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a b s t r a c t

Microglia are the resident phagocytic cells of the central nervous system. During brain development
they are also imperative for apoptosis of excessive neurons, synaptic pruning, phagocytosis of debris and
maintaining brain homeostasis. Brain damage results in a fast and dynamic microglia reaction, which can
influence the extent and distribution of subsequent neuronal dysfunction. As a consequence, microglia
eywords:
erinatal brain injury
euroinflammation

responses can promote tissue protection and repair following brain injury, or become detrimental for
the tissue integrity and functionality. In this review, we will describe microglia responses in the human
developing brain in association with injury, with particular focus on the preterm infant. We also explore
microglia responses and mechanisms of microglia toxicity in animal models of preterm white matter
injury and in vitro primary microglia cell culture experiments.

© 2014 The Authors. Published by Elsevier Inc. All rights reserved.
. Introduction

Microglia are the resident mononucleated phagocytic cells of
he central nervous system (CNS) that in their dormant state con-
tantly survey their environment with their extensive processes
see review [1]). Microglia lineage has long been debated, how-
ver, recent studies have demonstrated that microglia originate
rom primitive macrophages in the embryonic yolk sac, prior
o hematopoiesis [2]. Upon the formation of embryonic circula-
ion, microglia progenitors enter the neuroepithelium and become
stablished in the brain. Hence, microglia develop independently
rom hematopoiesis and hematopoietic stem cells [3] and inter-
stingly it has been shown that increased activation/proliferation
f microglia is in fact due to local expansion of resident microglial
ells as opposed to recruitment of blood monocytes [4,5]. Although,
icroglia are largely known as the resident immune cells of the

NS, they are also imperative in normal development of the brain.
hey are involved in apoptosis of excessive neurons, synaptic prun-
ng, phagocytosis of debris and maintaining brain homeostasis

1,6,7].

Hypoxia–ischemia [8,9] and intra-cerebral administration of
xcitotoxins such as N-methyl-d-aspartate (NMDA) [10] or
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ibotenate [11] result in a fast and robust microglia reaction in the
developing brain. Neuroinflammation is a dynamic process that
plays a key role in the pathogenesis of injury in the developing
brain and in response to inflammatory stimuli or tissue injury,
microglia secrete a wide range of soluble factors, such as cytokines,
substances with excitatory amino acid agonist properties, and glial
promoting factors that may influence the extent of subsequent neu-
ronal injury. As a consequence, microglia responses can promote
tissue protection and repair following brain injury, or become detri-
mental for the tissue integrity and functionality. In this review we
will describe microglia responses in the human developing brain
in association with injury, with particular focus on the preterm
infant. We will also consider microglia responses in animal models
of preterm white matter injury and the contribution of systemic
innate reactions to neuroinflammation. By reviewing in vitro pri-
mary microglia preparations, we explore mechanisms of microglia
toxicity.

2. Preterm brain injury

Despite advances in neonatal care there is still significant
mortality and morbidity arising from injuries to the developing
brain with complications of prematurity [12]. Half of all surviv-
ing preterm infants born at or less than 25 gestational weeks,

show neurodevelopmental impairment at 30 months of age [13]
and at 6 years of age, approximately 40% have cognitive impair-
ment compared to their classroom peers [14]. Magnetic resonance
imaging (MRI) studies of infants born preterm have shown that

dx.doi.org/10.1016/j.reprotox.2014.04.002
http://www.sciencedirect.com/science/journal/08906238
http://www.elsevier.com/locate/reprotox
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erebral white matter injury is the predominant pathology of
rematurity [15]. However with recent advances in MRI tech-
iques and methodology, it has become clear that white matter

njury in the preterm brain is accompanied by abnormal develop-
ent of the cortical and deep gray matter regions [16–19]. This

omplex involvement of gray matter and white matter lesions,
hich are major determinants of neurologic outcome, is known

s “encephalopathy of prematurity”. The periventricular regions
re the most common site of preterm white matter injuries
ecognized on MRI, such as periventricular leukomalacia (PVL),
unctate lesions, diffuse excessive high signal intensity, all of
hich affect white matter development directly, whilst germi-
al matrix/intraventricular hemorrhage (GMH/IVH) has an indirect
ffect on the white matter [20]. Injury to the preterm white matter
s said to arise from infection/inflammation and hypoxia–ischemia,

hich could in turn leave premyelinating oligodendrocytes, sub-
late neurons, late migrating �-aminobutyric acid (GABA) neurons,
nd growing axonal trajectories vulnerable to injury [21]. Post-
ortem studies done over the past decade suggest that activated
icroglial cells may play a crucial role in mediating injury to the

reterm brain [22–24].

