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Abstract: In this paper, a novel semi-supervised segmentation framework based on a spot-divergence
supervoxelization of multi-sensor fusion data is proposed for autonomous forest machine (AFMs)
applications in complex environments. Given the multi-sensor measuring system, our framework
addresses three successive steps: firstly, the relationship of multi-sensor coordinates is jointly
calibrated to form higher-dimensional fusion data. Then, spot-divergence supervoxels representing
the size-change property are given to produce feature vectors covering comprehensive information
of multi-sensors at a time. Finally, the Gaussian density peak clustering is proposed to segment
supervoxels into sematic objects in the semi-supervised way, which non-requires parameters preset in
manual. It is demonstrated that the proposed framework achieves a balancing act both for supervoxel
generation and sematic segmentation. Comparative experiments show that the well performance of
segmenting various objects in terms of segmentation accuracy (F-score up to 95.6%) and operation
time, which would improve intelligent capability of AFMs.

Keywords: multi-sensor joint calibration; high-dimensional fusion data (HFD); supervoxel; Gaussian
density peak clustering; sematic segmentation

1. Introduction

For the foreseeable future, autonomous forest machines (AFMs) will play a central role in
harvesting, tending and forest management because lots of artificial and natural forests are facing with
poor forest quality on a large-scale [1]. Currently, the proportion of good quality forest resources is
very small, which directly affects the economic potential and ecological value of the whole forestry
industry. Scientific tending and harvesting operations, which rationally adjust the mixed structure
and wood quality of forest, can improve the level of forestry production in a relatively short time [2].
However, traditional artificial technology relying on the high-cost and low-efficiency labor could
not meet the urgent quality improvement of modern forestry. Therefore, replacing human beings
with AFMs rapidly to engage in dangerous and heavy works including tending and harvesting have
been a core focus, which will increase the efficiency and value of unit labor in handing with quality
promotion of large-scale forest lands. Nevertheless, the automatic or semiautonomous ways presented
that can work without operators cannot perceive the complex forest environments accurately as drivers,
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because so many complex factors need to be considered in the maneuvering of forest machines in
harvesting operations that full automation would be extremely difficult. Many problems still remain
to be addressed before the field of AFMs can be widely expanded including: which trees should be
harvested or tended, where the harvester should be positioned and what suitable driving routes should
be taken? To this end, an efficient environment-aware system that could facilitate decision-making
in those complex work described above should be constructed before a forest machine can fully and
authentically automate the harvesting and tending process, which will relieve fatigue and stress of
drivers and improve overall productivity and efficiency of forestry workload [3].

In comparison to the structured environment in agriculture or the semi-structured outdoor
environment in urban traffic, the forest environment is much more challenging for operation and
perception of AFMs since the various objects of interest are surrounded by massive areas of dense
shrubs, dead trees and fallen objects. In addition, forest trails are rarely straight or flat, and obstacles
are common, the AFM itself has more problems in the process of moving due to high amount of
logging residues on the ground surface and sometimes high variability of the soil-bearing capacity [4].
In order to improve the capacity of environmental perception and complex decisions in forest
operations, most of the current AFMs combine several sensors to compensate for the drawbacks of
each sensor and to merge various information into a single percept about the nearby environment [5].
Although multi-sensor fusion technology has become the standard techniques for AFMs to identify
objects, select roads and decide to execute the best operation, separating individual objects and
backgrounds from forest environments is extremely demanding and raises problems that have not yet
been satisfactorily resolved, which becomes the main challenge in forestry autonomous awareness and
navigation systems [6].

Many previous works dealing with this perception issue did so by solving a semantic segmentation
problem, aimed at determining which objects of the input data correspond to harvesting and tending
operation, and detecting which areas and trails are suitable for driving. Segmentation of images and
point clouds is an important capability for AFMs in unstructured forestry scene, which is a prerequisite
for solving subsequent tasks such as navigation or reconstruction. The basic process of segmentation
is labeling each measurement unit, so that the pixels or points belonging to the same surface or region
are given the same label [7]. However, processing unstructured and massive data (including laser
point clouds, visible images, thermal infrared photos etc.) obtained by different sensors is a much
harder problem.

On one hand, most of segmentation methods are proposed to handle with a single type of sensor
data (images or point clouds), which does not take full advantage of higher-dimensional fusion data
(HFD) captured by the multi-sensor measuring system of AFMs. Additionally, those algorithms are
focusing on point-level data or patch-level supervoxel with a fixed size, which is not suitable for the size
change of HFD caused by the occurrence of spot-divergence in complex forestry scenes. Thus, finding
approaches that can directly operate on size-changed HFD in an effective and affordable way is still
largely open in application requirements of AFMs. On the other hand, the existing segmentation works
falling into the cluster category in Euclidean space are supervised-based methods, which encourages
users to try many different input thresholds, therefore, increases the chance of selecting good input
values for better results. Consequently, such a process usually requires numerous parameters of
human intervention and can be quite time consuming. This strategy may perform well in simple and
sparse datum obtained from the city vehicles or indoor robots in structured environment. However,
it is difficult to deal with the noise-filled HFD of forest environment in real-time, which even lead to
inaccurate results of segmentation.

Aiming to improve the segmentation performance of the multi-sensor measuring system for
AFMs, we propose a semi-supervised segmentation framework based on a size-changed supervoxel,
which takes the spot divergence of each HFD into account and produces the valid feature vector
covering the spatial, visual and thermal information at a time. On the basis of precomputed
supervoxelization, we further extend the traditional density peak clustering method in Gaussian
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constraint to solve the sematic segment problem of different objects in complex scenes. This framework
has two major benefits: (a) it provides a patch-level process that every supervoxel can describe
the variational size of HFD; (b) sematic objects can be segmented without the artificially preset of
clustering central number or convergence thresholds, which gives an opportunity to promote the
segment performance in the term of accuracy and operation time.

The rest of this paper is organized as follows: some related works are introduced in Section 2.
Section 3 briefly presents our multi-sensor measuring system of AFMs. Section 4 presents the principle
and notations of our segmentation framework. Experiments are conducted in Section 5. Finally,
we conclude our work in Section 6.

2. Related Works

Focusing on HFD, there is a growing tendency of innovative methods for the treatment and
analysis of these data, aimed ultimately to exploit in-depth the informative value of semantic
segmentation. The early attempt to group segmentation methods followed the works of spatial
transformation by converting 3D/2.5D point clouds into 2D depth images, which could be deposed
with proven image segmentation techniques [8]. However, those methods lacked the geospatial
information of 3D point clouds. Consequently, many further research paid attention on 3D-based
segmentation methods able to understand a complex scene directly [9]. Those algorithms fell into the
basic combination of the original point-level data and model-fitting method, which did take visual
information and reflectivity intensity of HFD in account. In order to promote the segment performance
processed in a point-wise manner, the following works of extracting supervoxels for 3D point clouds
began to take multi-sensor information fusion and machine learning methods into account [10,11].
In this section, we will review some representative algorithms that are related to sematic segmentation
of HFD.

2.1. Point Clouds-Based Segmentation Method

The traditional segmentation methods are dividing large amount of unstructured 3D point
clouds into a certain number of independent objects with special semantics according to spatial
distribution characteristics. Over the past decade, several algorithms for object extraction from 3D
point clouds have been reported by researchers. Euclidean clustering segmentation was based on
defining a neighbourhood of radius and all the points within the sphere of radius are belong to one
cluster [12]. Although such methods allow a fast segmentation, they may produce inaccurate results in
case of noise and uneven density of point clouds, which commonly occur in point clouds.

