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Abstract

Alcohol addiction is a widespread societal problem, for which there are few treatments. There are significant genetic and
environmental influences on abuse liability, and understanding these factors will be important for the identification of
susceptible individuals and the development of effective pharmacotherapies. In humans, the level of response to alcohol is
strongly predictive of subsequent alcohol abuse. Level of response is a combination of counteracting responses to alcohol,
the level of sensitivity to the drug and the degree to which tolerance develops during the drug exposure, called acute
functional tolerance. We use the simple and well-characterized nervous system of Caenorhabditis elegans to model the acute
behavioral effects of ethanol to identify genetic and environmental factors that influence level of response to ethanol. Given
the strong molecular conservation between the neurobiological machinery of worms and humans, cellular-level effects of
ethanol are likely to be conserved. Increasingly, variation in long-chain polyunsaturated fatty acid levels has been implicated
in complex neurobiological phenotypes in humans, and we recently found that fatty acid levels modify ethanol responses in
worms. Here, we report that 1) eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, is required for the
development of acute functional tolerance, 2) dietary supplementation of eicosapentaenoic acid is sufficient for acute
tolerance, and 3) dietary eicosapentaenoic acid can alter the wild-type response to ethanol. These results suggest that
genetic variation influencing long-chain polyunsaturated fatty acid levels may be important abuse liability loci, and that
dietary polyunsaturated fatty acids may be an important environmental modulator of the behavioral response to ethanol.
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Introduction

Alcohol use disorders (AUD) are serious and widespread

problems that affect approximately seventeen million Americans

[1]. Genetics and environment both make significant contributions

to the propensity to develop alcoholism [2], but the genes and

specific environmental factors influencing abuse liability remain

poorly understood. One problem with understanding the etiology

of alcoholism is defining a quantitative phenotype that is tractable

for study. The heritable phenotype of initial level of response (LR)

to ethanol is a strong predictor of the subsequent development of

alcohol use disorders [3–6], so factors influencing LR may also be

central to the development of AUD, making them particularly

attractive targets for research. Environmental risk factors alter

alcohol abuse liability through interactions with genetic predispo-

sitions [7]. While previous studies of environmental contributors to

alcoholism have considered a large variety of psychological and

social factors that influence behavior, less attention has been paid

to environmental factors that modify the physiological phenotype

of LR. Here, we explore a possible role for diet in modulating LR

using the nematode Caenorhabditis elegans.
Caenorhabditis elegans provides a simple system in which to

study the genetic and molecular effects of ethanol intoxication and

LR [8,9]. Intoxication in C. elegans occurs at doses that cause

intoxication in other organisms [10]. Genes that alter responses to

ethanol in the worm also influence ethanol responses in rodents

[8,9,11–14], suggesting that there are conserved mechanisms for

ethanol responses between C. elegans and mammals. Initial LR is

quantitative measure of the degree of intoxication at a particular

alcohol concentration, e.g. alcohol-induced body sway in humans

[6]. There are likely to be multiple physiological factors that

influence LR, including neuronal homeostatic mechanisms acting

in opposition to the drug’s effects. In both mammals and C.
elegans, the measured LR is dependent on both the initial

sensitivity to the effects of the drug and the degree to which

tolerance to those effects develops during the alcohol exposure

[8,9,15–17]. The within-session tolerance is called acute functional

tolerance (AFT); it is observed in C. elegans and mammals,

including humans. Different rates of development of AFT impact
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an individual’s level of response to alcohol. Previous work aimed at

identifying the mechanisms of action for ethanol has shown that

the effects of ethanol in C. elegans are largely in the nervous

system and that initial sensitivity and AFT are dependent on

proper neuronal expression of ethanol targets [8,9,16].

