
http://genomebiology.com/2002/3/12/research/0072.1

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

Research
Identification and utilization of arbitrary correlations in models of
recombination signal sequences
Lindsay G Cowell*, Marco Davila*, Thomas B Kepler† and Garnett Kelsoe*

Addresses: *Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA. †Center for Bioinformatics and
Computational Biology, Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA.

Correspondence: Garnett Kelsoe. E-mail: ghkelsoe@duke.edu

Abstract

Background: A significant challenge in bioinformatics is to develop methods for detecting and
modeling patterns in variable DNA sequence sites, such as protein-binding sites in regulatory
DNA. Current approaches sometimes perform poorly when positions in the site do not
independently affect protein binding. We developed a statistical technique for modeling the
correlation structure in variable DNA sequence sites. The method places no restrictions on the
number of correlated positions or on their spatial relationship within the site. No prior empirical
evidence for the correlation structure is necessary.

Results: We applied our method to the recombination signal sequences (RSS) that direct
assembly of B-cell and T-cell antigen-receptor genes via V(D)J recombination. The technique is
based on model selection by cross-validation and produces models that allow computation of an
information score for any signal-length sequence. We also modeled RSS using order zero and
order one Markov chains. The scores from all models are highly correlated with measured
recombination efficiencies, but the models arising from our technique are better than the Markov
models at discriminating RSS from non-RSS.

Conclusions: Our model-development procedure produces models that estimate well the
recombinogenic potential of RSS and are better at RSS recognition than the order zero and order
one Markov models. Our models are, therefore, valuable for studying the regulation of both
physiologic and aberrant V(D)J recombination. The approach could be equally powerful for the
study of promoter and enhancer elements, splice sites, and other DNA regulatory sites that are
highly variable at the level of individual nucleotide positions.

Published: 21 November 2002

Genome Biology 2002, 3(12):research0072.1–0072.20

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2002/3/12/research/0072

© 2002 Cowell et al., licensee BioMed Central Ltd 
(Print ISSN 1465-6906; Online ISSN 1465-6914)

Received: 24 June 2002
Revised: 4 September 2002
Accepted: 10 October 2002

Background 
Modeling variable DNA sequence sites
The set of binding sites for a single DNA-binding protein can be

highly variable [1,2], and the degree of nucleotide variation tol-

erated generally differs from position to position within a site

[3-5]. This sequence diversity can have important functional

consequences as the affinity between regulatory proteins and

their binding sites is modulated by changes in binding-site

sequence [1]. Large datasets of related DNA sites are now

available [3,4,6,7]. Currently, more than 100 prokaryotic and

eukaryotic genomes have been completely sequenced, permit-

ting cross-species comparisons of even larger sequence
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assemblies than collected here (see, for example [8,9]). Com-

putational approaches can therefore be used to detect and

model the sequence patterns present within the binding-site

variability. The most useful models of variable DNA sites

provide classification algorithms for identifying functional

sites as well as insights that can help elucidate the relationship

between the structure and function of these sites.

Variable DNA sequence sites are frequently described by a

consensus sequence [10] or a weight matrix [11-13]. Consen-

sus sequences have limited utility for even moderately vari-

able sites because they preserve little or no information

about the variability within the sequences they characterize.

Differences from consensus are quantified by counting the

number of mismatched positions, making no distinction

between mismatches that abolish function of the site and

those that modulate function.

Weight matrices were introduced to characterize transcrip-

tion and translation initiation sites in Escherichia coli [11]

and have become standard for characterizing binding sites

for transcription factors. A weight matrix is a two-dimen-

sional matrix in which each row corresponds to one of the

four nucleotides and each column corresponds to one posi-

tion in the site being described [11]. The elements of the

matrix are the observed counts for each nucleotide at each

position in an alignment of the DNA sites [11], or some func-

tion of these counts (reviewed in [13,14]). Any sequence can

be scored by summing the matrix elements corresponding

to the sequence [11], thereby quantitatively rating the

sequence’s functional potential.

Weight matrices can be used to scan genomic DNA and

determine statistically significant matches to the sequence

pattern described by the matrix [14]. Putative sites are

scored by the weight matrix, so the number of false positives

and false negatives can be balanced by choosing an appro-

priate threshold score defining functional sites. The scores of

functional sites are sometimes correlated with their level of

function [11,14-23].

Weight matrices are typically based on order zero Markov

chains, meaning they assume that individual base pairs in

the binding site affect binding affinity independently.

Weight-matrix models based on order one Markov chains

assume that adjacent positions are correlated [15,24-27].

Ponomarenko et al. [28] constructed weight matrices for

many different transcription factor binding sites using

mono-, di-, and trinucleotide motifs allowing correlation

between non-adjacent positions by specifying X1NX3 and

X1NX3NX5 motifs, where Xi is the nucleotide at position i of

the motif and N is any nucleotide. While this approach

allows for correlation between more than two non-adjacent

positions, the motifs may still be unnecessarily restrictive.

The apposition of distant binding-site positions can be

important to recruitment of the binding protein, for

example, through formation of DNA secondary structure

[29-32], or to the interaction of the binding site with its

binding protein [33]. Therefore correlation between distant

positions is expected.

Burge and Karlin [34] used hypothesis testing via �2 tests to

detect significant correlations between any two positions and

introduced a model-building procedure, maximal dependence

decomposition, to account for the dependencies. For each sig-

nificant correlation, this method partitions the dataset into

subsets of sequences exhibiting no correlation; the final model

is a composite of weight matrices (order zero), one for each

subset. Our model-building technique is based on cross-vali-

dation criteria rather than on hypothesis testing per se, and we

use a more general model class for DNA sequences.

Models that allow for pairwise correlations between posi-

tions were developed in the context of Bayes networks by Cai

et al. [35]. Bayes networks represent a large class of models,

and in fact, our model can be recast as a Bayes network,

although it is not now formulated in those terms. 

We have developed an approach to determine the correlation

structure present in a set of variable sequence sites. For each

position in the site, we identify all other correlated positions

placing no restrictions on the number or spatial relationship

of correlated positions in the site. Our approach determines,

from all possible combinations of disjoint probability distrib-

utions, the set of distributions that most effectively distin-

guishes functional sites from non-functional sequences.

Although the family of models we consider is very large, we

proceed by model selection rather than hypothesis testing.

The selected probability function is the product of these dis-

joint probability distributions. The natural logarithm of this

probability function can be used as a score for any sequence,

thereby recognizing the presence of evolutionarily conserved

nucleotide associations. We have applied this approach to

recombination signal sequences (RSS), a set of DNA binding

sites necessary for specific immunity.

Recombination signal sequences 
Specific immunity depends on the ability of B and T lympho-

cytes to recognize antigens, molecular identifiers of

pathogens [36]. The immune system does not anticipate

which antigen will be encountered, but remarkable genetic

mechanisms have evolved that generate diverse antigen-

receptor repertoires. The primary generative mechanism is

V(D)J recombination, the rearrangement of B-cell receptor

(BCR) or T-cell receptor (TCR) V, D, and J gene segments to

form functional genes; the resulting combinatorial and junc-

tional diversity can produce around 1014 BCR specificities

and around 1018 TCR specificities in one animal [37]. This

extraordinary plasticity has a price: V(D)J recombination

can produce self-reactive receptors leading to autoimmune

disease [38,39] and may err to create oncogenic chromoso-

mal translocations [40].
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V(D)J recombination proceeds by the introduction of double-

strand DNA breaks (reviewed in [41]). To prevent DNA

breaks that would cause cellular damage, the V(D)J recombi-

nase must be specifically targeted to the Bcr and Tcr loci.

