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Breast cancer is one of the leading causes of mortality in females. Over the past decades,
intensive efforts have been made to uncover the pathogenesis of breast cancer.
Interleukin-6 (IL-6) is a pleiotropic factor which has a vital role in host defense immunity
and acute stress. Moreover, a wide range of studies have identified the physiological and
pathological roles of IL-6 in inflammation, immune and cancer. Recently, several IL-6
signaling pathway-targeted monoclonal antibodies have been developed for cancer and
immune therapy. Combination of IL-6 inhibitory antibody with other pathways blockage
drugs have demonstrated promising outcome in both preclinical and clinical trials. This
review focuses on emerging studies on the strong linkages of IL-6/IL-6R mediated
regulation of inflammation and immunity in cancer, especially in breast cancer.
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INTRODUCTION

Breast cancer is one of the leading diagnosed cancers in women with high mortality. According to
International Agency for Research on Cancer (IARC), there were 2,261,419 women diagnosed with
breast cancer in 2020 worldwide. It is a common cause of cancer-related death especially in less
developed countries. Despite the recent advanced technique in breast cancer screening and early
diagnosis, the high morbidity and mortality rates urge the need of investigation into the molecular
mechanism of breast cancer.

Genome wide analyses have recently demonstrated thousands of mutations accumulated in
breast cancer cells (1). In addition, as a multifactorial disease, the etiologies of breast cancer include
not only distinct inherent factors such as genetic status, but also environmental factors such as
obesity, lifestyle, and chronic inflammation (2).

Accumulating studies have been performed on the relationship between inflammation and
cancer (3). It is well-accepted that inflammatory diseases could increase the risk of cancer
development during tumor initiation, promotion, progression, and metastasis (3–6).

As one of the best-characterized pro-tumorigenic cytokines, IL-6 has been studied extensively for
its central role in both physiological and pathological processes (7). Previous studies indicated that
IL-6 regulate the pro-inflammatory and enhance monocyte infiltration at the inflammatory site
during chronic inflammation (8). IL-6 responsive tissues would become resistant gradually during
chronic inflammation, which correlated with high basal level of IL-6 (9, 10). IL-6 was also elevated
in many solid tumors including breast cancer (11–13), which correlated with poor prognosis and
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metastasis (14, 15). The current review will further discuss the
intricate relationship between IL-6, inflammation, and
breast cancer.
THE IL-6 SIGNALING PATHWAYS
AND FUNCTIONS

The Il-6 Signaling Pathway
Human IL-6 is a 26 kDa glycoprotein known as a B-cell
differentiation regulator (16) which is secreted by a number of
cells (17). IL-6 is a multifunctional cytokine that plays both pro-
inflammatory and anti-inflammatory roles in humans (18). IL-6
is a single chain phosphorylated glycoprotein consisting of four
helix bundles (A-D), with A and B run in one direction while C
and D run in the opposite direction. IL-6 transmits its signals
through a cell-surface type-I receptor complex, which consists of
the membrane-bound IL-6 receptor (IL-6R) and a signal-
transducing component gp130 homodimer (19). IL-6R is
expressed on a limited number of cell types, such as
macrophages, B cells and subtypes of T cells (20, 21). IL-6R is
80 kDa a-chain and is also called as CD126 consisting of three
domains namely D1, D2 and D3. Besides the membrane bound
receptor (mIL-6R) as previously mentioned, soluble (sIL-6R) is
the other form of IL-6R, which is expressed mainly in
hepatocytes, neutrophils, monocytes, and T-cells (22). IL-6
selectively activates different signaling pathways, the classical
signaling pathway through mIL-6R, and the trans-signaling
pathway through sIL-6R. In both the cases, IL-6 binds to the
receptor and then to gp130, but elicits different biological
effects depending upon the receptor form (23). Cytokine IL-6
triggers the anti-inflammatory responses through classic
signaling by binging to mIL-6R and gp130, while in contrast,
trans-signaling can be manifested in all gp130-expressing cells,
and leads to pro-inflammatory responses (24). The sIL-6R can be
found at circulation with concentration from 25 to 35 ng/ml
in human, which is generated by proteolytic cleavage of
the membrane bound form IL-6R and by proteolytic
cleavage of metalloproteinases gene family members, or by
alternative splicing of IL-6R mRNA (25). There are three
routes of the IL-6 signaling pathway. In route 1, Janus kinase
(JAK) is phosphorylated and activated, subsequently
activates dimerization of signal transducer and transcription-3
(STAT3) (26). In route 2, JAK activates Ras/Raf pathway,
causing hyperphosphorylation of mitogen activated protein
kinases (MAPK) and incudes its serine/threonine kinase
activity (23). The third route involves the activation of
phosphoinositol-3 kinase (PI3K)-protein kinase B (PKB)/Akt
pathway (27).