Recently, we observed that altering fatty acid levels in C. elegans
modulates the development of AFT, and our results suggested that

there were likely to be particular species of fatty acids that are

important for AFT [16]. Here we have focused on the role of long-

chain polyunsaturated fatty acids, (LC-PUFAs) in the behavioral

responses to ethanol. LC-PUFAs are enriched in the brain and

retina in mammals [18,19], and mutations that alter fatty acid

metabolism in worms have been shown affect neurotransmission

by decreasing synaptic vesicle recycling and neurotransmitter

release in C. elegans [20,21]. Fatty acid metabolism is extremely

well conserved between C. elegans and mammals, and mutations

in the fatty acid metabolic pathway in worms have been

characterized [22–24]. In this study, we assessed the role of LC-

PUFAs on initial sensitivity and development of AFT in C.
elegans.

Results

Long chain polyunsaturated fatty acids (LC-PUFAs) are
required for the acute behavioral response to ethanol
To determine if LC-PUFAs have a role in behavioral responses

to ethanol, we exposed mutants lacking all or some LC-PUFAs to

ethanol and assessed their locomotion behavior over a 30-minute

exposure. In this acute ethanol exposure paradigm, we can

observe both initial sensitivity (the degree to which animals are

impaired by ethanol at 10 minutes) and the development of acute

functional tolerance (AFT) to ethanol. AFT is a metabolism-

independent compensation for the depressing effects of ethanol on

locomotion [9]. Initial sensitivity and AFT are components of the

acute level of response to ethanol [15,17]. The development of

AFT to the depressing effects of ethanol on locomotion speed in C.
elegans is visible as an increase in the average speed after

30 minutes of ethanol exposure compared with the measured

average speed at the initial 10-minute time point. The fat-3 gene

encodes a delta-6 fatty acid desaturase that is required for the

generation of all LC-PUFAs in worms (Figure 1A) [23]. We found

that fat-3(wa22) mutants were unable to develop AFT; unlike the

wild-type animals, the measured speeds of the fat-3 mutant

animals were not different at the 10- and 30-minute time points

(Figure 1B). This result suggests that one or more LC-PUFAs is

necessary for normal acute behavioral responses to ethanol. Both

arachidonic acid (AA) and eicosapentaenoic acid (EPA) are known

to be involved in neuronal activity [20,25], so we tested the

requirement for these specific LC-PUFAs in the ethanol response

using animals missing one or both of these fatty acids. The fat-4
gene encodes a delta-5 fatty acid desaturase, and fat-4(wa14)
mutants are unable to generate AA or EPA (Figure 1A) [26,27].

fat-4 mutant animals were unable to develop AFT to ethanol

(Figure 1C), suggesting that AA and/or EPA is required for AFT.

To distinguish between a requirement for AA or EPA, we tested

animals carrying a mutation in the fat-1 gene, which encodes an

omega-3 fatty acyl desaturase that is required for the conversion of

AA to EPA (Figure 1A). fat-1(wa9) mutants lack omega-3
arachidonic acid (O3AA) and EPA [26,28]. fat-1(wa9) mutants

were unable to develop AFT (Figure 1C), indicating that EPA

and/or O3AA is required for normal AFT. Taken together, our

data point to EPA as the LC-PUFA that is necessary for the

normal development of AFT.

EPA but not AA is necessary and sufficient for AFT
Dietary supplementation of PUFAs can rescue phenotypes

associated with mutations in the biosynthetic enzymes for LC-

PUFAs [20,21,26,29]. fat-1(wa9), fat-4(wa14), and fat-3(wa22)
mutants all display slow basal locomotion (Figure S1). Consistent

with previous studies [20,21], we found that raising fat-3 mutant

animals on medium containing AA over the course of their lifetime

restored their basal speeds to wild-type. Supplementation of AA

was also able to rescue the basal speeds of fat-4 but not fat-1
mutant animals, suggesting that the conversion of AA to EPA is

necessary for normal locomotion speeds. Consistent with this

hypothesis, supplementation of EPA was able to rescue the basal

speeds of fat-3, fat-4 and fat-1 mutant animals (Figure S1).