. Microglia in the developing human brain

In the developing human brain, microglial entry into the embry-
nic forebrain and cerebral cortex is evident as early as 4.5–5.5
estational weeks through the meninges, choroid plexus and ven-
ricles [25]. Microglial penetration through the vascular component
as evident around 10 gestational weeks [26]. The large majority

f microglial influx and distribution begins around 16 gestational
eeks as ramified cells, and they continue to differentiate and

ecome widely distributed as ramified and active cells up until close
o term age [27,28]. Clusters of transient “resident” populations of
moeboid microglia in the normal preterm brain are prevalent in
he periventricular crossroads regions of intersecting callosal, asso-
iative and thalamocortical axonal pathways in the white matter
24,29], and during mid to late gestation the cerebral white matter
xpress high levels of growth associated protein 43, which is asso-
iated with active axonal outgrowth [22]. This transient elevation
f active “resident” population of microglia in the preterm white
atter implies the involvement of microglia in the development

nd guidance of axonal projections, myelinogenesis and possibly
role in pruning overabundant axons and cells that have failed to

each their developmental destination [27,29,30]. It has been sug-
ested that this normal developmental increase in the “resident”
opulation of microglia in the periventricular white matter regions
f the preterm brain may be responsible for “priming” this region
or inflammatory injury [31].

. Preterm periventricular leukomalacia

One of the first postmortem studies investigating the patho-
hysiology of preterm PVL demonstrated that injury associated
ith microglial and astroglial activation is not just contained to

he periventricular necrotic foci of the cystic lesion, but is evident
s widespread activation in the diffuse component of PVL in the
hite matter away from the lesion site [32]. Evidence of inflam-
atory cytokine involvement in preterm white matter injury was

eported by Kadhim and colleagues, who showed increased pro-
nflammatory cytokine expression (interleukin (IL)-1�, IL-2 and
umor necrosis factor (TNF)-�) in the white matter of preterm

VL brains [33,34]. Myelination abnormalities of PVL are believed
o be due to arrested maturation of premyelinating oligodendro-
ytes induced by nitrosative and oxidative mechanisms mediated
y microglial cells [32,35,36]. There are also neuronal components
Toxicology 48 (2014) 106–112 107

to the injury, including increase in gliosis and thalamic neuronal
loss (60%) together with significant microglial activation [37]. We
demonstrated the expression of the innate immune receptor toll-
like receptor (TLR) 3 in both glia and neurons in conjunction with
preterm white matter injury [38]. A recent postmortem study
showed loss of granular neurons in the ventricular/subventricular,
periventricular and central white matter regions in preterm PVL
[39], which was suggested to be an important contributing fac-
tor in neurocognitive deficits seen in preterm brain injury. Further,
investigation of the prefrontal cortex in autistic patients showed
that there was increased microglia-neuron spatial clustering [40].
However, whether the microglia are involved in neuronal protec-
tion and healing or if they are having a deleterious effect on the
neurons remains unclear. Nevertheless these finding are of par-
ticular interest, as long-term follow up studies of preterm infants
have shown that they are at an increased risk of neurocognitive dif-
ficulties as well as psychiatric illnesses including autistic spectrum
disorder [41,42].