IL-6 and Immunity
IL-6 is secreted by largely plasmacytoid dendritic cells (pDCs),
which is critical for differentiation from B cells to plasma cells
(28). This cytokine is also a vital modulator to maintain dynamic
balance between Th1 and Th2 immune cells (29). For example,
IL-6 is necessary during the differentiation from Th1 to Th2 cells
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(30). The process was proved to interfere with IFN-g production
via up-regulation of suppressor of cytokine signaling 1 (SOCS1)
and SOCS3 in CD4+T cells (31). Meanwhile, together with
transforming growth factor-b (TGF-b), IL-6 could promote the
differentiation of Th17 cells via activating both retinoic acid-
related orphan receptor gt (RORgt) and RORa (32). It was
reported that STAT3 mediated the effectiveness of IL-6 on
Th17 differentiation and this cytokine could inhibit the activity
of Treg cells (33). Therefore, IL-6 is regarded as the main
regulator of Treg/Th17 equilibrium (34).

IL-6 also plays a vital role in early differentiation of T
follicular helper cells (Tfh), the main T helper cell subtype
provides support for germinal center formation, affinity
maturation, and immune cells’ generation. Early BCl6
+/CXCR5+/Tfh differentiation would be mostly interfered in
the case of IL-6 absence which was proved to mediate by STAT1
and STAT3 (35).

Novel agents against the IL-6/IL-6R signaling pathway have
been proved to be effective for some inflammatory diseases.
Preclinical studies have demonstrated that IL-6 has crucial
functions in inflammatory cells recruitment (36). Tumor-
associated macrophages (TAMs) secreted IL-6 and plays
critical role in carcinogenesis and differentiation of myeloid-
derived suppressor cells (MDSCs), which gives rise to intra-
tumoral inflammatory processes (37, 38). A previous study
demonstrated that inhibition of NF-kB decreased the stem cell
compartment, which in turn reduced blood vessel formation in
breast cancer (39). In addition, high expression of IL-6R on liver
cells led to recruitment of acute phase proteins (40). High
expression levels of acute phase proteins including CRP,
fibrinogen and serum amyloid protein A were identified during
both acute and chronic disease (41, 42). Interestingly, clinical
observation found that CRP levels in patients with severe
bacterial infections were not elevated when IL-6 was absent
(43). Further studies demonstrated that blocking IL-6 signaling
by neutralizing antibody may reverse low serum level of CRP
(44). However, the application of IL-6/IL-6R blockers as anti-
cancer agents has not been proved intensively in cancers
including breast cancer.

IL-6 and Stem Cell
IL-6 family cytokines play an important role in generation and
maintenance of stem/progenitor cells including cancer stem cells
(CSCs) (45). As a member in IL-6 family, leukemia inhibitory
factor (LIF) has an crucial role in both embryonic stem (ES) cells
and cancer development (46), which is necessary to maintain
mouse ES cells in an undifferentiated condition via STAT3
activation (47). Active LIF was detected in a wide range of
malignancies including lung, breast, stomach, colon, liver,
gallbladder, and pancreatic carcinoma (48). Once activated,
STAT3 may induce gene expression including c-Myc, which
contribute to the maintenance of undifferentiated state in mouse
ES cells (49). It is also reported that IL-6 increased pluripotent
stem (iPS) cell population by inducing c-Myc and Pim1 (50). The
transcription factor C/EBPd, was reported to be pro-tumorigenic
in breast cancer cell lines by directly targeting IL-6R, leading to
cancer progression with cancer stem cells activation (51). The IL-
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6-JAK1-STAT3 pathway has a vital function in the transition
from non-CSCs into CSCs by regulating OCT4 in human breast
cancer cell lines (52). In lung cancer CSCs, IL-6Ra was detected
in CSCs (53), whereas STAT3 was necessary for proliferation and
survival in colon cancer-initiating cells (54, 55). It was reported
that constitutive activation of STAT3 and NF-kB signaling in
glioblastoma CSCs regulate Notch pathway, which played a key
role in CSCmaintenance and cell survival (56). STAT3 activation
by IL-6 from adipose-derived stem cells could promote
endometrial carcinoma proliferation and metastasis (57).