This targeting is regulated primarily by binding of RAG1 [42],

an enzyme in the recombinase complex, to the RSS adjacent

to each V, D and J gene segment [43]. RSS were initially iden-

tified as a conserved heptamer (consensus CACAGTG) and a

conserved nonamer (consensus ACAAAAACC) separated by a

less conserved spacer of either 12�1 or 23�1 base-pairs (bp)

[44]. The initial CAC of the heptamer is highly conserved, but

all remaining positions show moderate to very low levels of

conservation (reviewed in [45]).

RSS variability has important functional consequences: the

efficiency with which each RSS mediates recombination

depends on its sequence [46]. There is strong evidence that

differing recombination efficiencies of RSS result in the

biased utilization of their associated gene segments

(reviewed in [47,48]). In addition, the biases in gene

segment use observed in the post-selection TCR repertoire

are consistent with the biases observed before selection, sug-

gesting that the primary immune repertoire may be geneti-

cally patterned [48].

The high level of diversity among RSS makes it very difficult

to evaluate their recombinogenic potential. RSS not associ-

ated with a V, D or J gene segment but participating in aber-

rant (illegitimate) V(D)J recombination are particularly

difficult to recognize. These non-physiologic RSS are impor-

tant because of their potential involvement in oncogenic

chromosomal translocation and receptor editing, a process

that alters the specificity of autoreactive receptors. Non-

physiologic RSS that have simply arisen by chance can be

referred to as fortuitous RSS whereas those thought to have

descended from the same ancient transposon as physiologic

RSS can be referred to as cryptic (cRSS) [49,50]. Generally,

the origin of a non-physiologic RSS is not known; for sim-

plicity, we will refer to both types as cryptic.

To understand the role of RSS variability in the formation of

the primary immune repertoire and of cRSS in illegitimate

V(D)J recombination, it is necessary to quantify the genetic

variability among physiologic RSS and the relationship

between this variability and the regulation of recombination.

Allowing for each of the 4 nucleotides at just 10 of the 28 or

39 RSS positions results in over 106 different signals - it is

not feasible to measure the efficiency of all potential RSS

experimentally. Statistical models of RSS variability that

allow prediction of recombination efficiency are essential to

furthering our understanding of the biological function of

RSS variability.

One estimate of cRSS frequency in mammalian genomes is

one in every 600 bp [49]. Promiscuous recombination at this

frequency, however, would result in significant damage to

the cell. This suggests that complex patterns underlie the

high level of nucleotide diversity observed at individual posi-

tions, thereby increasing the specificity of the signal govern-

ing recruitment of the V(D)J recombinase.

We find significant correlations between nucleotide posi-

tions in RSS, suggesting they act cooperatively and that

nucleotide associations are conserved. We used our model

selection procedure to determine the best models of RSS

correlation structure, one model for 12-bp spacer RSS

(12-RSS) and one for 23-RSS. We also modeled both types of

RSS with order zero and order one Markov chains. The

scores from all six models are highly correlated with mea-

sured recombination efficiencies, but the models arising

from our technique are much better than the Markov models

at identifying physiologic and cryptic RSS in genomic DNA. 

Results 
Mouse RSS show limited sequence conservation 
We analyzed 356 physiologic mouse RSS (see Methods).

While 62% (219/356) of these RSS contain a consensus hep-

tamer, just 16% (57/356) contain a consensus nonamer and

only 13% (48/356) contain both a consensus heptamer and a

consensus nonamer. To measure the level of nucleotide

diversity at individual RSS positions, we computed the

entropy (Hi) [51] for each position i in an alignment of the

201 12-RSS and an alignment of the 155 23-RSS (Figure 1a).

A strictly conserved position in which no variation is toler-

ated has Hi = 0, while a position in which the four

nucleotides are observed at nearly uniform frequencies

has Hi = 1.

The signal specified by the individual RSS positions is very

low, especially in 23-RSS (Figure 1a). The average entropy is

H
—

12 = 0.50 for 12-RSS and H
—

23 = 0.67 for 23-RSS; for a ran-

domly generate string of A, G, C, and T characters, the

expected value for H
—

is one. The patterns of nucleotide

diversity at individual positions are similar for both 12- and

23-RSS: the initial CAC of the heptamer is invariant, the

remaining four positions of the heptamer are moderately

diverse, the spacer is highly diverse, and the A tract of the

nonamer (positions 5 through 7) is better conserved than the

other nonamer positions (Figure 1a). The average entropy

for 23-RSS is higher than for 12-RSS, primarily because the

23-RSS nonamers are much more diverse than 12-RSS non-

amers (H
—

N23 = 0.59; H
—

N12 = 0.35; Figure 1a).

It is known from experimental studies that nucleotide sub-

stitutions at highly diverse positions influence recombina-

tion efficiency [46,52]. That a given RSS position can be both

highly variable and exhibit strong effects on signal efficiency

appears contradictory. The contradiction can be reconciled,

however, by hypothesizing correlations between nucleotides

in RSS: a nucleotide substitution at one position may be

compensated for by a change at another position in the RSS.



Significant pairwise correlations exist between
positions in the RSS 
To test for correlation between pairs of positions in the

RSS, we computed the mutual information, MIi,i, [51]

between all pairs of positions i and i� in an alignment of the

201 physiologic mouse 12-RSS and in an alignment of the

155 physiologic mouse 23-RSS (see Methods) (Figure 1b).

Statistically significant MIi,i� values result when there is a
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Figure 1
Entropy and mutual information in physiologic RSS. (a) Position-wise entropy Hi at each position in an alignment of physiologic 12-RSS (upper bar) and an
alignment of physiologic 23-RSS (lower bar). Position in the alignment is shown above each bar, and the value of Hi at position i is indicated by the color
of the bar at that position. (b) Mutual information (MIi,i�) between pairs of positions in physiologic 12- and 23-RSS. MIi,i� values between positions in the
12-RSS are shown in the upper panel, and MIi,i� values between positions in the 23-RSS are shown in the lower panel. Location in the alignment is given
on the x- and y-axes. The black lines mark the heptamer (H)-spacer (S) and spacer-nonamer (N) boundaries. The color at the intersection of an x-axis
and a y-axis grid line gives the MI contained in the positions corresponding to the two grid lines. The actual MI computed from the RSS alignments are
shown in the left panels, and one of 300 permutations is shown on the right as an example of the level of MI observable between each pair of positions in
the absence of any correlation between them.
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correlation between nucleotide frequencies at the two posi-

tions, indicating selection pressure to maintain (or avoid) a

particular dinucleotide.

In 12- and 23-RSS, we detect statistically significant correla-

tions between positions in those regions of the RSS exhibit-

ing high levels of position-wise entropy. These are the

spacer, especially the nonamer-proximal half, and the posi-

tions of the heptamer and nonamer that are adjacent to the

spacer (Figure 1b). In general, correlation between two posi-

tions decreases as a function of distance, but there are exam-

ples of strong correlation between widely separated

positions (Figure 1b). For example, we observe 12-RSS with

A at positions 8 and 19 at a much higher frequency (0.38)

than expected (0.11) from the independent frequencies of A

at each position. In addition, we find that the levels of corre-

lation are higher in 23-RSS than in 12-RSS (Figure 1b); this

is an especially interesting observation given that 23-RSS are

much more variable than 12-RSS (Figure 1a).

Statistical models of 12- and 23-RSS determine the
relevant correlation structure 
The MI computations give evidence for strong pairwise cor-

relations, including between distant positions, and correla-

tions may exist between any number of positions. We

therefore developed statistical models, one for 12-RSS and

one for 23-RSS, that can account for correlations between

arbitrary positions without regard for their distance from

each other or the number of correlated positions. The

models were developed using a procedure that selects from

all possible combinations of disjoint probability distribu-

tions the set of marginal (for one position) and joint (for

multiple positions) distributions that most distinguishes

physiologic RSS from other nucleotide sequences of the

same length. For example, positions 8 and 19 in 12-RSS are

highly correlated (Figure 1b). They could be included in the

model either through the two marginal probability distribu-

tions - the distribution over the four nucleotides at position

8 and the distribution over the four nucleotides at position

19, or through one joint probability distribution - the distrib-

ution over the 16 pairs of nucleotides at the pair of positions.