With advances in neonatal intensive care, there has been a
decline in the incidence of classic PVL and non-cystic lesion/diffuse
white matter injury is now the predominant type of MRI-defined
brain injury in the preterm cohort [43]. Postmortem investigations
of diffuse white matter injury show increased microglia activation
in both the lesion site and in the deeper white matter regions in
this population [44]. Although the diffuse microglial activation was
associated with preoligodendrocyte regeneration, these cells were
in an arrested state of maturation, similar to that seen in classic PVL,
resulting in a reduced pool of mature oligodendrocytes. In the very
preterm (26–31 gestational weeks) brain with diffuse injury, the
periventricular axonal crossroads region of white matter is charac-
terized by an enlarged microglia population and axonopathy [24].
Hypothetically, the increased microglial activation in the periven-
tricular crossroads region may have a detrimental effect on growing
axonal pathways in the white matter during early development.

5. Punctate white matter lesion

Whilst preterm punctate white matter lesions are quite com-
mon on serial MRI scans (evident in 22% of infants born less than
30 weeks gestational age), the lesions decrease in number by term
equivalent age [45]. Although the mortality rate of preterm infants
with punctate lesion is low, these infants still show reduced myeli-
nation and cortical folding at term. One isolated postmortem case of
preterm punctate white matter lesion (identified on postmortem
MRI) showed that the lesions corresponded to areas of vascular
congestion and infiltration of dense microglial activation [20].

6. Preterm germinal matrix/intraventricular heamorrhage

Preterm isolated GMH/IVH with no overt venous parenchymal
infarction (as evidenced by postmortem MRI), showed increased
microglial activation, cell apoptosis and axonal injury in the
periventricular white matter [23]. These results suggest that minor
isolated GMH in the preterm brain may still result in deleterious
effect on the adjacent white matter through microglial activation.
Microglial activation in the periventricular white matter increased
with increased severity of hemorrhagic injury, and in addition to
increased cell apoptosis and axonal injury, there was evidence
of increased TNF-� expression whilst the expression of IL-10

remained unchanged [23,46]. These results suggest that the persis-
tent activation of microglia in preterm brains with severe GMH/IVH
may be a contributing factor to injury through pro-inflammatory
mediators.
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. Animal models of fetal and neonatal white matter injury

In support of the clinical evidence discussed above, studies in
edium- to large-sized animals have frequently demonstrated a

ink between intrauterine infection/inflammation or fetal asphyxia
nd microglia activation in the developing brain. Pregnant New
ealand rabbits, on gestation day 28 (term pregnancy: 31–32
ays) were injected with lipopolysaccharide (LPS, 20 g/kg) along
he length of the uterus between the fetuses. Following mater-
al LPS exposure, positron emission tomography imaging of the
icroglia-specific tracer [(11)C]-(R)-PK11195 in one-day old pups

emonstrated an increased number of activated microglia, which
as associated with the severity of motor deficits in the neona-

al rabbit [47]. In midgestation fetal sheep, an age which is similar
n brain development to the preterm human, a single intravenous
i.v.) injection of a low dose of LPS (100 ng/kg) resulted in white

atter injury and an increase in number of microglia, both in the
etal forebrain and cerebellum [48,49]. The injury was further char-
cterized by impaired maturation of electroencephalogram and
elayed cortical development [50] and a reduction in general sys-
emic metabolism of the fetus [51]. Also following administration
f repeated high doses of LPS (1 �g/kg) [52] or low-dose LPS infu-
ion (100 ng, i.v. over 24 h, followed by 250 ng/24 h for 4 days)
53] to fetal sheep there was an increased number of microglia
nd systemic IL-6 or brain TNF-�-positive cells in the periventric-
lar white matter. Chronic intra-amniotic administration of LPS
for 28 d) caused a moderate to extensive activation/infiltration
f microglia/macrophages in the subcortical white matter in six
f eight sheep fetuses [54]. Similarly, LPS administered into the
terine artery of late gestation pregnant sheep showed fetal
icroglial activation and macrophage infiltration. Importantly, no

PS could be detected in the fetus suggesting that neuroinflam-
ation occurred without direct fetal exposure to endotoxin [55].

epeated neonatal exposure to innate immune mediators [56], or
pecific cytokines [57], also results in white matter damage in the
eveloping rodent brain when given at an age corresponding to
he preterm human infant [58–60]. Furthermore, non-infectious
nsults, such as fetal asphyxia, induced by umbilical cord occlusion
48], or cerebral hypoxia–ischemia [61] in midgestation fetal sheep
esult in marked microglia activation. In neonatal HI, activated
icroglia are the main producers of pro-inflammatory IL-18, which

s activated by caspase-1, which is also expressed by microglia.
ndeed, both IL-18 [62] and caspase-1 [63] gene deletion reduces
rain injury giving further support to the concept that microglia
xert toxic effects under such conditions. Thus, similar to evidence
rom human post-mortem studies, reactive microglia responses in
erebral white matter and subcortical brain regions are common
eatures in preterm animal models following both infectious and
on-infectious insults.