IL-6 is also crucial for epigenetic modification in stem cells
(58, 59). NF-kB and STAT3 were identified as key regulators in
epigenetic switch in inflammation (60, 61). Recently, a positive
feedback loop involving microRNA let-7 has been demonstrated
for maintaining chronic inflammatory status in malignant cells
(60). Interestingly, this feedback loop regulated by IL-6 signaling
could in turn activate NF-kB pathway and its downstream
targets such as let-7 and Lin-28. Similarly, IL-6 was proved to
be essential in keeping inflammatory loop in breast cancer CSCs
(60, 61). In summary, IL-6 signaling plays a regulatory role in
controlling cancer cell growth, CSC renewal and metastasis (62).

IL-6 and Tumor Microenvironment
Tumor microenvironment contributes significantly towards
potentiating the stemness and metastasis properties of cancer
cells. Solid tumors, including breast cancer cells were reported to
have intense interaction with stromal cells such as mesenchymal
stem cells (MSCs), adipocytes, cancer associated fibroblasts
(CAFs), endothelial cells and immune cells in tumor
microenvironment (63). Majority of these stromal cells within
tumor microenvironment could secrete both IL-6 and IL-8 (63,
64). Mesenchymal cells could be either recruited from bone
marrow (65) or normal breast stroma (66). In breast tumor cells,
it has been identified that MSCs could be selectively recruited to
the sites of growing carcinoma through cytokine such as IL-6 and
CXCL7, where they interact with breast cancer CSCs (65, 66). In
addition, MSCs are capable to differentiate into CAFs as well as
adipocytes, which also interact with cancer cells (67).

CAFs have been demonstrated to have the ability to support
tumorigenesis by stimulating angiogenesis, cell proliferation and
invasion (68). CAFs in breast tumors expressed high levels of IL-
6 (68, 69), which mediated epithelial-stromal interactions and
promoted tumorigenesis (70). CAFs were reported to induce
trastuzumab resistance in HER2 positive breast cancer cells (71).
More importantly, IL-6 could in turn reactivate breast stromal
fibroblasts through STAT3-dependent manner (72). CAFs could
affect intra tumoral CD8+ and FoxP3+ T cells via IL-6 in tumor
microenvironment (73). Recent findings also indicated miR-
149’s role in the crosstalk between tumor cells and CAFs,
which highlighted the potential therapeutic strategy using
interfering miRNAs (74). There was growing evidence support
that CAFs promote stem cell-like properties of hepatocellular
carcinoma via IL-6/STAT3/Notch signaling pathway (75).

In a recent study, a novel developed liposomal nanoparticle
loaded with anti-IL6R antibody which deliver to tumor
microenvironment achieved a significant effect in inhibiting
the metastasis of breast cancer cells in mouse models (76).
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Obesity has been recently identified as a negative prognostic
factor in breast cancer (77, 78), which appears to be independent
of menopausal status, tumor stage, and hormone-related factors
(79). According to the reported literature, adipocytes produced
inflammatory cytokines such as IL-6 in obesity individuals (80).
IL-6 was reported to mediate crosstalk between preadipocytes
and breast ductal carcinoma in situ cells which may lead to
progression of early-stage breast cancer (81). In addition,
adipose-derived stem cells (ADSCs) promoted tumor initiation
and accelerated tumor growth through IL-6 production (82).
Obesity was suggested to induce resistance to anti-VEGF therapy
in breast cancer by up-regulating IL-6 (83).
IL-6’S FUNCTIONAL ROLE IN BREAST
CANCER DEVELOPMENT

Experimental Studies
The predominant role of IL-6 in cancer is its key promotion of
tumour growth. It has been demonstrated that deregulated IL-6
signaling pathway plays important roles in proliferation,
migration, and adhesion among tumors (84–87). High level of
IL-6 in breast cancer tissues stimulated Jagged-1 expression to
promote cell growth and maintain the aggressive phenotype (88).
High level of IL-6 secretion may facilitate tumor cell growth via
suppressing apoptosis and promoting angiogenesis (89). High
expression of IL-6Ra was also demonstrated to induce apoptosis
resistance in breast cancer (90). In metastatic lesions of breast
cancer patients, upregulated IL-6 was identified which may lead
to chemotherapy resistance such as paclitaxel (91). The crosstalk
between adipocytes and breast cancer cells in cancer progression
has attracted much attention in recent years. The adipocyte-
derived IL-6 was reported to promote breast cancer metastasis by
inducing PLOD2 expression through activating the JAK/STAT3
and PI3K/AKT signaling pathways (92). In a recent study on
triple-negative breast cancers (TNBCs), restraining of IL-6 and
IL-8 expressions prominently suppressed both in vitro and in
vivo cancer cell proliferation (93).