Figure 1. Long-chain polyunsaturated fatty acids are required
for the development of acute functional tolerance to ethanol.
(A) The metabolic pathway for LC-PUFAs in C. elegans. Genes encoding
enzymes responsible for each step of the generation of each LC-PUFA
are shown over the arrows. Mutations in genes encoding the enzymes
FAT-3, FAT-4 and FAT-1 eliminate downstream LC-PUFAs [23,26–28]. (B–
C) N2 animals develop acute functional tolerance (AFT) to ethanol,
whereas fat-3(wa22), fat-4(wa14), and fat-1(wa9) fail to develop AFT.
Animals were treated with 0 or 400 mM ethanol, and locomotion was
recorded at 10 and 30 minutes of exposure. Here and in subsequent
figures, left graphs show relative speeds (treated/untreated speed). A
difference at 10 minutes between N2 and the mutant indicates that the
mutant has a change in initial sensitivity; a significant increase in speed
from 10 to 30 minutes within a strain is defined as the development of
AFT. Right graphs show percent of speed recovered between 10 and
30 minutes within a strain; this is the degree of AFT. fat-3(wa22) is more
sensitive than wild type to the intoxicating effects of ethanol at
10 minutes in this set of experiments, although in subsequent
experiments, this difference did not reach statistical significance. Error
bars represent SEM. *p,0.05; **p,0.01. n= 6.
doi:10.1371/journal.pone.0105999.g001
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We asked if dietary supplementation was able to restore wild-

type responses to ethanol in these mutant backgrounds. fat-
4(wa14) mutant animals fed AA are expected to accumulate both

AA and EPA [23,27], and we found that dietary supplementation

of AA in fat-4(wa14) mutants restored their ability to develop

robust AFT (Figure 2A). EPA supplementation of fat-4(wa14)
should produce no AA [26]. EPA was also able to rescue the AFT

defect of fat-4(wa14) (Figure 2B), suggesting that EPA and not AA

is sufficient for AFT.

In order to further differentiate between the roles of AA and

EPA in AFT, we supplemented fat-1(wa9) mutants with each LC-

PUFA. fat-1(wa9) mutant animals lack EPA and O3AA [26]. As

expected, EPA supplementation of fat-1(wa9) rescued AFT in this

mutant (Figure 2D), suggesting that there is no requirement for

O3AA in AFT. Supplementation of AA into fat-1(wa9) mutants,

which cannot convert AA to EPA (Figure 1A) resulted in no

significant development of AFT (Figure 2C), indicating that AA

itself is insufficient to provide the LC-PUFA requirement in AFT.

To determine if EPA is the only LC-PUFA required for the

development of AFT, we supplemented EPA into the diet of fat-
3(wa22) worms, which lack all LC-PUFAs [23]. This supplemen-

tation has been shown to result in the accumulation of greater than

wild-type levels of EPA while not affecting the levels of gamma-

linolenic acid (GLA), dihomo-gamma-linolenic acid (DGLA), AA,

and O3AA [26]. Supplementation of EPA in fat-3(wa22) worms

was able to rescue the development of AFT (Figure 2E). Taken

together, these results suggest that EPA is necessary and sufficient

for the development of AFT.

LC-PUFAs are required only in adults for AFT, but are
required during development for normal basal
locomotion
LC-PUFAs are involved in neuronal development as well as in

the function of mature neurons [20,21,25,26,29,30]. To this point,

our dietary supplementation studies all provided LC-PUFAs to

animals throughout their development. In order to distinguish

between developmental or acute requirements for EPA in AFT,

we provided EPA to fat-1 mutant animals at the last larval stage

(L4), after most tissue development and differentiation has

occurred. Consistent with a model in which EPA is required for

adult neuronal function, we found that 19 hours of EPA

supplementation (only during the L4 and early adult stages) was

sufficient to rescue AFT in fat-1(wa9) (Figure 3A). This result

strongly suggests that EPA is required in the mature nervous

system for AFT, and that EPA is not required during development

to make animals capable of developing AFT.