Each model computes a score for RSS information content:

RIC12 for 28-bp sequences and RIC23 for 39-bp sequences;

the formation of joint probability functions is determined by

maximizing the mean score for physiologic RSS.

The selected 12-RSS model is: 

RIC12 = ln[P1 P2 P3,15,25 P4,5 P6,28 P7,8,19 P9,26 P10,12 P11,27

P13,14,23 P16,17,18 P20,21,22 P24]

where P1 is the marginal probability function for position 1

and P3,15,25 is the joint probability function for positions 3, 15

and 25. The presence of the joint probability function in the

model indicates that these three positions are mutually cor-

related. The selected 23-RSS model is:

RIC23 = ln[P1 P2 P3 P4,14 P5,39 P6 P7,24,25 P8,9,21 P10,16 P11,12

P13,22 P15,23 P17,18 P19,27,30,31,32,33,37 P20,26 P28,29 P34,38 P35,36].

Most of the marginal probabilities have been merged to form

joint probability functions, but the order in which the joint

functions were formed reflects the relative strength of the

correlations between the corresponding positions: positions

with large MI are grouped early in model selection (data not

shown). The groups of positions with the strongest correla-

tions are (7,8,19), (16,17,18), and (20,21,22) in 12-RSS

(Table 1) and (19,27,30,31,32,33,37), (8,9,21), and (7,24,25)

in 23-RSS (Table 2). For both 12- and 23-RSS, the positions

exhibiting the strongest cooperative influence lie in the

nonamer-proximal half of the spacer and in the heptamer

and nonamer positions adjacent to the spacer (Figure 2).

Interestingly, these positions overlap substantially with posi-

tions exhibiting ethylation/methylation interference in RSS

complexed with RAG1/RAG2 (Figure 2 and [53]) suggesting

that the correlations detected by the models are relevant to

RAG-RSS interaction.

The selected models were compared with order zero
and order one Markov models 
To determine whether the correlation structure detected by

our model selection procedure improves RSS recognition

and evaluation, we constructed weight matrix models based

on order zero or order one Markov chains. Order zero

Markov models (WM012 for 12-RSS and WM023 for 23-RSS)

assume that all RSS positions are independent and are

therefore computed from marginal probability distributions.

The score for an N-bp sequence is computed as

N

WM0N = ln�� Pi�
i=1

where Pi is the probability of observing nucleotide X at position

i. Order one Markov models (WM112 and WM123) assume that

adjacent positions are correlated (the identity of the nucleotide

at position i depends on the nucleotide at position i - 1) and are

computed from conditional probability distributions:

N

WM1N = ln�P1� P(i�i - 1)�
i=2

where P1 is the marginal probability distribution for position

1, and P(i�i - 1) is the probability of observing nucleotide X at

position i given the nucleotide at position i - 1.

For physiologic 12- and 23-RSS, the score distribution is

shifted toward higher scores for models that include correla-

tion (RIC and WM1) (Table 3, Figure 3). The difference is

most striking for 23-RSS (Table 3, Figure 3). The mean

scores for the physiologic 12-RSS are WM0
————

12 = -19.84, 

WM1
————

12 = -18.49, and RIC
———

12 = -18.47 (Table 3); the mean
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scores for physiologic 23-RSS are WM0
————

23 = -37.07, 

WM1
————

23 = -31.51, and RIC
———

23 = -32.39 (Table 3). There is rela-

tively little change in the value of low scores across models,

so as the correlation structure of the models increases in

complexity, the increase in high scores results in an increase

in the score range (Table 3 and Figure 3). 

Functional RSS are best discriminated by RIC scores
To test whether functional RSS can be recognized by the

sequence properties captured in the models, we characterized

the score distributions for non-RSS DNA (Figure 4). These

background distributions are characterized by their means

and ranges. WM0, WM1 and RIC scores were computed for

all 28- and 39-bp segments in a 212,128-bp fragment of

mouse chromosome 8 (AC084823) containing no known

RSS. We also characterized the background distributions by

computing scores for a pseudorandom string (PRS) of A, T,

C and G the same length as sequence AC084823 and having

the same nucleotide-usage frequencies.

6 Genome Biology Vol 3 No 12 Cowell et al.

Table 1

Strongest nucleotide associations in 12-RSS

Correlated Associated Count Frequency
positions nucleotides

7:8:19 G:A:A 73 0.365
G:C:T 23 0.115
G:C:A 17 0.085
G:A:G 11 0.055
A:G:G 10 0.05
G:A:T 9 0.045
A:G:C 6 0.03
A:T:T 6 0.03
G:T:T 6 0.03
G:G:A 5 0.025
A:A:T 4 0.02
A:C:T 4 0.02
A:G:T 3 0.015
G:A:C 2 0.01
G:C:G 2 0.01
G:T:G 2 0.01
C:A:T 2 0.01
C:T:G 2 0.01
C:T:C 2 0.01
T:A:T 2 0.01
A:A:A 1 0.005
G:G:C 1 0.005
G:G:T 1 0.005
G:C:C 1 0.005
C:A:A 1 0.005
C:G:G 1 0.005
C:C:C 1 0.005
C:C:T 1 0.005
C:T:T 1 0.005

16:17:18 C:T:T 34 0.169
C:A:T 32 0.159
T:G:G 20 0.1
T:C:C 15 0.075
C:T:G 14 0.07
C:C:T 11 0.055
A:G:C 9 0.045
T:T:C 8 0.04
C:T:C 7 0.035
T:A:G 7 0.035
C:C:A 5 0.025
C:A:G 4 0.02
T:C:T 4 0.02
T:G:A 3 0.015
A:T:C 2 0.01
G:G:G 2 0.01
C:A:C 2 0.01
C:C:G 2 0.01
C:C:C 2 0.01
T:A:C 2 0.01
T:A:T 2 0.01
T:G:T 2 0.01
T:C:A 2 0.01
A:A:C 1 0.005

Table 1 (continued)

Correlated Associated Count Frequency
positions nucleotides

A:C:T 1 0.005
A:T:A 1 0.005
G:C:T 1 0.005
G:T:C 1 0.005
C:A:A 1 0.005
C:T:A 1 0.005
T:A:A 1 0.005
T:T:A 1 0.005
T:T:G 1 0.005

20:21:22 A:C:A 157 0.785
G:C:A 18 0.09
T:C:A 6 0.03
C:C:C 3 0.015
A:A:A 2 0.01
G:A:C 2 0.01
G:G:T 2 0.01
G:T:C 2 0.01
A:C:T 1 0.005
G:A:G 1 0.005
G:A:T 1 0.005
C:A:A 1 0.005
C:A:G 1 0.005
C:C:A 1 0.005
T:C:G 1 0.005
T:T:C 1 0.005

For the three groups of positions in the 12-RSS model exhibiting the
strongest correlations, the nucleotide motifs present in our dataset at
those positions, the number of RSS containing that motif, and the
frequency in the dataset are shown. Nucleotide motifs not shown do not
occur in our dataset. For example, three positions making up one group
(for example, 7, 8 and 19) would be occupied in each RSS by one of the
64 triplets, but not every one of the 64 triplets will be present.