IL-12, which is produced by activated antigen presenting cells
including dendritic cells and macrophages, was reported to
inhibit tumor development (94). Some studies suggested that
high expression level of IL-12 receptor were found to
significantly increase breast cancer patients’ survival, especially
in the more aggressive subtypes (95). It is also critical to initiate
the differentiation of naive CD4+ T cells to T helper type 1 (Th-
1) cells (96). However, the correlation between IL-6 and IL-12
remains elusive in breast cancer. According to the reported
literature, the Th-1/Th-2 imbalance plays important role in the
development of breast cancer (97). And circulating Th-1 and Th-
2 levels and their ratios are associated with ER-negative and
TNBC, suggesting their contribution in breast cancers (98). IL-6
played dual functions on Th-1/Th-2 differentiation by promoting
Th-2 differentiation and inhibiting Th-1 polarization
simultaneously (29).

IL-6 is a vital player during acute inflammation, controlling
not only the inflammatory response but also tissue metabolism
July 2022 | Volume 12 | Article 903800
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(99). Under chronic inflammation circumstance, IL-6 may
induce cachexia through cytokines production and metabolism
change in both lipids and proteins (100). Over-expression of IL-6
has been proved to be related with atrophy by promoting muscle
protein metabolism (101). Cachexia and its related diseases
account for approximately one third of all cancer-related
deaths (102). Inflammatory breast cancer (IBC) describes a
highly aggressive form of breast cancer of diverse molecular
subtypes and clonal heterogeneity. The signature of IBC is
recognized by its inflammation feature which is associated with
IL-6 expression. A recent study published in May 2022 revealed
that IL-6 signaling stimulate cell proliferation in IL-6R and
HER2-expressing responsive sub-clones in IBC, and this effect
was abrogated by the IL-6R neutral izing antibody
Tocilizumab (103).

IL-6 is able to diffuse through cells structures and tissues in
tumor microenvironment due to its low molecular weight (104).
Tumor microenvironment-associated inflammation, mainly
regulated by cytokines including IL-6, has been well-
documented to contribute to every stage of cancer progression
(105–108). Accumulating evidence has proved the significance of
senescent cells in the microenvironment of cancer cells, of which
pro-inflammatory IL-6 and IL-8 are consistently present. In this
study, IL6 was reported to induce a self-reinforced senescence/
inflammatory milieu responsible for the epithelial plasticity and
stemness features which prone to a more aggressive phenotype in
breast cancer (109).

Despite significant therapeutic achievements have been made
in recent years, breast cancer is still one of the most common
cancers with high mortality in women worldwide. Estrogen
receptor (ER) a-positive breast cancers account for more than
two thirds of all the category and endocrine therapies such as
selective and aromatase inhibitors remain the standard adjuvant
therapy for these tumors. However, majority of patients will
develop drug resistance after treatment for several years and
alternative hormone therapy is needed afterwards (110, 111).
Interestingly, IL6/STAT3 signaling was suggested to drive
metastasis in ER positive breast cancer independent of ER,
decoupling IL6/STAT3 and ER oncogenic pathways could
sensitize some hormonal resistant patients (112). In another
study, similar conclusion was reported that Tocilizumab, an
antibody that binds to IL-6R, could robustly reverse tamoxifen
resistance (113). In compliance with this result, clinical breast
cancer samples analysis confirmed that IL-6R expression was
significantly associated with tamoxifen resistance in breast
cancer tissues, with high IL-6R expression correlated with poor
survival (113). Apart from the role in ER positive breast cancer,
IL-6 was identified to trigger the migration and invasion of ER
negative breast cancer cells via activation of YAP signals (114).