For higher accuracy, model-fitting methods were proposed with the observation that many objects
could be decomposed into geometric primitives like planes, cylinders and spheres [13]. For example,
the cylinder was usually fitted onto point clouds of forest scenes to distinguish the trunks which were
conform to the mathematical representation of the primitive shape. As part of the model fitting-based
category, two widely employed algorithms were the Hough Transform (HT) and the Random Sample
Consensus (RANSAC) approach. Compared to the HT only detects fixed shapes, the RANSAC method
was used to extract shapes by randomly drawing minimal data points to construct candidate shape
primitives, which were checked against all points of dataset to determine the appropriate value.
The model-fitting method has been adapted to segment tree stems in forestry scene. Ref. [14] proposed
hierarchical minimum cut method based on that the detected trunk points are recognized according
to pole-like shape. By detecting the repetitive appearance of cylindrical segment units, this method
isolated individual trees from point clouds of forest scene and achieved good balance in terms of
accuracy and correctness. However, the segmentation quality of the model fitting-based algorithms is
sensitive to the point clouds characteristics (density, positional accuracy, and noise) and is over-reliance
on predictive shapes and parameters, which lack of adaptability to segment for various objects in
forest scenes.
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An alternative was the region growing approach involving two stages: identification of the seed
points based on the curvature of each point, and growing them based on predefined criteria such as
proximity of points and planarity of surfaces. This method and several variations were presented
for 3D point clouds segmentation. For example, [15] performed a marker-controlled region growing
segmentation using a treetop as the seed surface and the angle and height between the neighboring
triangles for the growing. However, the region growing methods strongly depends on multiple
criteria, such as the location of initial seed regions and curvatures of points near region boundaries.
Moreover, the high point density requires a large amount of computer resources for spatial searching
if the original LiDAR points are processed directly in those methods. Thus, octree construction
providing an efficient spatial index with high position accuracy was combined with the region growing
methods to detect planar segments, which realized better point cloud management and provided
faster refinement process [16]. Similarly, [17] proposed an initial-to-fine algorithm performed on an
octree-based representation of the input point cloud to extract stem-based initial segments. Then the
output was then passed through a refinement segmentation of overlapped canopy, which can reduce
technical difficulties and effectively separate neighboring trees even if their canopies are overlapped.
In these works, the partition of a point cloud was achieved by an octree structure. Local patches were
then extracted according to the leaves of the octree. The number of local patches is related to the
number of whole points and the size of octree leaves. A major limitation of this method is that the
interior shape structure is discarded. Further, those methods are not particularly robust as has been
shown experimentally in part because the segmentation quality strongly depends both on multiple
criteria and the selection of seed points/regions.

As demonstrated above, point clouds-based algorithms are well established as robust methods
for segmenting dense 3D point clouds in acquired in urban areas. However, these works have
some disadvantages in dealing with large 3D data sets or scenes with complex geometries. As these
algorithms only use all individual points, the computational cost and significant processing time
are very high, making it impractical for real time applications. Besides, the raw point clouds from
terrestrial laser scanner (TLS) or mobile laser scanner (MLS) often exhibit unorganized stripe structures
due to the rotary scanning mechanism. These structures make the point clouds difficult in providing
any information on local surfaces, which help extracting the inside/outside of the underlying feature
for efficient segmentation. Since point clouds are unstructured and often massive, it is sought to
reduce these points by grouping together or removing redundant or un-useful points for improving
the segmentation quality.

2.2. Supervoxel Process

In order to accelerate the existing segmentation with 3D point clouds processed directly in
a point-wise manner, the patch-level methods have been proposed by clustering the individual 3D
points together to form over-segmented voxels. In order to create the voxels, a 3D point is selected
as center and all 3D points in the vicinity are selected with a fixed diameter (equal to maximum
voxel size) to determine an actual voxel. With the voxel representation, the point clouds can first be
divided into a number of patches and the processing can then be operated in a patch-wise manner.
After the voxelized process, the 3D model can not only maintain the surface shape of the object,
but also effectively describe the internal distribution. Since the number of patches is much smaller than
the number of points in a point cloud, the efficiency of point clouds processing can be significantly
improved. In the work of [18], volumetric 3D model was proposed to explicitly representing the
forestry scenes, with the details of the trees and the surrounding unknown areas represented accurately.
However, the voxelization of point clouds lacks of the fusion information including color, texture,
thermal and reflectivity obtained by other sensors. This make the local description capabilities of each
voxel degraded and limit the segmentation performance in complex applications of forest environment.

To gaining the higher representation than the voxel, some patch-wise segmentation applied
supervoxels as basic elements to cope with HFD of complex tasks. These methods are inspired
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by the superpixel approaches that have been widely used in image analysis and processing.
A typically superpixel method was the SLIC (Simple Linear Iterative Clustering) algorithm based on
gradient-ascent theory in which the relationship between the color similarity and the spatial distance
was used to form the cluster centers of superpixels [19]. Another representative method was the
Superpixels Extracted via Energy-Driven Sampling (SEEDS) algorithm based on graph-based theory,
which started with the color distribution and discriminates edge shape of each superpixel iteratively
to achieve superpixel partitioning [20].

Currently, many supervoxel-based segmentation methods are the simply extension of 2D
superpixel segmentation to the domain of 3D volumes. Reference [21] proposed a Voxel Cloud
Connectivity Segmentation (VCCS) method to take full advantage of 3D geometry information.
In this work, the points with similar normals, colors, and Fast Point Feature Histograms (FPFHs)
were clustered into a supervoxel. Similarly, the proposed SEED-3D algorithm was designed to
minimise the cost of the shortest path in the weighted graph with consideration of characteristics
of the sensor for complex urban environment. The performance showed the better boundary recall
and under-segmentation result [22]. These kinds of supervoxel methods seem to not only be suitable
for real 3D volumetric data, but also be appropriate for video with object occlusion and moving
objects. Similarly, [23] proposed a novel voxel-related Gaussian mixture model for supervoxel
segmentation to address the problem of new and moving objects in continuous frames. According to the
experiments, the proposed method performed well in terms of segmentation accuracy while possessing
a competitive computing. In particular, the supervoxels have showed as the best processing unit for
the individual tree segmentation from LiDAR point clouds in urban environments. Reference [24]
proposed an automatic method for the individual tree segmentation (ATS) based supervoxel generation.
With the preprocessing of extracting tree points, the supervoxel was defined as a polyhedral region
consisting of homogeneous points. Then assigning other points to optimize centers obtained complete
supervoxels and delineate trees from complex scenes. This method overcame two main drawbacks in
the commonly used tree point assignment strategy, including the low efficiency caused by assigning
the index to each point and the assignment of different tree indexes for homogeneous points.

2.3. Supervoxel-Based Segmentation Method

As describing the local characteristics of point clouds effectively and reducing the processing time
of segmentation, the supervoxels are selected as the basic processing unit for patch extraction of HFD in
this paper. When the 3D point clouds or HFD are converted into some supervoxels, the next issue is to
group these patches to segment into distinct objects. Usually for such task, [25] proposed a link-chain
method instead to group these s-voxels together into segmented objects. However, this method has
many features and parameters which need to be adjusted manually in order to obtain better results
with very long computational time. Therefore, segmentation algorithms based on K-means clustering
were applied to group set of supervoxels into different objects using few attributes/features. In [26],
the feature distances between cluster centers and the neighborhood supervoxels are minimized to
segment street trees from 3D point clouds. Since the choice of neighborhood strongly influences
segmentation results of the K-means clustering methods, it is difficult to segment the boundary
supervoxels with abundant features. Thus, a refinement phase was necessary to test whether the
supervoxel was within the same cluster. The extracted segmentation based on hierarchical clustering
was proposed to compute geometrical and radiometric characteristics (position, surface normals,
reflectance etc.) of each supervoxel for forestry scene segmentation [27]. Similarly, a novel Density
Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm was presented to
cluster any dimensional data including terrestrial point clouds and HFD [28].