As expected, the WM0 score distributions for AC084823 and

the PRS are almost identical for both 28- and 39-bp seg-

ments (Table 4, Figure 4). For the models that account for

correlation, however, scores from genomic DNA are higher
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Table 2

Strongest nucleotide associations in 23-RSS

Correlated Associated Count Frequency
positions nucleotides

19:27:30:31:32:33:37 T:G:T:C:A:G:C 16 0.108
C:C:T:A:C:C:A 12 0.081
A:C:A:A:C:A:A 9 0.061
G:C:G:A:C:A:A 8 0.054
C:C:T:A:C:A:A 6 0.041
T:T:A:A:C:A:A 6 0.041
C:C:C:A:C:A:A 5 0.034
T:G:T:C:A:G:T 5 0.034
A:C:A:G:C:A:A 4 0.027
A:C:C:A:C:A:A 4 0.027
A:C:C:A:T:A:A 4 0.027
T:G:T:C:A:G:A 4 0.027
A:C:T:A:C:A:A 3 0.020
G:G:T:C:A:G:A 3 0.020
C:C:T:G:C:A:A 3 0.020
C:T:A:A:C:T:A 3 0.020
T:C:T:A:C:A:A 3 0.020
A:T:A:A:C:A:A 2 0.014
C:A:A:A:C:A:A 2 0.014
C:A:C:C:T:C:G 2 0.014
C:C:C:A:C:C:A 2 0.014
C:C:T:A:A:C:A 2 0.014
C:C:T:A:C:T:A 2 0.014
C:C:T:C:C:T:A 2 0.014
C:C:T:T:C:A:A 2 0.014
T:G:T:A:C:A:A 2 0.014
T:C:G:A:C:A:A 2 0.014
T:C:T:T:A:C:A 2 0.014
T:T:A:C:T:A:C 2 0.014
A:A:G:G:A:C:G 1 0.007
A:G:C:A:G:A:A 1 0.007
A:C:G:C:A:C:T 1 0.007
A:C:T:G:C:A:A 1 0.007
A:T:G:A:C:A:A 1 0.007
A:T:T:A:C:A:A 1 0.007
G:C:A:G:C:G:A 1 0.007
G:C:G:A:A:A:A 1 0.007
G:C:G:C:C:C:A 1 0.007
G:C:C:A:C:A:A 1 0.007
G:C:T:A:A:G:A 1 0.007
G:C:T:G:C:A:A 1 0.007
G:C:T:C:T:C:A 1 0.007
G:T:A:C:A:A:C 1 0.007
C:C:A:C:A:A:C 1 0.007
C:C:G:A:C:A:A 1 0.007
C:C:T:A:T:G:A 1 0.007
C:T:A:G:C:A:A 1 0.007
C:T:C:A:C:A:A 1 0.007
T:G:T:C:A:C:C 1 0.007
T:G:T:T:A:G:C 1 0.007
T:C:C:A:C:A:A 1 0.007
T:C:T:G:C:A:A 1 0.007
T:T:G:G:C:A:A 1 0.007
T:T:G:C:A:G:C 1 0.007
T:T:G:T:C:A:A 1 0.007

8:09:21 T:T:C 34 0.222
A:G:G 24 0.157

Table 2 (continued)

Correlated Associated Count Frequency
positions nucleotides

C:T:T 21 0.137
G:T:C 7 0.046
G:T:G 6 0.039
A:G:T 5 0.033
T:G:G 5 0.033
T:T:A 5 0.033
A:C:G 4 0.026
A:T:T 4 0.026
G:C:G 4 0.026
T:G:T 4 0.026
C:T:A 3 0.020
T:C:C 3 0.020
T:C:T 3 0.020
T:T:G 3 0.020
A:C:A 2 0.013
G:C:C 2 0.013
C:T:G 2 0.013
T:C:A 2 0.013
T:T:T 2 0.013
A:G:A 1 0.007
A:C:T 1 0.007
A:T:A 1 0.007
A:T:G 1 0.007
A:T:C 1 0.007
G:A:C 1 0.007
C:T:C 1 0.007
T:G:A 1 0.007

7:24:25 G:A:G 65 0.419355
G:A:A 24 0.154839
G:G:A 11 0.070968
G:C:C 11 0.070968
G:C:A 6 0.03871
A:A:G 5 0.032258
G:A:C 5 0.032258
G:T:G 4 0.025806
C:T:C 4 0.025806
C:T:T 3 0.019355
A:A:A 2 0.012903
A:C:T 2 0.012903
A:T:T 2 0.012903
G:G:G 2 0.012903
T:T:C 2 0.012903
A:C:C 1 0.006452
A:T:A 1 0.006452
A:T:G 1 0.006452
G:T:A 1 0.006452
G:T:C 1 0.006452
T:G:A 1 0.006452
T:T:T 1 0.006452

Details as in Table 1.



on average than those computed for the PRS (Table 4,

Figure 4). This is especially true for the WM1 models, indi-

cating that, whereas both the WM1 and RIC models are

influenced by correlations present in physiologic DNA, the

correlations detected by the RIC models are more specific to

RSS. Importantly, the distributions for RIC scores are always

shifted toward lower scores than the corresponding WM0

and WM1 distributions (Table 4, Figure 4).

We next compared across models the frequency of signal-

length segments in AC084823 that score above a given

threshold. To determine test thresholds for a given model, we

ranked the physiologic RSS by score in ascending order and

took the lowest 5% of scores under each model as the test

thresholds for that model (Table 5, Figure 5). For example,

the lowest RIC12 is -48.16. It has rank zero, and zero physio-

logic RSS have a lower RIC12. Of 212,101 (0.00414) 28-bp

segments in AC084823, 859 have RIC12 > -48.16. Similarly,

threshold zero under the WM112 model is -46.32, and 2,372 of

212,101 (0.01118) 28-bp segments in AC084823 have WM112

> -46.32. Under each model, the frequency of physiologic

RSS scoring below threshold estimates the probability of

failing to recognize a functional RSS and is a measure of the

model’s sensitivity. The frequency of non-RSS scoring above

threshold estimates the probability of classifying non-RSS as

functional and is a measure of the model’s specificity. Both

numbers should be small. The high-scoring non-RSS seg-

ments may support recombination, however, and, if so,

would be classified as cRSS. Those not supporting recombi-

nation would be counted as false positives.

In general we find that the WM0 models predict the highest

number of RSS in AC084823, and the RIC models predict

the fewest (Table 5, Figure 5). Of 20 test thresholds, there

are three for which RIC does not predict the smallest

number of RSS: for the 12-RSS models, the score for the

ninth-lowest ranking physiologic 12-RSS and for the 23-RSS

models, the scores for the second- and eighth-lowest ranking

physiologic 23-RSS (Table 5, Figure 5).

From Figure 5, we determine thresholds at which excluding

just one more physiologic RSS results in a large drop in the

models’ predicted number of cryptic RSS. We select -38.81

for RIC12 and -58.45 for RIC23 (Figure 5). Only two of the 201

(0.01) 12-RSS have RIC12 < -38.81, and just 54 of 212,101

(2.5 x 10-4) 28-bp segments in sequence AC084823 achieve

RIC12 > -38.81. The frequency of RIC12 > -38.81 from the PRS

is 9.9 x 10-5 (21/212,102). Similarly, of the 155 physiologic
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Figure 2
Location of the most highly correlated positions in 12- and 23-RSS and
sites of ethylation/methylation interference in RSS complexed with RAG.
(a) Positions in 12-RSS are shown in the upper row of boxes and those in
23-RSS are shown in the lower row. Boxes filled with the same color
indicate positions that are correlated. For each model, the three
associations with the highest level of correlation are shown. The intensity
of the blue indicates the relative strength of the correlation with the
darkest being the most correlated. Sites of ethylation/methylation
interference in RSS complexed with RAG are shown in orange [53].
(b) Overlap between the strongest correlations (shown in blue) and sites
of ethylation/methylation interference (shown in orange) [53]. The
relative positions of the heptamer and nonamer are indicated by the red
lines. Figure generated in RasMol [69].

