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Abstract

Original Article

Introduction

Cyclosporine A (CSA) is an immunosuppressant drug. It is 
commonly used in preventing transplanted organ rejection.[1,2]

Its use usually adversely affects the renal systems. It is 
reported that CSA‑induced nephrotoxicity is characterized 
by hypertension, lower glomerular filtration rate, higher 
serum creatinine concentration, and decreased creatinine 
clearance in both rat models, as well as CSA, treated human 
patients.[3‑5]

The exact pathophysiological mechanism of CSA‑associated 
nephrotoxicity is not fully understood until now. Many previous 
studies proposed oxidative stress[6] and systemic as well as local 
inflammation as possible underlying mechanisms.[2,7]

Pharmacokinetics, pharmacodynamics, and toxicodynamics 
of CSA had been reported to be dependent on both age[8] and 

sex.[3] Recently, in 2018, Kim et al.[9] reported that male sex 
is more prone to CSA nephrotoxic effect than the female sex.

The objectives of the present study were designed: First, to 
study the possible nephrotoxic effect of perinatal exposure 
of male and female rat progeny to CSA and elucidate the 
sex difference. Second, to evaluate the oxidative stress and 
inflammation as a possible pathophysiologic mechanism.

Background and Aim of the Work: The current study postulated that cyclosporine A (CSA) could induce gender‑specific renal damage. 
Hence, the current study aims to investigate the nephrotoxic effect of perinatal exposure of male and female rat progeny to CSA. Moreover, it 
aims to evaluate the oxidative stress and inflammation as a possible pathophysiologic mechanism. Materials and Methods: Female rats were 
randomly allocated to two groups of four and assigned to undergo either CSA (15 mg/kg/day; the 6th day after conception and continuing until the 
progeny were weaned) or vehicle treatment as control groups. At the age of 6 weeks, the progeny were divided into the following four groups: 
male progeny of control‑group mothers (M‑vehicle, 7); male progeny of CSA‑treated mothers (M‑CSA, 9); female progeny of control‑group 
mothers (F‑vehicle, 7); and female progeny of CSA‑treated mothers (F‑CSA, 6). Serum adiponectin, tumor necrosis factor‑α (TNF‑α) and 
creatinine, creatinine clearance, and urinary 8‑isoprostane were measured. Histopathological examination by hematoxylin and eosin stain 
of Kidney was carried out. Results: Proteinuria and decreased creatinine clearance are significant in M‑CSA than M‑vehicle and F‑CSA. 
8-isoprostane is lower in F‑CSA than F‑vehicle. Increased TNF‑α and decreased adiponectin levels in M‑CSA than M‑vehicle were observed. 
No significant differences were found in female rat groups. Conclusion: From the current study, it could be concluded that CSA could induce 
renal inflammation as well as oxidative stress that may explain the impaired renal function. The sex difference was a prominent finding in 
their vulnerability to CSA effects.
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Materials and Methods

Methods
Animals
The present investigation conformed to the Bioethics in 
Research Regulations implemented by the Kingdom of Saudi 
Arabia. Male and female Wistar rats that were used for mating 
were supplied by King Abdulaziz University, the Kingdom 
of Saudi Arabia. Rats were kept in transparent polypropylene 
cages with 3–4 rats per cage. The animals had ready access 
to commercially obtainable rodent food pellets and water and 
were subjected to constant environmental conditions with equal 
periods of light and dark.

Experimental design and procedures
In a procedure endorsed by the Ethics Research Committee, 
King Abdulaziz University, the Kingdom of Saudi Arabia, 
male and female Wistar rat pairs were placed in individual 
cages and the date of conception was confirmed by daily 
vaginal smear testing and weighing. Once pregnant, female 
rats were randomly allocated to two groups of four and 
assigned to undergo either CSA or vehicle treatment. CSA 
group received a dose of 15  mg/kg/day subcutaneously, 
commencing on the 6th day after conception and continuing 
until the progeny were weaned.[10,11] The control group received 
a vehicle consisting of 18% koliphore and 2% ethanol in sterile 
saline. At the age of 6 weeks, the progeny was divided into 
the following four groups: (i) male progeny of control‑group 
mothers  (M‑vehicle, 7 animals);  (ii) male progeny of 
CSA‑treated mothers (M‑CSA, 9 animals); (iii) female progeny 
of control‑group mothers (F‑vehicle, 7 animals); and (iv) female 
progeny of CSA‑treated mothers (F‑CSA, 6 animals).
Then, rats were placed in metabolic cages individually to 
collect the 24‑h urine in order to determine the volume 
and levels of various parameters such as protein, creatinine 
and 8‑isoprostane, proteinuria, and creatinine clearance. 
Intraperitoneal injections of ketamine  (100  mg/kg) in 
xylazine  (10  mg/kg) were administered to anesthetize the 
rats before 4 ml of blood were extracted from the vena cava 
through a small opening in the lower abdomen. This was kept 
at 4°C for 30 min to coagulate before centrifugation for 20 min 
at 3,000 g and 4°C. The serum was aspirated, divided into 
fractions, and stored at −80°C for subsequent tumor necrosis 
factor‑α  (TNF‑α) and adiponectin analysis. The kidney 
was fixed in 10% neutral buffered formalin for subsequent 
histopathological examination by hematoxylin and eosin stain.