As described previously, those clustering segmentation methods require artificially determining
the number of cluster centers or selecting convergence thresholds, which lacks automatic adaptability.
Furthermore, these methods are all supervised model as they rely on a set of provided training
examples (features) to learn how to correctly perform a task. While high-quality features can enhance
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algorithm performance, and can also causing computationally expensive in large datasets [29]. Hence,
the partially un-supervised extraction of scene structures from 3D point clouds or HFD has been found
to be an attractive approach to urban and forestry scene analysis, because it can tremendously reduce
the resources and time consumption of data analyzing for subsequent tasks and other applications of
AFM in forest environments. Consequently, the density peak clustering (DPC) algorithm is adopted
to construct our proposed segmentation method on the basis of the idea that cluster centers are
characterized by a higher density than their neighbors and by a relatively large distance from data
with higher densities. The DPC has been widely applied to the problem of classification as the clusters
are recognized automatically regardless of their shape and of the dimensionality of the space [30].
However, it cannot be directly applied to supervoxel segmentation because its accuracy excessively
depended on the suitable threshold estimated on the basis of empirical experience [31]. What’s worse,
it does not encode the constraint on dimensional consistency of feature vector for each supervoxel.
Thus, a new Gaussian way is proposed to automatically extract the optimal value of threshold by using
the normalized feature distance. For any multi-sensor fusion data of forestry scenes to be clustered,
our proposed method can extract sematic objects with semi-supervised way from the supervoxels
dataset objectively instead of empirical estimation. The details of the algorithm process are explained
in the following sections.

3. Multi-Sensor Measuring System

According to the environmental characteristics of AFMs’ operation, the vehicle-mounted holder
is designed to carry a moving 2D laser scanner, thermal infrared camera and visual camera to build the
real-time measuring and perception systems as shown in Figure 1. The camera could obtain real-time
visible light information in the forest environment. This sensor has a wide-angle view field with
75◦ × 75◦ and a focal length with 0.1 m to 10 m, which has produced images with the resolution
of 1920 × 1080 pixels at 20 frames/second speed. An ARTCAM-320-THERMO (ARTRAY CO.,
LTD, Tokyo, Japan) is selected as the thermal infrared device. Its measurement temperature range is
from −40 to 150 ◦C. We set image resolution as 480 × 640 and the speed rate as 20 frames/second
to detect the forestry objects. Finally, the LMS511-20100 PRO type laser scanner produced by SICK
Corporation (Waldkirch, Germany) is used as a non-contact scanner. Its wavelength is 905 nm, which is
safe and reliable for the human eye. To acquire abundant tree features with adequate resolution
from the laser scanning measurements taken in the forest, the scanning angular resolution is set to its
minimum value 0.1667◦. Then the scanning angle is set to−5◦ to 185◦ and maximum scanning distance
is 50 m. The measurement points corresponding to the surrounding contour is output in hexadecimal
format to form the raw point clouds via the Ethernet interface at the frequency of 100 Hz. In this
study, we extended the 2D scanning model to 3D scanning model combining the pan/tilt motion of the
vehicle-mounted holder with the internal motor motion of 2D laser device. Therefore, the horizontal
direction parameter of 3D points depended on the setting result of the laser scanner above, and the
vertical direction parameter was determined by the vehicle-mounted holder. Here, we set the scanning
angular resolution as 0.1◦. Similarly, the scanning angle is set to −70◦ to 70◦ (0◦ is parallel to the
ground) and the scanning frequency is set to 10 Hz.

Through multi-sensor cooperation, information such as distance, position distribution, color and
surface temperature of objects in the forest area can be directly obtained and stored through the host
control software in the data acquisition and processing module. This software also was used to control
the working states of all sensors, vehicle-mounted holder and the system display module. The whole
system was equipped on different forest machines (including forestry firefighting vehicles, forestry
cutting and harvesting equipment, forestry tending and breeding equipment as shown in Figure 2)
with proof level of IP67, which can effectively prevent the entry of rain or dust and be adapted to the
damage conditions in the actual forestry areas.
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Figure 2. Measuring system installed at different forestry machines for operations experiment.

The multi-sensor data acquisition experiment of forest scenes was conducted in southern and
northern forest farms in different seasons. The southern experiment was conducted in the artificial
eucalyptus area of Qinzhou (Guangxi Province, China) where the diameter at breast height (DBH) was
more than 16 cm and the height was more than 15 m. The experiment was carried out from July to
November with the high temperature above 35–42 ◦C. In order to further enrich the measurement
objects and scenes, we also selected the Jiufeng forest farm in Beijing for experimentation with
various tree species including larch, fir, birch, etc. The experiments were carried in typical cold
northern weather conditions with temperatures from −21 ◦C and 9 ◦C. 3D point clouds, visible
images, and thermal infrared images of various objects and obstacles under different scenarios were
acquired to form the multi-modal database of the forest environment. Based on the multi-sensor
technology foundation, we focused on practical issues for AFM application in complex environments
and carried out the sematic segmentation framework including subsequent four steps: multi-sensor
joint calibration, spot-divergence supervoxelization, feature vector extraction and Gaussian density
peak clustering as described in the following sections.
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4. Methodology

4.1. Multi-Sensor Joint Calibration

Each sensors’ data in the multi-model database has its own characteristics. Compared with the
visible and thermal infrared images, the 3D point clouds have a larger field of view, but the density
of point clouds is relatively sparse and noisy compared to images. To integrate the advantages of
different sensors for segmentation, it is necessary to perform multi-sensor data preprocessing and
fusion on the basis of analyzing the various sensors’ conditions. According to the working principle
of laser scanners, the measuring value of a laser beam is influenced by the reflectance of objects
and the returned energy of the laser beams, which makes laser point clouds filled with discrete and
systematic noise. Therefore, this paper uses a Gaussian weighted filter for removing discrete points in
the laser scanner data which have the farther distance from all nearby point clouds. Then the average
smoothing filter is following to suppress the systematic noise in the point clouds, making the surface
of the object much smooth. Based on the noise processing, this paper conducts a joint calibration study
of multiple sensors. Its purpose is to realize the original data conversion relationship between various
sensor coordinate systems and achieve pixel-level data fusion. The joint calibration schematic is shown
in Figure 3.
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Figure 3. The joint calibration schematic of the thermal infrared camera, visible camera and 3D laser
scanner for HFD.

The entire multi-sensor joint calibration process consisted of two stages: internal calibration of
each sensor and external calibration between them. In the internal calibration stage, we applied the
linear pinhole imaging model on the basis of the nonlinear distortion to descript the internal geometric
projection process in the visible and thermal infrared cameras. We took an octagonal calibration plate
with checkerboard to calculate the internal parameters including focal length, distortion etc. By using
the Zhang calibration method of [33], the visible camera’s coordinate Xcam = [Xc, Yc, Zc]

T and the
thermal infrared camera’s coordinate Ytemp = [Xt, Yt, Zt]

T projected by the corresponding point in the
world coordinate were confirmed to construct the joint calibration model. Meanwhile, the internal
coordinate relationship of 3D point clouds by combining the pan/tilt motion of the vehicle-mounted
holder with the 2D laser device needs to be analyzed. Since the center of the 2D laser scanner Ol and
the pan/tilt center OL did not coincide, which leaded the laser scanning plane rotated around OL with
a certain distance d and angle δ. We defined the initial position of the 3D laser device when the plane
of the Ol center is parallel to the ground. Then the internal calibration expression of 3D laser device is
modeled as:

Jlase =

 XL
YL
ZL

 =

 D cos(n1η + θ0)• sin(n2ε + δ)]

[D sin(n1η + θ0)− dx]• sin(n2ε + δ)

(H + dy)• cos(n2ε + δ)