12-RSS
Heptamer Nonamer

23-RSS

(a)

(b)

Table 3

Distribution of scores for physiologic RSS

12-RSS 23-RSS

level WM0 WM1 RIC WM0 WM1 RIC

0 0 0 0 0 0 0
-5 0 16 19 0 0 0
-10 56 70 83 0 0 0
-15 68 44 25 0 21 26
-20 30 24 26 0 38 18
-25 26 32 26 25 21 29
-30 13 9 12 50 17 24
-35 5 4 8 31 27 21
-40 2 1 0 27 16 16
-45 1 1 2 11 7 8
-50 0 0 0 4 5 6
-55 0 0 0 5 1 4
-60 0 0 0 2 1 1
-65 0 0 0 0 1 2
-70 0 0 0 0 0 0
Total 201 201 201 155 155 155

Maximum -10.52 -8.16 -8.02 -26.89 -15.85 -15.83

Mean -19.84 -18.49 -18.47 -37.07 -31.51 -32.39

Minimum -46.86 -46.32 -48.16 -63.22 -65.24 -69.69

For each model and each RSS type, the maximum score, the mean score,
and the minimum score for physiologic RSS is given, along with the
number of physiologic RSS scoring at the level indicated by column one.
The number shown at score level -5 is the number of scores between -5
and -9.999; the number shown at score level -10 is the number of scores
between -10 and -14.999.

Score



23-RSS, only three (0.02) have RIC23 < -58.45. Just 100 of

the 212,090 (4.7 x 10-4) 39-bp segments from sequence

AC084823 and only 58 of the 212,091 segments from the PRS

(2.7 x 10-4) have RIC23 > -58.45. We therefore set -38.81 and

-58.45 as RIC12 and RIC23 thresholds, respectively.

The RIC models reliably recognize physiologic RSS 
We searched genomic DNA containing physiologic RSS to

determine if RIC scores can resolve 12- and 23-RSS.

Sequences X58411 (7,360 bp) and X58414 (5,867) encom-

pass the mouse J� locus and contain four 12-RSS, three

associated with functional J� gene segments and one

associated with the pseudogene J�4 [54]. We computed

RIC12 scores for 13,173 28-bp segments in X58411 and

X58414; the resulting RIC12 distributions are almost identi-

cal to that for the chromosome 8 sequence with means well

below threshold (Table 6). The RIC12 for RSS associated with

functional J� gene segments lie well outside this distribution

(Table 6, Figure 6a); all three score > -38.81 (RIC
———

12 =

-21.16). Analogous searches of mouse DH (AF018146) and

DJ� (AE000665) regions also demonstrated RIC12 values for

physiologic RSS above threshold (Table 6). Of the 21 physio-

logic 12-RSS included in the search, only the RSS associated

with the J�4 pseudogene [54] scored below threshold

(Table 6).

Scans of the sequence containing D� and J� gene segments

(AE000665, described above) and a 250,611-bp sequence

containing 16 V� genes (AE000663) showed that physio-

logic 23-RSS are also easily resolved by their RIC scores

(Table 6). The two D� 23-RSS have RIC23 well above threshold

(-35.85 and -49.56; Table 6), and the V� 23-RSS associated
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Figure 3
Plots of scores computed for physiologic RSS, and for 28- or 39-bp segments taken from chromosome 8 DNA. (a) 12-RSS; (b) 23-RSS. The y-axis
indicates the frequency of physiologic RSS or of segments from chromosome 8 with a finite score that score at the level given on the x-axis. Solid line,
RIC; dashed line, WM1; dotted line, WM0.
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with functional gene segments are also easily identified

(mean -34.17; Table 6, Figure 6b). Again, the only RSS not

scoring above threshold are associated with pseudogenes

[55-57] (V�11 -61.78; V�12-3 -61.76; V�8 -58.87); neverthe-

less, all three RIC23 scores fall above the background mean

(-77.75). RSS flanking pseudogenes cannot be stringently

selected, so we expect their RIC to be below threshold but

above background.

For comparison, we scanned the five sequences (AE000663,

AE000665, AF018146, X58411 and X58414) using the WM0

and WM1 models. In all cases the mean score for non-RSS is

lower than the mean score for physiologic RSS associated

with functional gene segments, but the disparity between the

two sets of scores is always greatest for the RIC models

(Table 6), showing that discrimination between RSS and

non-RSS is clearest using the RIC models. This wider dispar-

ity may be important when searching for functional

but degenerate signals such as cryptic and pseudogene-

associated RSS.

RIC23 scores for AE000663 are directly compared with

WM023 or WM123 scores in Figure 7. The majority of scores

for non-RSS fall below the y = x line, indicating that they

receive lower scores under the RIC23 model than under

either of the Markov models (Figure 7). The scores for RSS

associated with functional gene segments tend to fall above

y = x, indicating their better discrimination by the RIC23

model (Figure 7). Of the seven pseudogene-associated RSS

in AE000663, scores for three fall in the cloud of back-

ground scores under all three models whereas scores for the

remaining four do not (Figure 7). Although the scores for
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Figure 4
Score distributions for non-RSS segments. (a) Results for 28-bp segments (12-RSS model); (b) results for 39-bp segments (23-RSS model). Score level is
given by the x-axis, and the frequency of finite scores is given by the y-axis. Distributions for segments of chromosome 8 DNA are shown in blue, and
distributions for segments from a pseudorandom string of A, G, C and T are shown in red. Solid line, RIC; dashed line, WM1; dotted line, WM0.
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these four RSS are higher under both Markov models than

under the RIC23 model, they are better discriminated by the

RIC23 model because the background scores are higher

under the Markov models (Figure 7).

Parameters for all six models were estimated from the full

set of RSS (201 12-RSS and 155 23-RSS). Of the 39 RSS con-

tained in the search contigs, 27 of the RSS associated with

functional gene segments were part of the estimation set. In

contrast, the pseudogene-associated RSS (J�4, J�2.6, and

seven V�) and three of the functional J� RSS were not part

of the estimation set.

RIC scores identify functional cryptic RSS 
12-cRSS in 3� � 5� orientation and embedded near the 3�

end of V gene segments can mediate receptor editing, the

replacement of the V gene segment portion of a rearranged

variable-region gene with an upstream V gene segment

(reviewed in [58]). To test whether our model can recog-

nize these cRSS, we computed WM012, WM112, and RIC12

scores for all 28-bp segments in 3� � 5� orientation in VH

gene segments known to participate in receptor editing:

the VH2S1*01 gene segment [59], the VH14S1 gene segment

[60], and the 3H9 transgene [61]. The cRSS were not part

of the RSS set used for parameter estimation. While the

cRSS in VH2S1*01 and VH14S1 have higher scores than any

other 28-bp segment in their respective gene segments

under all three models, the RIC12 and WM012 models are

better at identifying them because these models have lower

background scores than the WM112 model (Table 7). The

cRSS in 3H9, however, is best recognized by its RIC12 score

(Figure 8). While it has a higher score under the WM1

model, its RIC12 score is more separated from the back-

ground RIC scores than its WM112 or WM012 score
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Table 4

Distribution of scores for non-RSS DNA and a pseudorandom
string of A, G, C and T 

28-bp segments

Chromosome 8 DNA Pseudorandom string

level WM0 WM1 RIC WM0 WM1 RIC

0 0 0 0 0 0 0
-5 0 0 0 0 0 0
-10 0 0 0 0 0 0
-15 0 0 0 0 0 0
-20 0 0 0 0 0 0
-25 1 3 1 0 1 1
-30 26 36 6 8 10 3
-35 154 298 68 75 92 23
-40 521 1335 245 287 586 180
-45 1426 3730 1152 1121 2082 719
-50 2878 5978 2572 2352 4230 1856
-55 4380 4485 4429 3627 4458 3384
-60 4415 1414 4730 3552 2076 3837
-65 2669 193 2935 2144 429 2716
-70 861 7 1135 705 33 1052
-75 136 1 189 119 1 208
-80 12 0 18 8 0 19
-85 1 0 0 0 0 0
-90 0 0 0 0 0 0
-95 0 0 0 0 0 0
-100 0 0 0 0 0 0
-� 194621 194621 194621 198104 198104 198104
Total 212101 212101 212101 212102 212102 212102