Biochemical analyses
ELISA determination was used for the measurements of TNFα (R 
and D systems®, Minneapolis, MN, USA), adiponectin, and 
urine 8‑isoprostane (Abcam®, Cambridge, MA, USA). Serum 
creatinine and urine creatinine and protein content were quantified 
by the ELITech® assay kits (ELITech, Puteaux, France).

Reagents and drugs
Reagents and drugs used in this study were as follows: 
cyclosporine  (Sandimmune®, Novartis Pharmaceuticals 

Corporation East Hanover, New Jersey), ketamine (Tekam®, 
Hikma Pharmaceutical, Amman, Jordan), and xylazine (Seton®, 
Laboratories Calier, Barcelona, Spain)  (Sigma‑Aldrich, St. 
Louis, MO, USA).

Statistical analysis
Statistical variance analysis  (ANOVA) was followed 
by Newman‑Keuls post  hoc  test  using statistical 
software  (GraphPad Prism version 5.00 for Windows, 
GraphPad Software, La Jolla California USA). Values are 
quoted as the mean ± standard error of the mean and P < 0.05 
was considered as statistically significant.

Results

Influence of perinatal cyclosporine A exposure on kidney 
function
In the control group, proteinuria was significantly higher 
in female than in male rats. The administration of CSA 
(15 mg/kg/day s) to pregnant rats, beginning on the 6th day 
of conception till weaning, led to a sex‑linked kidney 
dysfunction. CSA administration led to a significant increase 
in proteinuria in male but not female progeny compared with 
the corresponding control [Figure 1].

In addition, creatinine clearance was significantly lower in 
female than in male rats. CSA administration led also to a 
sex‑linked decrease in creatinine clearance in male but not 
female progeny compared with the corresponding control 
[Figure 2].

Influence of perinatal cyclosporine A exposure on 
oxidative stress
No sex‑related differences were observed for the oxidative 
stress marker 8‑isoprostane in control groups. However, 
the female rats subjected to perinatal CSA had significantly 
reduced amounts of 8‑isoprostane. 8‑isoprostane was 
not influenced by perinatal CSA exposure in male 
progeny [Figure 3].

Figure 1: Urinary protein content in the studied rats groups (mg/day)
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Influence of perinatal cyclosporine A exposure on 
inflammatory/oxidative/fibrotic pathways
In the vehicle‑exposed rats, ELISA investigations indicated 
comparable amounts of the anti‑inflammatory (adiponectin) 
and the inflammatory  (TNF‑α) cytokines in the serum of 
male and female rats. Perinatal administration of CSA led to 
significant decreases in serum adiponectin by approximately 
40% in the male progeny with no apparent changes in the 
female progeny  [Figure 4]. Further, ELISA studies showed 
that perinatally CSA‑exposed male, but not female, rats 
exhibited = 30% increase in serum TNF‑α level [Figure 5].

Histopathological effects of perinatal cyclosporine A exposure
While no marked difference between kidney cross‑sections 
from male and female progeny, the perinatal exposure to CSA 
caused vascular congestion and heavy aggregation of chronic 
inflammatory cells in male but not female progeny [Figure 6].

Discussion

Nephrotoxicity is a well‑established common adverse effect 
of cyclosporine therapy.[4,12‑14] The renal impairments that are 

associated with the administration of CSA in experimental 
rat model are confirmed in the current study in the form of 
proteinuria, increased serum creatinine level and diminished 
creatinine clearance. The histopathological examination of the 
renal tissue proved these biochemical findings. There is evident 
renal congestion with aggregation of inflammatory cells in 
the renal tissue. These findings coincide with the previously 
published results by Lassila et al.,[15] Wu et al.,[16] Lai et al.,[17] 
and confirmed recently by El‑Bassossy and Eid.[2]

The possible mechanisms by which CSA induces nephrotoxicity 
can be summarized as follow: direct renal tubular apoptosis[18] 
that is mediated by Fas antigen‑ligand system, induction of stress 
response protein glucose transporter 1[19] and immunoglobulin 
A nephrotoxicity[20] with a subsequent development of renal 
interstitial fibrosis. Renal inflammatory damage could be 
considered as a strong pathogenic factor of CSA‑induced 
nephrotoxicity.[21]

In the current study, male rats showed an increased level of urinary 
8‑isoprostane (oxidative stress marker) than the sham control 
group. Oxidative stress could be a strong pathogenic factor of 