IL-6 could upregulate circulating VEGF in breast cancer
patients, which was confirmed to promote angiogenesis and
metastasis (115). Downregulation of IL-6 was related to the
better response to breast cancer therapy (11, 116). Ligation of
IL-6 with IL-6R activates Janus kinase (JAK) tyrosine kinases
leading to phosphorylation of signal transducer and activator of
transcription 3 (STAT3), which is a well-studied cancer signaling
Frontiers in Oncology | www.frontiersin.org 4
pathway. Moreover, the expression level of IL-6 was higher in
aggressive tumors with multi-drug resistance and is negatively
related to the expression of estrogen receptor in breast cancer
patients (117, 118). Recently, the fact that IL-6-mediated
Jagged1/Notch signaling pathway enhanced the ability for
breast cancer cells metastasis has been demonstrated (119). All
the evidence suggested that IL-6 and its receptor as attractive
therapeutic targets.

Clinical Studies
In many preclinical models, IL-6 has been demonstrated to
promote carcinogenicity, angiogenesis and metastasis (88, 118,
120, 121). IL-6 has been implicated in resistance to trastuzumab
treatment in HER2 positive patients. The induction of IL-6
inflammatory feedback loop leads to the expanded population
of CSCs, which lead to high levels of this cytokine secretion. The
addition of tocilizumab, an anti-IL-6R antibody, was reported to
be capable for the interruption against this feedback loop (122).
Based on this finding, a Phase I clinical trial started from 2017
with combined treatment including trastuzumab and
tocilizumab for patients with metastatic trastuzumab-resistant
HER2+ breast cancer was carried out (NCT03135171).
According to the reported literature, IL-6 signaling is a major
determinant of TNBC cell proliferation and viability (123), and
this chemotherapy-associated inflammatory cytokine may
promote resistance mechanisms in TNBC cells as well (124). A
Phase Ib/II, open-label, multicenter, randomized umbrella study
is being carried out to evaluate the efficacy and safety of multiple
immunotherapy-based treatment combinations including
tocilizumab in patients with metastatic or inoperable locally
advanced TNBC (NCT03424005).

The Prognostic Significance of IL-6 and Its
Correlation With Survival
The prognostic impacts of preoperative IL-6 expression levels in
patients with breast cancer remain controversial. In a meta-
analysis extracted from thirteen articles containing 3,224 breast
cancer patients showed that IL-6 expression was not associated
with lymph node metastasis, tumor size, or histologic grade.
Moreover, there was no correlation between IL-6 expression and
disease-free survival. However, the combined hazard ratio for OS
was 2.15 (125). Another study included 1,380 patients with early-
stage invasive breast cancer revealed that high IL-6 expression is
associated with better disease-free survival and breast cancer
specific survival (126). However, anther investigation involving
55 female patients with invasive breast cancer demonstrated that
the individuals with IL-6 ≥10.0 pg/ml had poorer overall survival
compared with those with IL-6 <10.0 pg/ml (127). Similarly, it
was reported that high level of serum IL-6 secreted by metastatic
breast cancer cells were correlated with poor survival (15).
Regarding the roles of IL-6 in ER positive breast cancers as
previously described, we further summarized the prognostic
value of IL-6 among different subtypes of breast cancer
patients (Table 1). For example, in a prospective study
included 240 patients who underwent surgery for management
of newly diagnosed breast cancer, the associations between
July 2022 | Volume 12 | Article 903800
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plasma concentration of IL-6 and breast cancer recurrence
during a six-year follow-up period were examined. The result
showed that patients with recurrence had higher levels of
circulating IL-6 only among those with HER2 negative tumors.
Results of survival analyses revealed an association of high levels
of IL-6 with poor recurrence-free survival in patients with HER2
negative and TNBC patients (132).

The approximate percentage of HER2 gene amplified in
human breast cancer is 25%, which is characterized by a more
aggressive phenotype (138). Trastuzumab, as one of the targeted
therapeutic agents for HER2+ breast cancer patients, has totally
changed the treatment course. Although many patients benefit
from the HER2 targeted therapy, nearly half of them will develop
drug resistance after one to two years of treatment (139).
Evidence showed that overexpression of HER2 in breast CSCs
increased IL-6 production, which could promote CSC self-
renewal. The fact that HER2 targeted therapy could
prominently activate the IL-6 inflammatory loop and expand
the CSC population, signified the cause of IL-6 in Herceptin
resistance (122). In ER-negative breast cancer, findings
demonstrated that IL-66/Stat3/NF-kB inflammatory loop was
activated (140). And it has been proved that leptin-induced
STAT3 is partially cross activated through SK1-mediated IL-6
secretion and gp130 activation, suggesting the potential
significance of this pathway (141).