Maximum -28.62 -25.09 -29.03 -30.04 -27.51 -31.44

Mean -58.9 -52.64 -60.07 -59.18 -54.81 -61.13

Minimum -85.62 -75.54 -83.66 -82.19 -75.42 -84.68

39-bp segments

Chromosome 8 DNA Pseudorandom string

level WM0 WM1 RIC WM0 WM1 RIC

0 0 0 0 0 0 0
-5 0 0 0 0 0 0
-10 0 0 0 0 0 0
-15 0 0 0 0 0 0
-20 0 0 0 0 0 0
-25 0 0 0 0 0 0
-30 0 0 0 0 0 0
-35 0 0 0 0 0 0
-40 1 3 0 2 1 0
-45 22 26 3 10 5 1
-50 206 182 28 124 20 14
-55 919 681 148 600 162 80
-60 2433 2079 651 1876 673 409
-65 4421 3689 1785 3690 1701 1197
-70 5069 4544 3500 4079 3006 2588
-75 3073 3536 4509 2549 3520 3611
-80 1151 1907 3983 907 2880 3370
-85 170 680 2052 150 1452 1955

Table 4 (continued)

39-bp segments

Chromosome 8 DNA Pseudorandom string

level WM0 WM1 RIC WM0 WM1 RIC

-90 13 124 676 8 464 617
-95 0 23 131 1 94 141
-100 0 4 12 0 18 13
- � 194612 194612 194612 198095 198095 198095
Total 212090 212090 212090 212091 212091 212091

Maximum -41.85 -43.13 -46.77 -42.79 -42.16 -47.65

Mean -70.49 -72.28 -77.76 -70.73 -76.94 -78.64

Minimum -92.37 -101.2 -103.03 -95.21 -104.23 -104.32

A pseudorandom string of A, G, C and T was generated the same length
as sequence AC084823 from chromosome 8 and having the same
nucleotide-usage frequencies. The 12-RSS models scored all 28-bp
segments and the 23-RSS models scored all 39-bp segments. The
distribution of scores is shown. The number of segments not beginning
with CA is shown at score level -�; other details as in Table 3. 
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(Figure 8). All receptor-editing events in 3H9 involved the

cRSS identified by RIC [61].

RIC scores are correlated with RSS recombination
efficiencies 
To quantify any correlation between RIC and RSS function,

we computed Spearman’s rank correlation coefficient (rS)

between RIC and published recombination frequencies [46].

The correlation coefficients are rS = 0.81 for 12-RSS

(Figure 9) and rS = 0.86 for 23-RSS (Figure 10); for these

RSS, RIC explains 67-74% of the variation in recombination

efficiency. WM0 and WM1 are equally well correlated with

recombination efficiency: WM012, rS = 0.80; WM112, rS =

0.82, WM023, rS = 0.88, WM123, rS = 0.91. Only 1 of 27

12-RSS and 1 of 13 23-RSS included in this study [46] are

part of our parameter estimation set.

Discussion
We developed models of the correlation structure in 12- and

23-RSS using a model selection procedure that finds the

models with the most power to predict the population of

functional RSS. The procedure determines the groups of

positions such that the predictive power of the model is

increased by including the correlation between the positions

within each group. Positions not correlated with any other

position are included in the models by the probability distri-

bution over the four nucleotides at that position; groups of

correlated positions are included by the probability distribu-

tion for the set of motifs prescribed by the number of posi-

tions within the group; for example, a group of four

positions would be modeled by the probability distribution

for the 256 possible quadruplet motifs. The models compute

an RSS information content score, RIC, for any RSS-length

sequence, that is, 28-bp segments are scored by the 12-RSS

model and 39-bp segments are scored by the 23-RSS model.

Model selection evaluates all possible combinations of

probability distributions in a stepwise fashion, so the corre-

lation structure of RSS is not specified nor assumed, but

rather detected. Interestingly, the positions exhibiting the

strongest correlation overlap substantially with the RSS

nucleotides that contact the recombinase (Figure 2 and

[53]), offering support for the hypothesis that positions

acting cooperatively to influence binding by the recombinase

coevolve. This overlap also suggests that the correlation

structure detected by our model selection procedure is rele-

vant to RSS function.

12 Genome Biology Vol 3 No 12 Cowell et al.

Table 5

Frequency of above-threshold scores for non-RSS

Number of physiologic RSS scoring below the indicated score

0 1 2 3 4 5 6 7 8 9 10

12-RSS RIC Score -48.16 -45.81 -38.81 -38.81 -38.21 -37.77 -37.48 -36.03 -36 -35.01 -34.44
Count 859 449 54 54 48 40 34 16 16 10 10
Frequency 0.00414 0.00212 0.00025 0.00025 0.00023 0.00019 0.00016 0.00008 0.00008 0.00005 0.00005

WM1 Score -46.32 -40.87 -37.75 -37.6 -36.33 -35.29 -34.63 -33.73 -32.73 -32.73 -32.69
Count 2372 458 169 161 76 43 35 22 12 12 12
Frequency 0.01118 0.00216 0.00080 0.00076 0.00036 0.00020 0.00017 0.00010 0.00006 0.00006 0.00006

WM0 Score -46.86 -44.61 -42.83 -39.33 -39.06 -38.58 -38.58 -35.23 -34.59 -34.45 -34.21
Count 1067 632 405 115 99 83 83 30 19 17 15
Frequency 0.00503 0.00298 0.00191 0.00054 0.00047 0.00039 0.00039 0.00014 0.00009 0.00008 0.00007

23-RSS RIC Score -69.69 -66.37 -64.84 -58.45 -57.45 -57.41 -55.61 -54.35 -54.3
Count 2460 1147 791 100 71 69 37 26 26
Frequency 0.01160 0.00541 0.00373 0.00047 0.00033 0.00033 0.00017 0.00012 0.00012

WM1 Score -65.24 -63.84 -57.58 -54.55 -54.52 -54.16 -52.96 -52.55 -48.5
Count 3126 2309 471 190 189 167 109 97 14
Frequency 0.01474 0.01089 0.00222 0.00090 0.00089 0.00079 0.00051 0.00046 0.00007

WM0 Score -63.22 -61.52 -58.9 -58.74 -56.46 -56.46 -55.91 -52.41 -52.17
Count 2481 1691 816 777 365 365 317 82 72
Frequency 0.01170 0.00797 0.00385 0.00366 0.00172 0.00172 0.00149 0.00039 0.00034

Scores for physiologic RSS were ranked in ascending order so that the lowest score was ranked 0, the second lowest score was ranked 1, and so on. For
each score, the number of physiologic RSS with a lower score is equal to this rank. We took the lowest 5% of scores under each model as the test
thresholds for that model: ranks 0 through 10 were used for the three 12-RSS models and ranks 0 through 8 were used for the three 23-RSS models.
For each of these threshold scores, we counted the number of non-RSS in the chromosome 8 sequence AC084823 that scored above the threshold. The
threshold score, the count, and its relative frequency are shown.



To determine if modeling the correlation structure specific to

RSS improves RSS recognition and evaluation, we compared

the RIC models with models that assume RSS positions are

independent (order zero Markov models, WM0) and models

that assume adjacent positions are correlated (order one

Markov models, WM1). In general we find that, while all

models predict RSS function equally well, with Spearman’s

rank correlation coefficients around 0.81 for 12-RSS and 0.88

for 23-RSS, the RIC models are better at discriminating

between RSS and non-RSS segments. This is especially true

for the degenerate relatives of RSS - cRSS and pseudogene-

associated RSS.

Under each model, we compared the score distribution for

physiologic RSS with that for non-RSS segments. We find

that the two distributions are most disparate under the RIC

models (Figure 3). While including correlation in the models

increases the scores for most physiologic RSS (Figure 3),

assuming adjacent positions are correlated increases scores

nonspecifically, raising the background scores (Figures 3, 4).