 (1)
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where dx and dy are the horizontal and vertical offset of d, D is the distance value measured by the point
cloud, and θ = n1η + θ0 is the horizontal distribution angle of the laser beam formed by the horizontal
angular resolution η and the horizontal laser beam sequence n1, θ0 represents the initial angle of the
working range of the 2D laser scanner. n2ε is formed by the tilt angle resolution ε and the sequence of
scan plane layers n2. According to the parameters of the laser scanner and the vehicle-mounted holder
preset in Section 3, we acquired the quantitates η = 0.1667, ε = 0.1, θ0 = −5, H = 1.6. Applied the
method in [33], we used the outer edge characteristics of the calibration plate consisted of the points
(D, n1, n2) to confirm the internal parameters dx, dy, δ in 3D laser scanner coordinate. With the internal
parameters of three sensors determined, we established fusion coordinate system based on the 3D
laser scanner, and built a joint calibration parameter solving model between multiple sensors: L1

L2
L3

 =

 Φlase− f use 0 0
0 Φcam− f use 0
0 0 Φtemp− f use

•
 w1•Jlase

w2•Xcam

w3•Ytemp

+

 ∆lase− f use
∆cam− f use
∆temp− f use

 (2)

where w1, w2 and w3 respectively represent the weights of 3D point clouds, visible images and thermal
infrared images in the joint calibration process under the same scene. Φlase− f use is an 3× 3 orthogonal
matrix representing the rotation relationship between the laser scanning coordinate and the fusion
coordinate, and ∆lase− f use is a corresponding 3× 1 translation matrix. Similarly, Φcam− f use, ∆cam− f use,
Φtemp− f use, ∆temp− f use represent the spatial rotation and translation matrix from the visible and thermal
infrared camera coordinate to the fusion coordinate. After the correction of the weights of each sensor,
different kinds of information in forest environment can be merged in the fusion coordinate through
rotation and translation parameters of each sensor are calibrated.

In this paper, the internal calibration of each sensor and the joint external calibration process
are accomplished simultaneously with calibration plate placed at different distances and locations.
Then, the corresponding linear equations of multiple edges of the calibration plate are selected to
model a PNP problem. In the conditional constraint of n ≥ 36, there is a least-squares solution as the
initial result for parameters of the multi-sensor joint calibration. In order to eliminate the nonlinear
errors caused by human intervention, the Levenberg-Marquardt (LM) method [34] was applied to
optimize the joint calibration parameters with the following expression:

E = argmin ∑
i≥36

ai

∥∥∥∥∥
 Li

1
Li

2
Li

3

−
 w1Φlase− f use•Jlase + ∆lase− f use

w2Φcam− f use•Xcam + ∆cam− f use
w3Φtemp− f use•Ytemp + ∆temp− f use


i∥∥∥∥∥

2

(3)

where ai represents the weight effect of each edge obtained by the three sensors on the of the objective
function E. After the transformation relationship between different sensors are determined, the HFD
dominated by 3D point clouds is obtained, in which each point has properties including distance,
angle, reflectivity, as well as color and temperature.

4.2. Spot-Divergence Supervoxelization

As traditional segmentation method based on supervoxels are unsuitable for the complex
application of AFMs in face with HFD, of which size is changed due to the occurrence of
spot-divergence in complex forestry scenes. Therefore, this paper started with the inherent working
principle of laser scanner and proposed the spot-divergence supervoxel representing size-changed
character of HFD. In this work, we used 26-neighborhood region constraint to construct mutual
topological relationship from the high-dimensional fusion data to supervoxels. Assume that there are
n HFD in a forestry scene, which form the origin dataset S : {P1, P2, · · · , Pn}. Then the dataset has been
divided into K supervoxels, which constitutes the sets V : {V1, . . . , VK}. The detail of supervoxelization
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process is divided into the four steps: supervoxel space division, spot-divergence process of HFD,
center selection and adjacent partition, and extracting feature vector of supervoxel as following.

4.2.1. Supervoxel Space Division

In the fusion coordinate system, the fusion dataset S : {P1, P2, · · · , Pn} with the largest spatial
coordinate value in Pmax(xmax, ymax, zmax) and the smallest Pmin(xmin, ymin, zmin) value are selected
as the two vertices of the entire cuboid space. The length, height and height of the cuboid space are
Lx = |xmax − xmin|, Ly = |ymax − ymin|, and Lz = |zmax − zmin|, respectively. According to actual
requirements, we divide all HFD into presupposition spaces of supervoxel with the even length Rsuper.
Set the supervoxel spaces along the x, y, z direction divided by the number of nx, ny, nz, we can
initially determine the number of preset supervoxels:

K = nx × ny × nz =
Lx

Rsuper
× Ly

Rsuper
× Lz

Rsuper
(4)

The minimum size of supervoxel space must satisfy the constraint conditions:

Rsuper > N•Rvoxel(max) (5)

where N is the constant coefficient, which is set to 4 in this paper. Rvoxel(max) denotes the largest edge
length of Pn in the fusion dataset, which is proposed on account of the laser beam divergence principle.

4.2.2. Spot-Divergence Process of HFD

The basic starting point is: each laser beam has a divergence angle. As surface reflectivity, texture,
roughness, etc. of the object change, the spot-divergence phenomenon of multi-sensor fusion data
occurs when the laser beam is reflected back over a long distance. As a result, the spot area of the
measured point on the surface of the object is much larger than ever and continuously changes with
increasing distance from the laser scanner as shown in Figure 4a. Therefore, describing each HFD
with a fixed area size does not meet the actual situation of supervoxels, which leads to inaccurate
results of segmentation. Moreover, with increasing distance from the object, the distance between
the individual measured points also increases. The distance between the measured points is also
dependent on the angular resolution selected. With a coarser resolution (e.g., 0.1667◦), the distance is
larger, with a finer resolution (e.g., 0.1◦) the distance is smaller. To reliably detect an object, the valid
area of laser beam with concentrated energy must be fully incident on it once. If the measured laser
beam is only partially incident, less energy could be reflected by the object and be disturbed by adjacent
beams as shown in see Figure 4b. The size of valid area is proportional to the degree of spot divergence,
which represents a lower energy remission than the measured laser beam actually [35]. Therefore,
the valid area is applied to describe the size change of each HFD due to spot divergence of 3D point
clouds. Based on this idea, a novel supervoxel process was proposed to determine the supervoxel
center and adjacent areas.

The distance-dependent spacing between the measured points is the tangent of the angular
resolution × distance. The initial size D1 of the laser beam launched from the emitter with the inherent
divergence angle θ1 to the surface of the object. After the transmission distance L, the diameter of spot
area representing the actual size of each HFD is obtained by the principle of trigonometry as:

d = D1 + cot(
θ1

2
)L (6)

As shown in Figure 4b, the diameter of each spot area will increase with the distance increases,
which leads to overlap of adjacent spot areas. Assume that the center distance of adjacent spot areas is
H, which is calculated as:

H = 2× L× tan(
ε

2
) (7)
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where ε represents the smallest angle of the adjacent spot areas, which is equal to the pan/tilt angular
resolution captured by 3D laser scanner. According to the laser energy distribution, the overlap causes
the measurement interference of adjacent laser beam. Therefore, we choose the center area (blue area)
as the valid area where there is not mutual overlap and interference of the adjacent beam. The diameter
of valid area is defined as:

B = H − d/2 = 2× L× tan(
ε

2
)− (D1 + cot(

θ1

2
)L)/2 (8)

Sensors 2018, 18, x FOR PEER REVIEW  10 of 25 

 

4.2.1. Supervoxel Space Division 

In the fusion coordinate system, the fusion dataset  1 2: , , , nS P P P  with the largest spatial 

coordinate value in 
max ( ,  ,  )max max maxP x y z  and the smallest 

min min min min( ,  ,  )P x y z  value are selected 

as the two vertices of the entire cuboid space. The length, height and height of the cuboid space are 

x max minL x x  , y max minL y y  , and z max minL z z  , respectively. According to actual 

requirements, we divide all HFD into presupposition spaces of supervoxel with the even length 

superR . Set the supervoxel spaces along the x y z， ，  direction divided by the number of 
x y zn n n， ， , 

we can initially determine the number of preset supervoxels:  

x y z

super super super

Lx Ly Lz
n n n

R R
K

R
    

 
(4) 

The minimum size of supervoxel space must satisfy the constraint conditions: 

(max)super voxelR N R  (5) 

where N is the constant coefficient, which is set to 4 in this paper. (max)voxelR  denotes the largest edge 

length of 
nP  in the fusion dataset, which is proposed on account of the laser beam divergence principle. 