To our surprise, we found that this late supplementation of EPA

was unable to rescue the slow basal speeds in fat-1(wa9) mutant

animals (Figure 3B), suggesting that the basal speed defects in

these animals are due to developmental requirements for EPA.

Together, these data indicate that there are at least two separable

requirements for EPA in normal adult behavior.

Figure 2. Dietary supplementation of EPA can rescue the AFT defect in mutants lacking LC-PUFAs. Animals were reared on NGM plates
containing 0.1% NP-40 and 0 or 160 mM AA (A, C, E) or 0 or 160 mM EPA (B, D, F). (A, C, E) Supplementation with AA is able to rescue the AFT defect of
fat-4(wa14) (A) and fat-3(wa22) (E), but not fat-1(wa9) (C) mutants, suggesting that the conversion of AA to EPA by FAT-1 is required for AFT. (B, D, F)
Supplementation with EPA is able to rescue AFT in fat-4(wa14) (B), fat-1(wa9) (D) and fat-3(wa22) (F), indicating that EPA is sufficient to provide all LC-
PUFA function that is required for AFT. Error bars represent SEM. *p,0.05; **p,0.01; ***p,0.001. n= 6 for AA supplementation and n= 5 for EPA
supplementation.
doi:10.1371/journal.pone.0105999.g002
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The role of EPA in cholinergic signaling is distinct from its
role in AFT
PUFAs are enriched in synaptic membranes [31] and their loss

in a fat-3 mutant results in a decrease of cholinergic neurotrans-

mission, which can be rescued by AA supplementation [20,21].

Modulation of neurotransmission activity is a potential mechanism

for the development of AFT to ethanol. To assess if the function of

LC-PUFAs in cholinergic neurotransmission overlaps with the role

of EPA in the development of AFT, we tested the sufficiency of

dietary supplementation of AA and EPA in rescuing the

cholinergic defects of fat-1 and fat-4 mutants. The acetylcholin-

esterase inhibitor aldicarb inhibits the degradation of acetylcholine

and results in tonic paralysis; the time necessary for paralysis is

indicative of the amount of acetylcholine being released.

Consistent with previous reports that observed aldicarb resistance

in fat-3 mutants [20], we found that fat-1(wa9) and fat-4(wa14)
mutants are both resistant to aldicarb compared to wild-type

animals (Figure S2A). Supplementation with EPA or AA was able

to rescue aldicarb sensitivity in both mutants (Figure S2C–D)

indicating that both AA and EPA are capable of restoring normal

cholinergic signaling in animals deficient in LC-PUFAs. This is in

contrast to our finding that AA fails to rescue the AFT defect in

fat-1(wa9), and indicates that the requirements for LC-PUFAs in

AFT and cholinergic neurotransmission are not identical.

Wild-type AFT can be modulated by dietary fatty acids
Given the strength of the effect of altering EPA levels on AFT,

dietary supplementation of EPA with wild-type animals that have

normal endogenous levels of EPA may be expected to result in an

enhancement of AFT. We noted that while supplementation of AA

or EPA into wild-type N2 did not result in statistically significant

changes in AFT in any set of the above experiments, in each case

there was a strong trend toward dietary supplementation of LC-

PUFAs causing an increase in the degree of AFT in wild-type

animals. We suspected that increasing the number of trials would

reveal a significant effect of dietary supplementation on wild-type

responses to ethanol. When we compiled the wild-type response

data from all supplementation experiments, we observed a

significant increase in AFT when either EPA or AA was

supplemented in N2 (Figure 4). Importantly, we observed no

change in basal speeds in these animals with dietary supplemen-

tation (Table S1), suggesting that the effect of AA and EPA on

AFT in wild-type animals is specific to the ethanol response

mechanism. These results demonstrate that the intact molecular

pathways involved in the development of AFT can be further

modulated through dietary supplementation of LC-PUFAs.