. Combination of systemic inflammation and
ypoxia–ischemia

There is considerable evidence that LPS-induced systemic
nflammation can exacerbate the neuroinflammatory response and
rain injury to cerebral hypoxia–ischemia [64] and excitotoxic-

ty [65]. The LPS effects are dependent on the innate immune
eceptor TLR-4 [66] and the adaptor protein myeloid differentia-
ion factor 88 (MyD88) [67]. Stimulation of other innate immune
eceptors also has the capacity to exacerbate hypoxic–ischemic
njury. We showed that giving the viral mimic, poly inosinic:poly

ytidylic acid (Poly I:C), a synthetic ligand for TLR-3, increased
nfarct volume and reduced white matter in neonatal mice [68].
nterestingly, enhanced injury was associated with a decrease in
eparative M2-like CD11b+ microglia, while there was no change
Toxicology 48 (2014) 106–112

in M1-polarized cells. Thus, experimental data propose that trigg-
ering innate immune responses systemically may affect both
the intensity and characteristics of neuroinflammation. Although
the precise underlying mechanisms remain unclear, inhibition of
TNF-� [69] and IL-1� [70], the use of anti-nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-�B) peptides [71]
and immune regulatory peptides [72] alleviate LPS-sensitization
of hypoxic–ischemic brain injury, suggesting that inflammatory
pathways are important.

9. Microglia in vitro

Whilst there are some criticism over how comparable in vitro
preparations of microglia are to the in vivo situation [73,74], in vitro
studies have allowed for the intimate exploration of key activation
and signaling pathways, and the ability to explore the interaction
between cell types. Organotypic slice cultures from the hippocam-
pus and cortex have also been utilized to investigate the function
of microglia, the benefits of which are better preservation of
brain cytoarchitecture, which allows for examining interactions of
microglia with neurons and glia following injury [75–77].

When interpreting findings from in vitro studies it is important
to consider which type of cell preparation has been used as there
are differences in responses between cell lines (such as BV2 and
N9, both of murine origin) and primary cultures [78–80]. It is also
important to be aware of the age at which microglia for primary cul-
tures are isolated; protocols range from embryonic (E18), neonatal
(postnatal day (P0) to P4), adult (10 weeks) to aged (15 months
old), where differences in reactivity, morphology and functionality
have been observed [80,81]. The use of neonatal brains (P0–P4) is
by far the most common and Lai et al. [81] found these to be the
most reactive in culture in comparison to different ages. It has also
been noted that primary microglia cultures obtained from rats are
more sensitive to TLR-3/4 stimulation than compared to mice [82].
Numerous agents and pathological conditions have been used to
investigate microglial activation and potential for toxicity ranging
from bacteria (LPS), cytokines and chemokines (interferon (IFN)-�,
IL-6), proteins, neurotransmitters, reactive oxygen species.

10. Activation states of microglia

Microglia are known to have both beneficial and detrimen-
tal actions, and in recent years numerous studies have focused
on understanding their activation patterns, for detailed reviews
see [73,83–85]. Briefly, microglial activation states have been
sub-classified into classical activation (M1 – tissue defense and pro-
inflammatory cytokine production), alternative activation (M2a
– tissue repair and anti-inflammatory cytokine production) and
acquired deactivation (M2b – immunosuppression). Traditionally
LPS has been used to induce robust activation of microglia which
leads to the production of TNF-�, inducible nitric oxide (iNOS)
and pro-inflammatory cytokines which are all suggested to have
cytotoxic downstream effects, characteristic of an M1 phenotype
[86,87]. IL-4 stimulated microglia upregulate genes and proteins
that characterize an M2a, reparative phenotype [87].