4.2.2. Spot-Divergence Process of HFD 

The basic starting point is: each laser beam has a divergence angle. As surface reflectivity, 

texture, roughness, etc. of the object change, the spot-divergence phenomenon of multi-sensor fusion 

data occurs when the laser beam is reflected back over a long distance. As a result, the spot area of 

the measured point on the surface of the object is much larger than ever and continuously changes 

with increasing distance from the laser scanner as shown in Figure 4a. Therefore, describing each 

HFD with a fixed area size does not meet the actual situation of supervoxels, which leads to inaccurate 

results of segmentation. Moreover, with increasing distance from the object, the distance between the 

individual measured points also increases. The distance between the measured points is also 

dependent on the angular resolution selected. With a coarser resolution (e.g., 0.1667°), the distance is 

larger, with a finer resolution (e.g., 0.1°) the distance is smaller. To reliably detect an object, the valid 

area of laser beam with concentrated energy must be fully incident on it once. If the measured laser 

beam is only partially incident, less energy could be reflected by the object and be disturbed by 

adjacent beams as shown in see Figure 4b. The size of valid area is proportional to the degree of spot 

divergence, which represents a lower energy remission than the measured laser beam actually [35]. 

Therefore, the valid area is applied to describe the size change of each HFD due to spot divergence 

of 3D point clouds. Based on this idea, a novel supervoxel process was proposed to determine the 

supervoxel center and adjacent areas.  

  
(a) Spot divergence principle (b) Valid area of laser beam 

Figure 4. (a) Schematic of spot divergence principle with increasing distance. (b) The valid area of 
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Figure 4. (a) Schematic of spot divergence principle with increasing distance. (b) The valid area of
laser beam is layout of the distance between measured points at different angular resolutions.

According to space division in Section 4.2.1, the cube is the basic computation unit of supervoxel.
Therefore, extend the valid area of the laser beam to the 3D space expression, which conform to the
realistic geometric distribution of HFD. Then the 2D valid area of each laser beam becomes a 3D sphere
with a radius RE = B/2. Then, we selected the inscribed cube inside the sphere as the basic element to
construct the supervoxel (as shown in Figure 5).
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Figure 5. Inscribed cube inside the spheres represents the 3D extension of the valid area of HFD.

The edge length Rvoxel of every cube obtained is:

Rvoxel =
2√
3

RE =
2× L× tan( ε

2 )− (D1 + cot( θ1
2 )L)/2√

3
(9)

Calculate the lengths of all HFD in S : {P1, P2, · · · , Pn} and select the maximum value as
Rvoxel(max). Taking Equation (9) into Equation (5), the size of each HFD and the total number
of supervoxels were preset with the practical physical meaning with the spot divergence constraint,
which improve the effect of supervoxelization.
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4.2.3. Center Selection and Adjacent Partition

Based on spot-divergence process, the HFD near the regional center of the supervoxel space is
generally selected as the initial seeds. However, in order to avoid the unreasonable situation that the
selected data is a noise point or an outlier on the edge position of objects, it is necessary to calculate the
size gradient function between the initial seeds and the neighborhood HFD within the search radius
Rsearch =

Rsuper
2 as follows:

G(i) =
Nseed

∑
k=1

∑
j∈Nadj

(
‖Ri

seed − Rj
voxel‖

Nadj
+ ‖Ri

seed − Rk
seed‖) (10)

where Ri
seed represents the size of the i-th initial seed, Rj

voxel represents the size value of j-th neighboring
HFD around this seed. Nadj is the number of HFD available in 26-field. Nseed represents the number
of initial seeds in this supervoxel space, and Rk

seed represents the k-th initial seed within the search
range. When G(i) is less than the preset threshold, it indicates that the i-th seed meet the constraint
requirements and is selected as the central seed of this supervoxel. If the result does not satisfy the
constraint, it means that the i-th initial seed is invalid. Then the gradient values of different size
seeds need to be calculated sequentially until the smallest gradient is selected as the supervoxel center.
Subsequently, calculate the spatial distances dij

adj between other HFD and different supervoxel centers
for adjacent partition:

dij
adj =

√
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 + ‖G(i)− G(j)‖ (11)

By comparing the distance thresholds ε1, all HFD are allocated to the nearest supervoxel. In order
to facilitate the display, this paper uses a schematic diagram to show the partitioning process of two
adjacent supervoxels as shown in Figure 6:
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Figure 6. (a) Schematic of HFD distribution in two neighbouring supervoxels; (b) Schematic of adjacent
partition and search process for supervoxels (b).

4.2.4. Supervoxel Feature Vector

With the seed of each supervoxel and neighbouring HFD divided, the large-volume and dense
HFD can be divided into small-volume supervoxels distributed sparsely. Each supervoxel can be
regarded as a cluster collection of similarity HFD with local characterization, including spatial relations,
color, temperature, reflectivity, normal vector and size similarity. Those features are extracted to
construct the feature vectors of K supervoxels in high dimensional space as follows:

F =


 x1∼K

y1∼K

z1∼K


T

,

 L1∼K

a1∼K

b1∼K


T

, V1∼K
T , V1∼K

re f , V1∼K
S , Var1∼K

S ,

 N1∼K
x

N1∼K
y

N1∼K
z


T

, T1∼K
h

 (12)
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The detail properties of each feature mainly include:

1) Spatial coordinates of supervoxel center: Vk
xyz = [xk, yk, zk]

2) CIELAB color average of n HFD in the supervoxel: VLab = [

n
∑

i=1
Li

n ,

n
∑

i=1
ai

n ,

n
∑

i=1
bi

n ]

3) Temperature average of the supervoxel: VT =
n
∑

i=1
Ti/n

4) Reflectance average of the supervoxel: Vre f =
n
∑

i=1
ri/n

5) Edge length Rvoxel mean of n HFD in the supervoxel: VS =
n
∑

i=1
Ri

voxel/n

6) Absolute range between maximum and minimum of Rvoxel :
VarS = |Rvoxel(max)− Rvoxel(min)|

7) Surface normal vector of supervoxel: N = Nxv0 + Nyv1 + Nzv2 with N2
x + N2

y + N2
z = 1

In this paper, principal component analysis (PCA) is used to calculate the surface normal vector
of each supervoxel. The basic principle is calculating the surface normal vector of the approximate
plane by minimizing the distance from the surrounding data to the center of supervoxel:

d2 =

n
∑

i=1

∥∥∥(pn − p)TN
∥∥∥2

‖N‖2 =

NT•
n
∑

i=1

∣∣∣(pi − p)T · (pi − p)
∣∣∣•N

n•‖N‖2 (13)

where p is the local center of supervoxel, and the approximate normal is associated with the smallest
eigenvalue (v0, v1, v2) of the symmetric positive semi-definite matrix. Searching n HFD to determine
a local surface normal vector of each supervoxel.

8) Comprehensive dissimilarity of vectors: Th = η1 · arccos |n0•nk |
|n0||nk |

+ η2‖n0 − nk‖

where θk = arccos |n0•nk |
|n0||nk |

indicates the angle between the normal vector of k-th supervoxel and the
Z-axis of the fusion coordinate system. ‖n0 − nk‖ indicates the numerical vector deviation of k-th
supervoxel. η1 and η2 are weights applied to balance the relationship between angle and deviation of
normal vector.