A growing body of evidence indicated Bazedoxifene, which is
a synthetic anti-gp130 compound, could effectively disrupt the
IL-6R/gp130 interactions thus inhibit cell viability, and overall
cell survive, proliferation as well as cell migration in TNBC (142).
A novel in-house prepared IL-6 pathway inhibitor namely 6a,
which is capable of selectively inhibiting STAT3 activation
following IL-6 stimulation in MDA-MB-231 breast cancer
(143). Sarilumab, an FDA-approved anti-IL-6R antibody for
rheumatoid arthritis, which blocks both mIL-6R and sIL-6R, is
currently under clinical studies for breast cancer (144).
Siltuximab, which is a neutralizing anti-IL-6 antibody, delayed
engraftment of MCF-7 humanized xenograft tumors and elicited
Frontiers in Oncology | www.frontiersin.org 5
tumor xenograft regression in tumors (145). The anti-IL-6
receptor antibody, Tocilizumab, is effective in the treatment of
various autoimmune diseases such as rheumatoid arthritis (RA)
(146). Experimental results demonstrates that IL-6 pathway
targeted drugs may have additional benefit in HER2+ breast
cancer (122). It has been proved that IL-6 receptor inhibitor
suppressed bone metastases in a breast cancer cell line (147).
Another study showed that IL-6R antagonist Tocilizumab
significantly decreases breast cancer stem cell and inhibits
tumor growth in Notch3-expressing breast cancers (148). The
high level of IL-6R expression in spindle-shaped stromal cells
such as CAF was not associated with the vasculature but could be
used as prognostic determinant of early breast cancer (149).
CAFs in tumor microenvironment played a vital role in
developing trastuzumab resistance by magnifying CSCs bulge
and activating multiple pathways (150). Regarding this,
combination of anti-IL-6 antibody, or multiple pathway
inhibitors with trastuzumab maybe novel strategy to reverse
drug resistance in HER2+ breast cancer (71). Genotype of IL-6
was prominently related to early events among patients bearing
with ER-negative tumors (151). The IL-6 signaling loop
mediated drug resistance to PI3K inhibitors via inducing
epithelial-mesenchymal transition (EMT) and CSCs expansion
in human breast cancer cells (152). In summary, IL-6 signaling
pathway may be potential treatment target for breast cancer
patients in the future. The previously mentioned agents targeting
the IL-6/IL-6R signaling for breast cancer therapy were listed
in Table 2.

IL-6 could promote the response of acute phase inflammatory
via increasing the production of acute inflammatory proteins. IL-
6 was also correlated with elevated CRP in different kinds of
cancers including breast cancer (154), renal cancer (155), lung
cancer (156), and colorectal cancer (157). Although breast
cancers rarely are characterized by inflammation, a growing
body of evidence nevertheless suggests that inflammatory
process also play an important role in breast cancer
progression (158, 159). Based on the reported literature, the
TABLE 1 | Prognositc value of IL-6 in different types of breast cancers.

Tumor subtypea Prognostic value of IL-6 Reference

Luminal A •ER+ breast cancer cells express and/or secrete lower cytokine levels than ER- cells (128, 129)
•High levels of gene expression of IL-6 receptor in luminal A and B (130)

(128–130)

Luminal B •The luminal B HER2+ group was found to feature the highest spontaneous secretion of IL-6 among subgroups (131)
•High levels of gene expression of IL-6 receptor in luminal A and B (130)

(130, 131)

HER2 (+/-) •HER2- patients with recurrence had higher levels of circulating IL-6 (P=0.024) (132)
•High IL-6 expression was significantly associated with DFS in HER2- (P = 0.026) (126)
•High serum in HER2+ patients (P<0.05) (133)
•IL6 as good indicator in both HER2- (P = 0.001) and HER2+ subgroups (P = 0.002) (134)
•Association with HER2 or endocrine therapy resistance (122, 135)

(122, 126, 132–135)

TNBC •Patients with recurrence had higher levelsb of circulating IL-6 (P=0.024) (132)
•High IL-6 expression was significantly associated with DFS in non-TNBC (P = 0.003) (126)
•Induction of TNBC progression (123, 136, 137)

(123, 126, 132, 136, 137)

ER/PR status •High IL-6 expression was significantly associated with DFS in ER+ (P = 0.025) (126)
•High serum in ER+ patients (P<0.05) (133)
•IL6 as the independent prognostic factor for good outcome (P=0.001) (134)