11. Microglial contribution to the pathogenesis of preterm
brain injury

11.1. Reactive oxygen species and microglia
The immature brain is vulnerable to oxidative stress; and reac-
tive oxygen species (ROS; superoxide (O2

−), hydrogen peroxide
(H2O2)) and reactive nitrogen species (RNS; nitric oxide (NO),
peroxynitrite (ONOO−)) are produced by and can act to regulate
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icroglia. LPS + IFN-� stimulated microglia produce NO in a time
ependent manner [88]. In vitro imaging studies have also shown
hat in NO producing microglia, O2

− is a rate-limiting factor in the
ormation of ONOO− [88]. It has been shown that microglia stimu-
ated with either continuous or bolus H2O2 results in the production
f nitrite, ROS and mitochondrial O2

−. Continuous low H2O2 also
eads to significant production of pro-inflammatory cytokine IL-
5, and chemokines (e.g. granulocyte colony-stimulating factor,
acrophage inflammatory protein-1 and macrophage inflam-
atory protein 2-alph) [89]. Activated microglia production of

ntracellular and extracellular ROS is dependent on nicotinamide
denine dinucleotide phosphate (NADPH) oxidase (NOX) [90–92].
or a detailed review see [93,94]. Numerous NOX isoforms exist
n microglia, but it has been shown that LPS stimulated microglia
ctivate NOX1 and NOX2, which is required for the production
f O2

−, NO and iNOS, whilst only NOX1 appears to promote IL-
� production [95]. The activity of NOX1, NOX2 and NOX4 can
lso be modulated by GABA, glutamate and ATP stimulation, which
onsequently leads to O2

− formation, but not iNOS production. Glu-
amate mediated activation of NOX also contributes to a neurotoxic
henotype in microglia [96].

1.2. Excitotoxicity and microglia

Microglia contain purinergic receptors, specifically P1 and P2
eceptors, which are activated by adenosine and ATP respectively
81,96–98]. Importantly, the P2X7 receptor (P2X7R; an ionotropic
eceptor) and ATP binding cassette (ABC) transporters are required
or microglial IL-1� production [99]. Haynes et al. [100] found that
he metabotropic receptor, P2Y12, is required for the fine move-

ent of microglial processes, thereby being important in regulating
icroglial activation. Extracellular ATP can activate microglia

nducing chemotaxis and production of superoxide, nitrate, NOX
soforms, TNF-� and more ATP [81,96,101,102].

Numerous glutamate receptors are present and func-
ional on microglia, including group I, II and III metabotropic
lutamate (mGlu) receptors, �-amino-3-hydroxy-5-methyl-4-
soxazolepropionic acid-kainate (AMPA-KA) and NMDA receptors
NMDAR) [103–107]. For a detailed review about neurotransmit-
ers and microglia see [108]. Upon stimulation of AMPA-KA, mGlu2
nd NMDAR microglia are activated and robustly induce TNF-�
roduction [103,104,107]. NMDA treatment has also shown to

ncrease production of cellular ROS and NO as well as anti- and pro-
nflammatory cytokines [103]. Microglia treated with glutamate or
lutamate receptor agonists increase microglial c-fos expression
109]. Stimulation of mGlu3, mGlu5 and group III mGlu does
ot result in microglial neurotoxicity [104–106]. Inflammatory
ctivation of microglia (by LPS) results in the release of glutamate,
his has been shown to be dependent on lipid peroxidation and
OX but not NO or NOS [110]. Takaki et al. [111] showed that

-glutamate (l-Glu) is released from LPS activated microglia, and
hen co-cultured with astrocytes, results in decreased uptake of

-Glu by astrocytes leading to significant extracellular l-Glu. Taken
ogether these factors contribute to increased excitotoxicity that
an be damaging to neurons and oligodendrocytes.