4.3. Gaussian Density Peak Clustering

Compared to traditional clustering methods requiring the artificially preset of clustering central
number or convergence thresholds, the density peak clustering (DPC) accomplishes semantic object
segmentation adapting to arbitrary shapes and feature types. However, the segment result of
DPC excessively depended on the suitable threshold including truncation distance, local density
and the minimum higher-density distance, which were all estimated on the basis of empirical
experience. This was difficult to segment objects from supervoxels automatically in forestry scenes.
Thus, this paper used the normalized feature to construct Gaussian density peak clustering model.
With semi-supervised way for extracting threshold, the proposed method can cluster different objects
in the forestry environment, which improves accuracy and timeliness of segmentation.

4.3.1. Feature Normalization

As the feature units and quantity levels of supervoxels are very different, each feature channel
needs to be normalized by the central regularization process. The Euclidean distance of the supervoxels
Fk and Fq in each feature space is calculated as:
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d1 =
√
(xk − xq)

2
+ (yk − yq)

2
+ (zk − zq)

2

d2 =

√
(Lk − Lq)

2
+ (ak − aq)

2
+ (bk − bq)

2

d3 =

√
(Vk

re f −Vq
re f )

2
+ (Vk

T −Vq
T)

2

d4 =
√
(Vk

S −Vq
S )

2
+ (Vark

S −Varq
S)

2

d5 =
√
(Nk

x − Nq
x)

2
+ (Nk

y − Nq
y )

2
+ (Nk

z − Nq
z )

2

d6 = ‖Tk
h − Tq

h‖2

(14)

After the weights of the influence of spatial distribution, color difference, temperature and
reflection difference, edge length difference, normal vector difference, and synthetic similarity are
assigned, all different features are set in the range 0–1, then the high-dimensional distance Dkq
is obtained:

Dkq =

∥∥∥∥ 6

∑
j=1

τjdj
2
∥∥∥∥ (15)

4.3.2. Gaussian Local Density Distribution

According to the density peak clustering, we define the local density of the k-th supervoxel as
ρk, which is obtained by the interaction between the high-dimensional distance space Dkq and the
truncation distance Dc. The following relationship exists:

ρk = H(Dkq, Dc) (16)

This paper assumes that the local density of all supervoxels conforms to a specific Gaussian distribution:

ρk =
1

(K− 1)Dc

K−1

∑
q=1

1√
2π

exp

{
−

Dkq
T•Dkq

2Dc2

}
(17)

When the Dc is small, the local density distribution of Fk shows the prominent form of the
middle peak. Only supervoxels that are especially close to Fk can play a role, which limits the local
density function performance range to a small area. With the increase of Dc, the distribution of
local density function also tends to be flattened, making it possible to influence the local densities of
different supervoxels. However, the smooth also inhibits the fact that the contribution degree of ρk on
divergence of supervoxels with different feature association. Therefore, the selection of Dc affect the
segmentation results and needed to be preset in fixed value [30]. In this paper, a proportional coefficient
t = Dkq/Dc is chosen to select the Dc value, which represents the proportion of the neighbors number
of each supervoxel in the entire HFD dataset. While taking into account the dimension coefficient
w = 1, the non-parametric the rule of thumb method was used to determine the Dc of Gaussian local
density function. In order to meet 98% confidence, the ratio 2.58% is selected as the optimal choice
according to the actual requirement of AFMs in forestry environmental. The probability strategy of
determining the truncation distance through the proportional coefficient reduces the dependence of the
parameter on the specific problem to some extent, and the choice of this ratio is simple and applicable
to other problems.

4.3.3. Clustering Supervoxels as Objects

Assume that there are K − k supervoxels with higher local density than the k-th supervoxel.
Apply the expression (15) to calculate the distance between these supervoxels and Fk, and form the
distance vector:

W = [Da−k, · · · , DK−k] (18)
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Subsequently, the minimum value Wmin is selected to calculate the minimum higher-density
distance of Fk:

δk =

{
Wmin, k < K

maxρk (Dkq), k = K
(19)

If k = K, the super voxel Fk is the maximum in the local density ranking, its minimum
higher-density distance needs to be redefined. Calculate the higher-density distance from this
supervoxel to other supervoxels and select the maximum value as δk. Then each supervoxel can
be expressed as Fk(ρk, δk) with two novel parameters. Draw the distribution schematic of different
supervoxels with δk as horizontal axis and ρk as vertical axis:

As shown in Figure 7 above, there are 22 supervoxels with two actual classifications A and B
projection to 2D feature space. In the distribution schematic, the partitioning coefficient ρ∆, δ∆ can
be set according to the actual situation to determine the corresponding clustering center. When the
ρk > ρ∆, δk > δ∆ constraints are satisfied, the supervoxel can be considered as a clustering center.
If there is a case where the minimum distance is large but its density value is less than the threshold,
it is defined as an outlier noise point and it needs to be eliminated. By selecting the density threshold
and the higher-density distance threshold dynamically, the cluster centers are determined without the
number preset of clusters in advance. However, the preferable thresholds ρ∆, δ∆ need to be selected by
human observation and intervention. Thus, a novel comprehensive evaluation expression γk = δk•ρk
is proposed to select the cluster centers in semi-supervised way as follows:

Fc = Fk(γk > γ∆) (20)
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Through this optimization process, the γk of all supervoxels are calculated and ranked in
descending order of density values:

γK > · · · > γK−m > γ∆ > · · · > γ1 (21)

where γ∆ is judgment threshold, which equivalent to finding the number of supervoxels significant
improved than other supervoxels. Through this semi-supervised method without manually observe,
the number of clusters can be achieved automatically. When m supervoxels are identified as cluster
centers, supervoxels close to each center are selected in density ordering and divided into different
areas of several objects C : {C1, . . . , Cm}. For any supervoxels Fw of a non-clustered center, a cluster
center with a larger density is sought in the local density arrangement. The higher-dimensional
distance between Fw and these center {peak1, . . . , peakm} is calculated, and the cluster center peakw
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with the smallest distance is selected as its cluster center, which defines Fw as the corresponding
neighborhood. In order to determine the classification of different super voxels:

{peak1, . . . , peakm|ρcenterm > ρFw} → D(Fw, {peak1, . . . , peakm}) = min (22)

Cw : near(F1, . . . , Fw)→ peakw (23)

Compared with the way that all supervoxels need to traverse the calculation relationship with
all center, this method only calculates the relationship between centers and adjacent higher-density
super voxels, which can reduce calculated quantity effectively and improve the speed of neighborhood
division. Finally, the overall analysis flow of our segmentation framework is shown in Figure 8, and is
mainly divided into three consecutive phases as following:
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5. Results and Analysis

5.1. Multi-Sensor Fusion Evaluation

The multi-sensor joint calibration process presented in the previous section was programmed with
the octagonal calibration plate. The calibration experiment was accomplished in indoor scene as shown
in Figure 9a. By posing the calibration plate in different positions and distances, the internal and mutual
relationship of multi-sensor coordinates were confirmed to fuse visible images and thermal infrared
images with 3D laser point clouds. On this basis of joint calibration process, the coordinate relationship
of the three measuring devices was kept constant, then the multi-sensor measuring system was directly
mounted in various AFMs to capture high-quality HFD in urban and forest scenes without repeating
calibration. As the result, objects with fused information including 3D space, color, temperature etc.
could be displayed on a human-computer interface of the measuring system for AFMs operation.