Figure 2: Creatinine clearance of the studied rats groups (ml/min)
Figure 3: Urinary 8‑isoprostane level in the studied rats groups (pg/ml)

Figure 4: Serum adiponectin level in the studied rats groups ng/ml
Figure  5: Serum tumor necrosis factor‑α level in the studied rats 
groups (pg/ml)
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renal impairment in CSA exposed rats. The role of oxidative 
stress in the pathogenesis of CSA‑induced nephrotoxicity 
could be explained by many proposed evidence. CSA induces 
xanthine oxidase activity and increases the production of 
oxidants.[22] Oxidative stress could induce mitochondrial damage 
as occurs in CSA‑induced hepatotoxicity.[23] Moreover, CSA 
provokes endoplasmic reticulum (ER) stress and consequently 
oxidative stress.[24] This was confirmed previously as CSA 
upregulates expression of ER stress markers especially, 
immunoglobulin‑binding protein, in renal tissue biopsies.[25] 
Finally, in addition to the increased oxidative stress markers 
production, CSA administration is associated with a marked 
decrease in the total antioxidant capacity of the kidneys.[26,27]

Mitochondrial and endoplasmic stress is implicated in the 
pathogenesis of CSA‑induced renal impairment.[17,28] CSA 
therapy is specifically reported to induce reactive oxygen 
species production in renal mesangial cells[29] as well as 
it is also implicated in reducing renal antioxidant defense 
mechanism. These findings clarify the role of oxidative stress 
in medicating CSA‑induced nephrotoxicity[27] which comes in 
agreement with the result of the current study.

One of the important findings of the current study in the lowered 
adiponectin level in 40% of CSA exposed male progeny than 
the control male rats. This coincides with a study published 
in 2015 by Sahin et al.[30] They reported that CSA induces 
higher adiponectin levels, endothelial dysfunction,[31,32] and 
platelet activation without inducing platelet aggregation[33] in 
their study. Adiponectin levels were elevated as an endothelial 
damage marker.[32] This hypoadiponectinemia could be 
considered as a compensatory response to endothelial damage 
induced by CSA administration.[30]

The anti‑inflammatory role of adiponectin is explained by 
inhibiting endothelial expression of adhesion molecules, 
suppressing adhesion of the monocytes to the vascular 
endothelium, so it counteracts the inflammatory response of 
the endothelium.[30]

While our finding was antagonized previously by Hjelmesaeth 
et  al.,[34] They found a negative correlation between CSA 
administration and adiponectin level, but it did not reach the 
statistically significant level. They recommended a further 
investigation to confirm their results, but our study disproves it.

Moreover, TNF‑α is found elevated in 30% of CSA exposed 
male progeny in our study. This in agreement with Schenk 
et al.,[35] They reported that CSA induces the gene expression of 
renal tissue TNF‑α and TNF‑α‑receptor family ligands as well 
as soluble form TNF‑α receptors at mRNA and protein levels.

CSA‑induced TNF‑α higher expression could contribute in the 
induction of ER stress‑related apoptosis,[36] and it is enhanced 
sustained ER stress could induce apoptotic cell death in 
CsA‑mediated renal damage.[37] In addition, it is reported that 
TNF‑α mediates caspase 3/7 activation.[38]

The combined increased TNF‑α level and lowered adiponectin 
level with the histopathological picture of increased aggregation 
of chronic inflammatory cells in renal tissue could prove the 
CSA‑induced chronic renal inflammatory damage in our 
study. The inflammatory inducing effect of CSA is previously 
documented by Segarra Medrano et al.,[39] Torres et al.,[40] Saito 
et al.,[41] Rodrigues‑Diez et al.,[42] and Koh et al.[43]

Regarding the sex differences in the investigated biochemical 
markers in the current study, we confirm in this work, the 
previously published data in 2018 about the gender‑specific 
CSA‑induced renal damage.[2] That is explained by the role 
that the gonadal hormones play in CSA‑induced nephrotoxicity 
differences in male than female progeny. The explanation of 
such observation was based on the anti‑inflammatory role of 
both estrogen and testosterone.[44] CSA administration induces 
reduction of testosterone production in male[45] while it induces 
an increase in estrogen production in female.[46]

Conclusion

From the current study, it could be concluded that CSA could 
induce renal inflammation as well as oxidative stress that may 
explain the impaired renal function. The oxidative stress in 
proved by an increased level of urinary 8‑isoprostane. The 
CSA‑induced renal inflammatory damage is presented by 
increased TNF‑α and lowered adiponectin level as well as the 
prominent histopathological inflammatory picture in the form 
of aggregation of the inflammatory cell with renal vascular 
congestion. The sex difference was a prominent finding in 
their vulnerability to CSA effects with male progeny are more 
affected than female.
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