2. Microglial toxicity – effect on oligodendrocytes,
eurons and the blood–brain barrier

2.1. Microglia and oligodendrocytes
Zajicek et al. [112] investigated the in vitro interactions between
ligodendrocytes and microglia and found that unstimulated
icroglia have minimal contact with oligodendrocytes. However,

ncreased contact was observed following microglial stimulation
Toxicology 48 (2014) 106–112 109

with IFN-�, or LPS + IFN-�. Microglial secreted TNF and NO con-
tributed to inducing oligodendrocyte cell death [112,113].

Miller et al. [114] compared the response of LPS (10 ng/ml) acti-
vated microglia in co-culture with oligodendrocyte progenitor cells
(OPCs; immature, neural/glial antigen 2 (NG2)+ and A2B5

+) and
oligodendrocytes (mature, galactocerebroside (GalC)+ and myelin
basic protein (MBP)+). LPS activated microglia decreased OPC sur-
vival, in contrast resting and activated microglia increased the
survival of oligodendrocytes. Domercq et al. [115] found microglia
stimulated with a higher dose of LPS (100 ng/ml) inhibited
oligodendrocyte glutamate transporters, leading to increased
extracellular glutamate and oligodendrocyte (GalC+ and O1+)
death.

Microglia co-cultured with pre-oligodendrocytes (preOL;
A2B5+, O4+) stimulated with LPS leads to increased preOL apopto-
sis [116,117]. Li et al. [117] found this was mediated by microglial
production of NO and ONOO−. PreOLs and preOL-astrocyte co-
cultures stimulated with LPS do not result in preOL cell death,
highlighting the toxic role of activated microglia. Interestingly, in
mixed glial cultures (microglia, preOLs and astrocytes) exposed
to LPS, NO is not required for toxicity, rather, in the presence of
astrocytes TNF-� production was important for mediating preOL
cell death [118].

12.2. Microglia and neurons

Neurons have been shown to activate microglia in co-culture
[119]. Oxygen glucose deprivation (OGD) stressed cortical neurons
activated microglia, which was mediated through extracellular
glutamate binding to mGluRII and NF-�B [120], these activated
microglia then further elicited neurotoxic effects on neurons, which
involved mGluRII, NMDAR, NF-�B and TNF-� [103,120]. Lai and
Todd [121] also found that culture media from mildly injured neu-
rons induced microglial production of IL-1�, TNF-� and NO, this
was due to neuronal production of glutamate and ATP. Expos-
ing neuronal cultures to conditioned media from LPS activated
microglia induced severe synapse loss, activated caspase-3 activity,
DNA fragmentation and neuronal cell death, which was mediated
by the MyD88 pathway [87,122,123]. Increased neuronal cell death
was also seen when neurons were exposed to conditioned media
from NMDA treated and mGlu2 stimulated microglia [103,104].
Studies utilizing microglia-neuron co-cultures have further high-
lighted the contribution of microglia to neuronotoxicity. Activating
microglia with IFN-� or LPS in co-culture with neurons results in
increased neuronal cell death, suggested to be mediated through
NO production [124]. ATP stimulated microglia also elicit neuro-
toxic effects on hypoxic neurons [81].

12.3. Microglia and BBB

It has been shown that activated microglia can disrupt and
induce injury to constituents of the blood–brain barrier (BBB).
Sumi et al. [125] found that co-culturing rat brain endothelial cells
with microglia and subsequently stimulating with LPS (10 ng/ml),
resulted in fragmented tight junctional immunostaining (zona
occludin-1, claudin-5 and occludin), decreased transendothelial
resistance and increased sodium-fluorescein permeability, sug-
gesting increased paracellular transport. This was shown to occur
via NOX mechanisms. Following OGD and reperfusion, the addition
of microglia to endothelial cell and astrocyte co-cultures, resulted
in increased cell death of endothelial cells. OGD and reperfusion
also resulted in increased production of superoxide and H2O2 [126].

Whether activated microglia influence pericyte morphology or
function has yet to be determined.

In summary, there is considerable evidence to suggest that
activation of microglia can be neurotoxic and contribute to
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euroinflammation seen in the injured preterm brain. However,
icroglia also mediate critically important functions during normal

rain development. To better understand the injurious versus pro-
ective functions of neuroinflammation, microglia activation states
nd the possibility of contribution of systemic immune cells in
reterm brain pathology need to be determined.
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