In order to illustrate the performance of HFD, this study selected partial data of the urban
environments in Figure 9b to define Scene A, which was captured in the Jiufeng forest farm during
the cold winter season. As a comparison, Scene B was extracted from the forest environments in the
artificial eucalyptus farm of Qinzhou during the hot summer and autumn. Both Scene A and Scene
B contain six objects such as tree, shrub, pedestrian, stone, building and ground, which were more
complicated. In general, Scene A was large-scale displayed in the range of 0.7 m to 40 m with horizontal
angle ranging from−5◦ to 185◦ and vertical angle ranging from−70◦ to 70◦. Since the measured object
was relatively obvious mutual occlusion and measuring temperature is relatively low, the multi-sensor
data were well fused in relatively tight form. It’s proved that the measuring system constructed in this
paper could cope well with the perception task of urban environment. In order to show the fusing
performance of the proposed calibration work in more complex environments, fractional HDF of
Scene B were selected to display in Figure 9c at extreme distances ranging 45 m to 50 m (the preset
maximum distance of laser scanner). As a result, the HFD were relatively sparsely arranged subject
to limitations of laser scanner with spot-divergence. And the visual information was ambiguous
during to collective effects of high temperature, low reflectivity of objects and background interference.
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However, such fusion effect has met the application requirements of AFMs in the forest scenes, and it
also proved the necessity of subsequent supervoxels based on spot divergence in this paper.
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Figure 9. (a) Joint calibration experiment was accomplished in indoor scene with well fusion
performance; (b) HFD of Scene A were obtained in urban environment without extra calibration
process; (c) HFD were obtained in Scene B of forest environment at extreme distances.

To objectively evaluate the fusion performance of calibration process optimized by the LM
nonlinear method, some analysis results are presented in Table 1. Compared with the calibration
method in our previous work [33], the edges relationship of the octagonal plate based on the
LM method reduced the calculated value of the average calibration offset error to 2.764 cm and
repressed the average angle error to 0.553◦ effectively with better calibration accuracy, which made
HFD suitable for segment application in forest environment. Moreover, the root mean square error
(RMSE) in this paper was closed to 5.126, which showed the obvious improvement of nonlinear
optimization. Then the corresponding Standard Deviation (STD) was 13.032, which mean that the
error distribution was not very discrete and the calibration process was much stable and robust for the
following supervoxelization.

Table 1. Analysis result of multi-sensor joint calibration.

Parameters Calibration Work in [33] Proposed Calibration Work

Average calibration offset error 5.819 (cm) 2.764 (cm)
Average angular error 1.164◦ 0.553◦

RMSE 8.232 5.126
STD 19.823 13.032

5.2. Supervoxelization Evaluation

We conducted experiments on Scene A and Scene B to evaluate the quality of the supervoxels
generated by the proposed spot-divergence algorithms. There were 318,331 original HFD in Scene
A and 339,547 original HFD in Scene B, which is a relatively large computation for the workload of
point-level segmentation. Based on the obtained HFD, the proposed supervoxelization method based
on the laser divergence scale change were applied to determine the supervoxel center and search
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relationship of adjacent areas. With the large-volume and dense HFD divided into small-volume
supervoxels sparsely, each supervoxel contains HFD with similar properties of local features. In order
to execute and run the supervoxelization method of this article, a workstation machine with 32 GB
memory, 500 G SSD and the Intel Core 7 core processor was chosen for model calculation. Then the
software platform Point Cloud Library (PCL) for supervoxelization [36], which was an open source
programming library run on Ubuntu system.

After the changes from HFD to supervoxels, non-ground 135,369 HFD were converted to
14,240 supervoxels, and other 155,040 HFD on the ground were converted to 7602 supervoxels.
The remaining 27,922 HFD were discriminated as noise and deleted in the Scene A. Similarly, the round
of Scene B originally had 200,985 HFD, and after the change, 8357 supervoxels were obtained, while the
non-ground was converted from 127,546 HFD to 10,714 supervoxels, and the remaining 11,016 HFD
were identified as noise. Obviously, supervoxelization could reduce the amount of computation and
improve the efficiency of segmentation.

To evaluate the performance of our algorithm, it is reasonable to compare the proposed method
with algorithms that were also designed to generate supervoxels. We compared our method with three
of these kinds of algorithms, including VCCS [21], (vSLIC), SEED-3D [22], and ATS [24], whose source
codes were publicly available at their respective research websites. We used the default parameters
provided by their authors for all the compared methods. Comparisons of some early methods
that segment fusion data without considering the property of spot-divergence could be found in
Figure 10. As shown, a further analysis on the ability adhere to object boundaries was developed.
Under-segmentation error was chosen as the standard measure for boundary adherence (namely,
the error between the given region from the ground truth segmentation and the set of supervoxels
required to cover it in minimum number). Then the relationship between the under-segmentation
error and the number of supervoxels was shown as following:
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Figure 10. Relationship between under-segmentation error and the number of supervoxels for VCCS
(gray), SEED-3D (orange), ATS (yellow) and the proposed method (blue).

Since the number of super voxels increased, the over-segmentation errors of the four methods
show a decreasing trend. As plotted above, the blue curve repressing the proposed supervoxelization
outperforms the other methods in under-segmentation error, showing the lowest undersegmentation
error for most of the useful operating regime. It also means the supervoxel partitioning based on the
spot divergence constraints is a better approach, which tightly fitted the ground truth result of object
edge in complex scenes.

Further, supervoxels were often proposed to replace the point-wise operation to help speed up
segmentation algorithms, which mean that it is important to generate lots of supervoxels efficiently in
the first place. Thus, we compared the operational time required for the various methods to segment
HFD with the same hardware platform in Figure 11.
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Figure 11. Relationship between the operation time and the supervoxel number.

With increasing size on number of supervoxels, the operation time curves of all methods increased
with the corresponding O(N) complexity. Comparing with curves of VCCS (gray), SEED-3D (orange)
and ATS (yellow), the spot-divergence-based algorithm was the fastest supervoxel method, and its
advantage increased with the size of supervoxel magnitude. While the operation time of other methods
were greatly affected by the increasing trend of supervoxels’ number, especially in the range of 9000 to
12,000. It showed a significant gap in processing speed and memory efficient in order to handle large
multi-sensor fusion data, which can not only reduce the redundancy in subsequent data processing,
but also facilitate the feature extraction of complex environment.

5.3. Semantic Segmentation Evaluation

This section tested the semantic segmentation based on density peaks clustering for Scene
A and Scene B. as shown in Figure 12. With the supervoxel features. Scene A was segmented
semantically as 13 categories, including four trees, three shrubs, one building, two pedestrians,
one stone, and two grounds respectively. Scene A was divided into 11 objects, including seven trees,
one shrub, one building, one pedestrian, and one ground. Each target is randomly assigned a color
to distinguish. Obviously, this algorithm can effectively segment supervoxels as different types of
independent objects with small error, as shown in Figure 13.
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Figure 12. Semantic segmentation of independent objects in Scene A (a) and Scene B (b).



Sensors 2018, 18, 3061 20 of 25

Sensors 2018, 18, x FOR PEER REVIEW  20 of 25 

 

  
(a) Scene A (b) Scene B 

Figure 12. Semantic segmentation of independent objects in Scene A (a) and Scene B (b). 

     

(a) Pedestrian (b) Stone (c) Tree (d) Shrub (e) Building 

Figure 13. Five types of objects segmented from Scene A and B. 

In order to further evaluate the segmentation performance, the artificial manual segmentation 

was used as the standard segmentation results, and compared with the segmentation results obtained 

by the proposed segmentation method. The association matrix of segmentation results for Scene A 

and Scene B were shown in Tables 2 and 3. Each element in the table represents the corresponding 

supervoxels of the actual output label. If a supervoxel is segmented to the correct target, it is called 

true positive TP; if a supervoxel is not segmented but assigned to a nearby target, it is called false 

negative FN; if a target does not exist but a supervoxel is wrongly segmented to it, it is called false 

positive FP. Calculate the precision rate Per , recall rate Rec , and F1-score value F of each scene 

separately to achieve the evaluation of the segmentation effect:  

2
, ,

TP TP Per Rec
Per Rec F

TP FN TP FP Per Rec

 


 
= =

+
 (24) 

where Per  measures the probability between the number of supervoxels correctly segmented for a 

certain class and the true total number belonging to that class in the artificial standard results. And 

Rec  is the ratio between the number of supervoxels correctly segmented and the total number of 

supervoxels assigned to the class in this segmentation methods, which describes the probability of 

objects that can be extracted from supervoxel feature by our method. The F value indicates the 

harmonic mean evaluation of precision and recall.  
  