The distribution of scores for non-RSS was approximated by

computing the score for all RSS-length segments in a 200-kb

region of chromosome 8 containing no known RSS and also

in a pseudorandom string of A, G, C and T characters the

same length as the chromosome 8 region and having the

same nucleotide-usage frequencies.

We determined threshold scores to discriminate between

functional RSS and non-RSS. The lowest 5% of scores for

physiologic RSS under each model were used as test

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2002/3/12/research/0072.13

Figure 5
Specificity of the models as a function of their sensitivity. Scores for physiologic RSS were ranked in ascending order so that the lowest score was ranked
0, the second lowest score was ranked 1, and so on. For each score, the number of physiologic RSS with a lower score is equal to this rank. We used
the lowest 5% of scores as test thresholds: ranks 0 through 10 were used for the three 12-RSS models and ranks 0 through 8 were used for the three
23-RSS models. (a) Results for the 12-RSS models; (b) results for the 23-RSS models. The number of physiologic RSS scoring below a given threshold
score (Table 5) is given on the x-axis, and the frequency of non-RSS segments in chromosome 8 sequence AC084823 scoring above the threshold is
shown on the y-axis. Solid line, RIC; dashed line, WM1; dotted line, WM0.
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thresholds; for 17 of 20 thresholds, the frequency of non-

RSS scoring above threshold was lowest under the RIC

models (Figure 5). We selected threshold RIC scores (-38.81

and -58.45 for 12- and 23-RSS respectively), at which more

than 98% of physiologic RSS score above threshold, and the

predicted frequency of functional signals in the mouse

genome is on the order of 10-4 (Table 6). Many of the signals

identified by the models may mediate recombination, and so

this frequency overestimates the false-positive rate. The

false-positive rate can only be estimated by testing a random

sample of these putative cRSS for function.

We show that the threshold scores can be effectively used to

screen genomic DNA for functional RSS. We screened over

650 kb of genomic DNA containing 39 physiologic RSS

(Table 6), 12 of which are not part of the RSS set used for para-

meter estimation. Under all models, the mean score for non-

RSS is lower than the mean score for physiologic RSS

associated with functional gene segments, but the disparity

between the two sets of scores is always greatest for the RIC

models (Table 6). Only four RSS, one 12-RSS and three 23-RSS

have RIC scores below their respective threshold scores, and

all four are associated with pseudogenes. The remaining four

pseudogene-associated RSS included in our search are better

recognized by RIC than by WM0 or WM1 (Figure 7). Further-

more, we computed the RIC12 scores for all potential 3� � 5�

oriented 12-cRSS in three VH gene segments observed to

mediate receptor editing. Importantly, cRSS were not included

in the estimation set. Two cRSS are recognized by all three

models, but the third is recognized only by RIC (Figure 8). We

expect cRSS and pseudogene-associated RSS to be under less

stringent selection pressure than physiologic RSS and there-

fore to have lost some of their sequence similarity to RSS. An

important future test of the RIC models will be to scan

genomic DNA prospectively for cRSS and show that the cRSS

identified mediate recombination by the V(D)J recombinase.

We have successfully used the model selection procedure

introduced here to develop models for two sets of highly vari-

able and complex binding sites. An advantage of this proce-

dure is that the correlation structure of the site is determined

from the statistical properties of the sequence set alone; there-

fore, the sequence properties governing recognition of the site

by the binding protein(s) can be identified in the absence of

experimental evaluation of function. Often there is an abun-

dance of sequence data that has not yet been, or perhaps

cannot be, experimentally evaluated. Information about the

correlation structure of a binding site can give important

insight into how the binding site and binding protein(s) inter-

act, and may suggest important experiments. In addition, by

choosing the positions to be correlated independently of their

relative positions, we are able to model highly complex pat-

terns with a relatively reduced increase in model complexity.

Inclusion of highly complex correlation patterns in models of

DNA-sequence sites can improve the precision with which

sites are identified and functional levels are predicted.

Materials and methods 
RSS sequence set 
We analyzed 356 physiologic mouse RSS from all Tcr and Ig

loci available [62]. About 96% (340/356) of the RSS are

associated with functional V, D or J gene segments

(Immunogenetics database [57,63,64]). Two are associated

with pseudogenes known to rearrange, and two are associ-

ated with open reading frames (ORFs) also known to

rearrange (see Immunogenetics database [57,63,64]). The

ability of the remaining RSS to rearrange is unconfirmed.

Calculation of position-wise entropy and mutual
information 
For a DNA sequence alignment, the position-wise entropy Hi

[65] measures the level of nucleotide diversity: minimum H is

14 Genome Biology Vol 3 No 12 Cowell et al.

Table 6

Mean scores for physiologic RSS and non-RSS segments in genomic sequence

Mean scores

WM0 WM1 RIC

Accession Length (bp) RSS type Number of RSS Non-RSS RSS Non-RSS RSS Non-RSS RSS

AE000665 199101 D�, J� 12-RSS 15 -58.36 -32.13 -53.16 -27.73 -59.87 -28.48

AF018146 3926 DH 12-RSS 2 -59.05 -18.4 -52.84 -17.41 -60.08 -14.58

X58411 7360 J�1, J�3, 12-RSS 2 -57.63 -23.04 -52.51 -22.33 -58.91 -20.46

X58414 5867 J�2, J�4, 12-RSS 2* -58.67 -26.01 -53.04 -26.91 -60.04 -22.58

AE000663 250611 V� 23-RSS 16† -70.77 -39.88 -73.42 -34.6 -77.75 -34.17

AE000665 199101 D�, J� 23-RSS 2 -70.8 -35.21 -73.2 -37.23 -77.81 -38.64

Location of physiologic RSS by their RIC score. Scores were computed for all 28- and 39-bp segments in mouse sequences containing physiologic RSS.
The sequence accession number, its length and the physiologic RSS it contains are shown. The mean score for all non-RSS in the sequence is compared
to the mean score for physiologic RSS associated with functional gene segments. *The J�4 gene segment is a pseudogene. †Seven of the 16 V� gene
segments are pseudogenes.



0 and indicates strict sequence conservation; maximum H is

1 and indicates that the four nucleotides occur at nearly

uniform frequencies. The estimated entropy at the ith posi-

tion in an alignment is given by Hi = -�
j
pi,j log4pi,j where pi,j is

the estimated probability of nucleotide j at position i. 

The estimated mutual information (MI) [51] between two

positions, i and i�, is computed as: MIi,i� = Hi + Hi� - Hi,i�,

where Hi is the estimated entropy computed from the fre-

quency of the four nucleotides at position i and Hi,i� is the

entropy computed using the frequency of the 16 pairs of

nucleotides at the two positions.

Nucleotide and nucleotide pair probabilities are themselves

estimated using the Bayesian posterior mean [66]

mi,s + 2/rP̂i (s) =——————, 
Ni + 2

where mi,s is the frequency of nucleotide or nucleotide pair s

in position(s) i of the alignment, Ni is the total number of

sequences in the alignment at position(s) i, and r is the

number of distinct classes in the probability distribution

(for single nucleotides r = 4, for nucleotide pairs, r = 16,

and so on).