(126, 133, 134)

Metastasis •Higher serum IL-6 level correlated with more metastatic sites (P<0.0001) (15) (15)
July 2022 | Vo
aLuminal A (ER+ and/or PR+, HER2-, and Ki-67 index<15%); luminal B ([ER+ and/or PR+, HER-, and Ki-67 index≥15%] or [ER+ and/or PR+,and HER2+]); HER2 only (ER-, PR-, and HER2
+); TNBC (ER-, PR-, and HER2-).
bHigh and low levels were determined based on the median value.
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results from epidemiologic studies in different centres are
conflicting, with some showing significant association between
elevated CRP levels and poor prognosis in breast cancers while
others show no association (160–162). In a study consisted of
700 women with early-stage breast cancer found that elevated
levels of CRP measured 2.5 years after diagnosis were associated
with reduced DFS and OS (163). Similarly, another investigation
included 2,910 women for up to seven years after invasive breast
cancer diagnosis revealed elevated CRP levels were significantly
associated with reduced DFS and OS (164). Preoperative CRP
level was indicated as a more accurate prognostic factor
compared with other factors, such as histological grade, tumor
factor and node factor (127).
Frontiers in Oncology | www.frontiersin.org 6
CONCLUSIONS

IL-6 is a pleiotropic cytokine in the regulations of various
physiological and pathological processes. IL-6 causes
uncontrolled inflammatory responses resulting in chronic
inflammation and even carcinoma. IL-6 expression is associated
with poor prognosis for breast cancer. The interaction network of
IL-6 in breast cancer cells/stromal cells is listed as Figure 1. The IL-
6 signal transduction pathway including IL-6, IL-6R, sIL-6R,
gp130, JAK, and STAT3 has been suggested as promising
therapeutic targets for breast cancer. Several antibodies for IL-6/
IL-6R have been developed, either as single drug or combined with
other traditional chemotherapy, have demonstrated dramatical
FIGURE 1 | The interaction network of IL-6 and breast cancer cells/stromal cells.
TABLE 2 | Agents directly targeting the IL-6/IL-6R/gp130 complex for breast cancer therapy.

Agents Antibody/Compound Preclinical Clinical trial Mechanism

Bazedoxifene Synthetic Anti-gp130
compound

Inhibit the growth of IL-6-induced
SUM159 breast cancer cell line (153)

Breast tissue density change (NCT00774267)
(NCT00418236)

1. Inhibition STAT3
phosphorylation by disrupting IL-
6/gp130 interface (153)
2. Estrogen antagonist in breast
tissue

6a Anti-IL-6 synthetic
pyrrolidinesulphonylaryl
compound

Inhibition of STAT3 phosphorylation in IL-
6 stimulated MDA-MB-231 breast cancer
cell line (143)

Selective inhibition of STAT3
phosphorylation (143)

Sarilumab IL-6R antagonist To eliminate minimal residual disease in TNBC
(NCT04333706)

Selective inhibition of STAT3
phosphorylation (143)

Siltuximab CNTO-328, IL-6 mAb
which received FDA-
approval

Treatment in 6 orthotopically implanted
PDX lines in vivo (145)

To prevent binding to soluble and
membrane bound interleukin-6
receptors

Tocilizumab IL-6R antagonist Trastuzumab-resistant breast tumor
xenograft mouse model

For metastatic HER2 positive breast cancer
resistant to Trastuzumab (NCT03135171)
Treatment combinations in patients with
metastatic or inoperable locally advanced
TNBC (NCT 03424005)
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outcome in both preclinical and clinical trials. In addition to the
critical roles of IL-6/JAK/STAT3 signaling in breast cancer,
hyperactivation of this pathway has also been implicated in
suppressing anti-tumor immune responses in tumor
microenvironment. Treatments targeting the IL-6/JAK/STAT3
pathway have provided benefit for patients with breast cancer by
directly inhibiting tumor cell growth and activating anti-tumor
immunity. Taken together, strategy targeting the IL-6/JAK/STAT3
signaling pathway, which has already been shown to be beneficial
in certain cancers including breast cancer, has proven to be
effective. Combination of IL-6 signaling pathway inhibitor and
other targets blockage drugs may serve as novel strategy to treat IL-
6 mediated immune disease and human cancers.
Frontiers in Oncology | www.frontiersin.org 7
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