Figure 13. Five types of objects segmented from Scene A and B.

In order to further evaluate the segmentation performance, the artificial manual segmentation
was used as the standard segmentation results, and compared with the segmentation results obtained
by the proposed segmentation method. The association matrix of segmentation results for Scene A
and Scene B were shown in Tables 2 and 3. Each element in the table represents the corresponding
supervoxels of the actual output label. If a supervoxel is segmented to the correct target, it is called true
positive TP; if a supervoxel is not segmented but assigned to a nearby target, it is called false negative
FN; if a target does not exist but a supervoxel is wrongly segmented to it, it is called false positive
FP. Calculate the precision rate Per, recall rate Rec, and F1-score value F of each scene separately to
achieve the evaluation of the segmentation effect:

Per =
TP

TP + FN
, Rec =

TP
TP + FP

, F =
2× Per× Rec

Per + Rec
(24)

where Per measures the probability between the number of supervoxels correctly segmented for
a certain class and the true total number belonging to that class in the artificial standard results.
And Rec is the ratio between the number of supervoxels correctly segmented and the total number
of supervoxels assigned to the class in this segmentation methods, which describes the probability
of objects that can be extracted from supervoxel feature by our method. The F value indicates the
harmonic mean evaluation of precision and recall.

Table 2. Evaluation results of six objects segmentation in Scene A.

Ground Pedestrian Tree Shrub Building Stone Average

Ground 14048 12 17 63 76 24
Pedestrian 6 410 5 1 0 11

Tree 13 2 2208 65 3 5
Shrub 19 4 35 1526 13 6

Building 26 0 9 12 2672 15
Stone 15 16 0 4 9 492

Precision 0.987 0.947 0.962 0.952 0.977 0.918 0.957
Recall 0.994 0.923 0.971 0.913 0.964 0.890 0.943

F value 0.990 0.935 0.966 0.932 0.970 0.904 0.950

Experiments showed that the proposed algorithm achieved very competitive results in the
individual objects segmentation in complicated scenes. From the result in Table 2, it was concluded
that the accuracy and recall of stones were slightly poorer because supervoxels of stones were partly
divided into ground and pedestrian in many cases. However, the comprehensive segmentation of
all objects maintained a high value, which validated the performance and stability of the proposed
segmentation method. Table 3 showed that Scene B had one less category of stone than Scene A,
which improved the evaluation results of segmentation with small amplitude. Moreover, the excellent
performance proved that the algorithm retained the characteristics of the original HFD, which were
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adaptable to both urban and forest environments. Nevertheless, the comparison result also indicated
that the semantic categories and individual number of objects affected directly segmentation capability
of this proposed method, which were associated with environmental distribution and various attributes
of raw datum obtained by the multi-sensor measuring system. The detail results of the proposed
algorithm were shown as following.

Table 3. Evaluation results of five objects segmentation in Scene B.

Ground Pedestrian Tree Shrub Building Average

Ground 8145 24 26 149 13
Pedestrian 32 710 4 19 1

Tree 66 7 5341 65 6
Shrub 19 4 35 3476 1

Building 44 11 29 12 832

Precision 0.975 0.927 0.974 0.983 0.897 0.951
Recall 0.981 0.939 0.983 0.934 0.975 0.962

F value 0.978 0.933 0.978 0.958 0.934 0.956

In order to further verify the applicability and robustness of the proposed pipeline, we conducted
a comparative trial on the Scene C extracted from forestry environment. The scene was relatively
complex manually judged as 43 sematic objects. The proposed method automatically divided Scene
C into 44 objects including four big stones, six pedestrians, one ground, 27 trees, two buildings and
four shrubs, which was close to the result of manual segmentation with one more tree. Looking in
the scene, we found that too many objects were obtained at once, resulting in mutual occlusion and
data interference, which was the source of this problem. Wherever, this method still maintained better
segmentation performance than comparison methods as shown in Figure 14:
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The K-means clustering was combined with supervoxel for sematic segmentation in VCCS,
SEED-and ATS to construct the comparison methods respectively. With the preset parameters of
43 clusting centers and 2 m search radius, we could see the segmentation performance among different
approaches displayed intuitively. As can be seen, the results of VCCS was presented as 39 final
spectral classes different objects, resulting in severe over-segmentation and poor performance even
with supervoxels. In Figure 14b, using supervoxel as the neighborhood allowed one to better discern
differences inside and between tree areas. Results showed that, despite the ATS method taking only
3D point clouds for supervoxel generation, the subtle differences associated with the main trees
and the other objects were properly represented. However, due to the lack of other information
in HFD, the method easily divided the discrete data into more object classes or noise clusters in
large-scope. With fusing various information of HDF, SEED-3D achieved a better performance of
sematic segmentation presented in the complex environment. Although SEED-3D also correctly
detected the various objects closing to manual results, this algorithm was easy to assign the same
object with different labels in Figure 14c. The main reason was that the features of SEED-3D cannot
represent the size-changed character of HFD due to the spot divergence and this process required
the presetting parameters of K-mean under human intervention consequently, which needed to be
tuned by experiments for achieving the optimal results in different scenes. As a consequence, for both
supervoxelization and sematic segmentation, the proposed method better reflected the distribution
and features of objects in the HFD, showing a notable variety in a semi-supervised way. In order
to compare the overall performance among different approaches in a statistically-rigorous fashion,
the statistical significance of differences in terms of accuracy and operation time were evaluated in
Table 4 as following:

Table 4. The segmentation evaluation of four segmentation algorithms.

Segmentation Algorithm Integrated
Clusters

Discrete
Clusters F Value Time

(Approximate)
Effective

HDF

VCCS [21] + K-mean 39 317 0.893 92 min 803,252
SEED-3D [22] + K-mean 45 382 0.938 51 min 756,328

ATS [24] + K-mean 48 426 0.920 65 min 983,174
Proposed method 44 125 0.942 34 min 1,139,829

Note: Effective HDF means Number of data for all integrated clusters (larger the value, less data is lost).

As the results summarized in Table 4 show, the proposed segmentation framework accounted
for an accuracy improvement of the overall sematic segmentation performance in many forest
stands. Obviously, the integrated clusters and discrete clusters showed the segmentation work can
be performed reasonably according to the environmental characteristic in the semi-supervised case.
Another strength of the proposed techniques was that the accuracy and quantity utilization of HFD
was significantly improved (see F value). This is mainly due to the fact that the spot-divergence
supervoxel must be more precise than the stationary supervoxel or point clouds. The performance
of supervoxel-based sematic segment depends on the multi-sensor data density and the forest type.
Thought the proposed approach achieve an improvement in operation time, the major limitation of our
work is that the whole time cannot meet real-time applications of AFMs. Thus, however, the achieved
improvement of the overall time would be the focus of subsequent work, which is necessary to the
real-time perception of AFMs in forest environment.

6. Conclusions

In this paper, we have focused on a semi-supervised segmentation framework based on
a spot-divergence supervoxelization of multi-sensor fusion data acquired by AFMs in complex
environments. On the basis of multi-sensor measuring system, we have presented a novel three-step
segmentation framework representing a semi-supervised processing workflow: Firstly, the relationship
of multi-sensor coordinates was joint calibrated to form higher-dimensional fusion data. Secord is
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given by a spot-divergence supervoxelization instead of producing immutable supervoxels. The novel
supervoxel took the size change of each HFD into account to produce feature vectors covering the
valid information at a time. Finally, the Gaussian density peak clustering was proposed to segment
supervoxels into sematic objects in the semi-supervised way, which non-required the artificially preset
of clustering central number or convergence thresholds. Experiments demonstrated that the proposed
framework performed well in terms of segmentation accuracy and operation time, which was much
appropriate to applications of AFMs. For future research, we would focus on real-time improvement
in sematic segmentation of objects. We would also like to extend the method to a more complex scene
such as the food security of the grain & oil supply chain.
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