Discussion

The goal of this work was to determine if there is a role for LC-

PUFAs in the acute response to alcohol. We measured the effects

of acute ethanol exposure on the locomotion of C. elegans, and
found that EPA modulates the development of AFT to ethanol.

AFT is an example of neuronal plasticity, and the mechanisms

underlying AFT represent a compensatory response to the

environmental insult brought about by the actions of ethanol.

This plasticity is independent of ethanol metabolism and most

likely represents changes in neuronal function [8,10]. The effects

of fatty acids on AFT may therefore have relevance for other forms

of homeostasis and plasticity.

We found that animals that are deficient in EPA are unable to

develop AFT to ethanol. Dietary supplementation of EPA is

sufficient to restore AFT to mutant animals that are unable to

synthesize LC-PUFAs. AA is also able to modulate AFT, but only

when it can be converted to EPA. The function of EPA in AFT

appears to be independent of developmental roles of LC-PUFAs,

as providing EPA to late larval stage and adult animals is sufficient

for the generation of AFT. In contrast, LC-PUFAs are required

developmentally for normal adult speeds in the absence of ethanol.

Figure 3. Nineteen hour treatment of fat-1(wa9) with EPA rescues AFT but not basal speed defects in fat-1. N2 and fat-1(wa9) mutant
animals were grown to the L4 stage on NGM plates, then they were moved to NGM plates containing 0.1% NP-40 and supplemented with 0 or
160 mM EPA and allowed to develop into first day adults. After 19 hours of EPA supplementation, adult animals were tested in locomotion assays on 0
or 400 mM ethanol. (A) After 19 hours of EPA supplementation, fat-1(wa9) animals are able to develop AFT, whereas age-matched fat-1(wa9) animals
not supplemented with EPA do not develop AFT. (B) 19 hours of EPA supplementation is not sufficient to rescue the slow basal speed of fat-1(wa9)
mutant animals. Basal speed (0 mM ethanol) was measured at 10 and 30 minutes after the beginning of the locomotion assay. Error bars represent
SEM. **p,0.01; ***p,0.001 within treatment; ##p,0.01 for comparison of supplemented fat-1 to supplemented N2. n= 6.
doi:10.1371/journal.pone.0105999.g003
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LC-PUFA supplementation has been shown to influence cholin-

ergic signaling possibly through interactions with synaptojanin

[21]. Intriguingly, AA and EPA can both rescue cholinergic

signaling independent of the conversion of AA to EPA. This

suggests that the role for EPA in regulating AFT is not identical to

its role in regulating cholinergic neurotransmission. Our finding

that EPA alone is required for AFT differs from published work on

other known roles of LC-PUFAs in worm behaviors. Kahn-Kirby

et al. [26] demonstrated that either EPA or AA was able to

modulate the functions of both the AWC and ASH sensory

neurons. There is a clear requirement for LC-PUFAs in growth,

basal locomotion and reproduction, because fat-3 mutant animals

have defects in these phenotypes. Both AA and EPA are able to

rescue the gross phenotypic defects in fat-3 mutant animals [29],

although this did not explicitly test a requirement for AA because

the functional fat-1 in these animals means that AA supplemen-

tation would also provide EPA in these experiments. In addition to

the requirement for EPA in AFT, there are other requirements for

specific LC-PUFAs in worms. Recently, Vasquez et al. [25]

demonstrated that AA is required for proper touch cell function in

C. elegans. Together, these diverse findings demonstrate that

different LC-PUFAs can have distinct roles in different neurobi-

ological processes. Finally, we have shown that the manipulation

of LC-PUFA levels by dietary supplementation in wild-type

animals can alter the acute behavioral responses to ethanol.

Together, these data highlight this environmental variable as a

potential modifier of ethanol responses that are predictive of abuse

liability.

One mechanism by which EPA may modulate AFT is through

effects on membrane structure or function. