridae; Che, Clytia

hemisphaerica; Csa, Cupiennus salei; Csp, Capitella sp.; Cvi,

Chlorohydra viridissima; Cxa, Cassiopeia xamachana; Dme,

Drosophila melanogaster; Edi, Eleutheria dichotoma; Esc, Eu-

prymna scolopes; Gga, Gallus gallus; Hma, Hydra magnipapillata;

Hru, Haliotis rufescens; Hsy, Hydractinia symbiolongicarpus;

Hvu, Hydra vulgaris ; Mle, Mnemiopsis leidyi; Mse, Metridium

senile; Mus, Mus musculus; Ner, Nereis virens; Nve, Nematostella

vectensis; Pca, Podocoryne carnea; Tad, Trichoplax adhaerens.

Found at: doi:10.1371/journal.pone.0004231.s001 (2.12 MB JPG)

Figure S2 Phylogenetic relationships between cnidarian, pla-

cozoan and bilaterian Hox/ParaHox related homeodomains

inferred by NJ analysis. The analysis was performed on the same

alignment as for the ML analysis. Numbers above branch indicate

percentages of 1000 bootstrap replicates in the NJ analysis.

Abbreviations: Afo, Acropora formosa; Ami, Acropora millepora;

Aqu, Amphimedon queenslandica; Bfl, Branchiostoma floridae;

Che, Clytia hemisphaerica; Csa, Cupiennus salei; Csp, Capitella

sp.; Cvi, Chlorohydra viridissima; Cxa, Cassiopeia xamachana;

Dme, Drosophila melanogaster; Edi, Eleutheria dichotoma; Esc,

Euprymna scolopes; Gga, Gallus gallus; Hma, Hydra magnipa-

pillata; Hru, Haliotis rufescens; Hsy, Hydractinia symbiolongicar-

pus; Hvu, Hydra vulgaris; Mle, Mnemiopsis leidyi; Mse,

Metridium senile; Mus, Mus musculus; Ner, Nereis virens; Nve,

Nematostella vectensis; Pca, Podocoryne carnea; Tad, Trichoplax

adhaerens.

Found at: doi:10.1371/journal.pone.0004231.s002 (2.36 MB JPG)

Figure S3 Accession numbers of sequences used for phyloge-

netic analyses

Found at: doi:10.1371/journal.pone.0004231.s003 (0.07 MB

PDF)
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