Under the null hypothesis of no correlation between

nucleotide positions in RSS, positive MIi,i� values may still be

observed. To test if the MIi,i� values differ significantly from

0, we randomized the order of the sequences in position i�

and recomputed MIi,i�. By randomizing the order of the
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Figure 6
RIC values. (a) RIC12 values for 28-bp segments from genomic regions containing J� gene segments. RIC12 values are given on the y-axis, and position in
the sequence is shown on the x-axis. Each blue or red point represents the RIC12 for the 28-bp segment beginning at that position. Points corresponding
to physiologic RSS are red. The horizontal black line indicates RIC = -40. (b) RIC23 values for 39-bp segments from genomic regions containing V� gene
segments. The horizontal black line indicates RIC = -60. Other details as in (a).
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Figure 7
RIC models are better at recognizing pseudogene-associated RSS. The scores for sequence AE000663 under the RIC23 model are plotted against the
scores under the WM023 model (left panel) or the WM123 model (right panel). RIC23 scores are shown on the y-axis, and WM123 or WM023 scores are
shown on the x-axis. The y = x line is shown in red. AE000663 contains seven V� pseudogenes and nine functional V� gene segments. Blue points
indicate scores for non-RSS, red points indicate scores for pseudogene-associated RSS, and the red triangles indicate scores for RSS associated with
functional gene segments. The horizontal gray line is halfway between the lowest RIC23 score for a physiologic RSS distinguishable from non-RSS scores 
(-46.08.) and the highest RIC23 score for a non-RSS (-49.09): -46.08 - 1.505 = -47.585 = -49.09 + 1.505. The vertical gray line is the same distance below
the corresponding WM123 or WM023 score: -46.02 - 1.505 or -47.52 - 1.505, respectively.
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Figure 8
Low-scoring cRSS are better recognized by RIC12 than by WM012 or WM112. RIC12 scores for 28-bp segments in 3� � 5� orientation in the 3H9
transgene [62] are plotted against WM012 or WM112 scores for the same segments. The cRSS score is shown in red, and the non-RSS scores are shown
in blue. The horizontal gray line is at -47.23, halfway between the cRSS RIC12 score (-45.32) and the highest scoring non-RSS (-49.15). The vertical gray
line is the same distance below the cRSS WM012 (-47.46) or WM112 (-42.23) score. Other details as in Figure 7.
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sequences in one position but not the other, we preserve

both marginal distributions but disrupt any correlations.

The proportion of 300 permutations giving MIi,i� values

higher than that observed in the data is our estimate for the

p value under the null hypothesis.

Statistical models of RSS structure 
Single models for 12-RSS and 23-RSS define the set of prob-

ability distributions that contain the most information about

RSS structure. We developed the models by stepwise model

enlargement and selection. We begin with the smallest

models, order zero Markov models estimated under the

assumption of pairwise site independence. These models

take as the probability of observing a sequence S, the

product of the individual marginal probabilities over the RSS

positions, P(S) = �iPi(s) where s is the nucleotide observed

in sequence S at position i. The marginal probability distrib-

ution for a position defines the probability of observing each

of the four nucleotides at that position and is estimated from

the RSS dataset using the Bayesian estimator for Pi(s)

described above. Each potential model enlargement is

accomplished by replacing the product of an independent

marginal probability and k-variate joint probability by a cor-

responding k+1-variate joint probability.

For example, the first step of model enlargement for RSS of

length N compares all possible combinations of one joint

probability distribution for two positions and marginal prob-

ability distributions for the remaining N-2 positions: for

every pair of positions i and i�, there is the model 

P(S) = P(si, si�) �
j�i, i�

Pj (s). 

Under each of these models we compute scores by taking the

natural logarithm of P(S) (ln P(S)) for each RSS in the

dataset using leave-one-out cross-validation [67]. Briefly, for

each model, we exclude one RSS from the dataset, estimate

the probability distributions used in the model from the

remaining RSS, and compute ln P(S) for the excluded RSS.

We perform this computation for each RSS and take the

average ln P(S) over all RSS. We then select the combination

of probability distributions giving the largest average ln P(S).

The second step of model enlargement expands the model

selected in step one by comparing all models within two

classes: those based on two joint probability distributions,

the one formed in step one and one for an additional pair

of positions, and marginal probability distributions for the

remaining N - 4 positions, and those based on one joint

probability distribution for a group of three positions, the

pair joint selected in step one expanded to include one

additional position, and marginal probability distributions

for the remaining N - 3 positions. We again compute ln

P(S) under each model for each RSS using leave-one-out

cross-validation and select the model giving the largest

average ln P(S).
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Figure 9
Correlation between recombination efficiency (x-axis) as measured by
Hesse et al. [46] and RIC (y-axis) for 12-RSS.
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Figure 10
Correlation between recombination efficiency (x-axis) as measured by
Hesse et al. [46] and RIC (y-axis) for 23-RSS.
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Table 7

Location of cRSS by their RIC score

WM0 WM1 RIC

VH2S1*01 -42.02 -36.12 -39.86

VH14S1 -42.75 -40.78 -41.05

Background mean -61.15 -52.28 -60.22

cRSS in the VH2S1*01 and VH14S1 gene segments can be identified by
their scores. The score under all three 12-RSS models is shown for the
cRSS in VH2S1*01 and VH14S1 which are known to undergo receptor
editing. For comparison, the mean score for all other 28-bp segments in
the two gene segments is also given.



We continued the step-wise model enlargement and selec-

tion, iteratively expanding the models until the mean ln P(S)

ceased improving. The final model is not necessarily

optimal, however; we perform the maximization in a step-

wise manner and so, as in any stepwise statistical procedure,

are not guaranteed to achieve the global maximum.

Once the final set of probability distributions has been

selected (the mean ln P(S) no longer improves), the parame-

ters of each probability distribution are estimated on the

complete set of RSS. ln P(S) for an RSS is a value between 

- � and 0. If RSS were strictly conserved, the consensus RSS

would have ln P(S) = 0. We define the ln P(S) of a sequence

computed from the final model as its RSS information

content (RIC). The final models take the form:

RIC12 = ln [P1 P2 P3,15,25 P4,5 P6,28 P7,8,19 P9,26 P10,12 P11,27

P13,14,23 P16,17,18 P20,21,22 P24]

and

RIC23 = ln [P1 P2 P3 P4,14 P5,39 P6 P7,24,25 P8,9,21 P10,16 P11,12

P13,22 P15,23 P17,18 P19,27,30,31,32,33,37 P20,26 P28,29 P34,38 P35,36].

The CA dinucleotide at positions 1 and 2 of the heptamer is

required for rearrangement [46,52,68]. Therefore, the models

assign a probability of 0 to any RSS not beginning with CA.

RSS in the dataset receive higher RIC values (and WM0 and

WM1 values, see below) during genome searches than

during model development, because the sequence for which

RIC is calculated is excluded from the dataset during model

development, a property of leave-one-out cross-validation

[67]. In contrast, nucleotide frequencies used in the searches

are estimated on the complete set of RSS. The difference

between the two RIC values is greatest for rare sequences

and, in general, the differences are larger for 23-RSS. The

difference between the two scores is < 1 for 78% of 12-RSS

and for 39% of 23-RSS.

Markov models 
We also modeled RSS with weight matrices based on an

order zero or order one Markov model (reviewed in [27]).

The order zero Markov model assumes that all RSS positions

are independent, so the probability of observing a sequence

S that is N-bp long is:

P(S) = �
i=1

N

Pi(s) 

where Pi(s) is the probability of observing nucleotide s at

RSS position i. Pi(s) is estimated as described above from the

set of physiologic 12- or 23-RSS. The score for sequence S is

then the natural logarithm of the probability P(S),

WM0N = �
i=1

N

ln Pi(s).

The order one Markov model assumes that all adjacent posi-

tions are correlated, so the probability of observing sequence

S is based on conditional probabilities: 

P(S) = P1(s) �
i=2

N

P(si�si-1) 

where P�si�si-1� is the probability of observing nucleotide si in

position i given that nucleotide si-1 occupies position i-1.

From Bayes rule, 

P(si-1,si) 
P(si�si-1) = ——————

Pi-1(s) 

where P(si-1,si) is the joint probability distribution for the

dinucleotide si-1si occurring at the pair of positions i-1 and i.

Again, the probability distributions are estimated from the

physiologic 12- or 23-RSS, and we take the natural logarithm

of the probability P(S) as the score for sequence S: 

WM1N = ln P1(s) + �
i=2

N

[ln P(si-1,si) - ln Pi-1(s)].
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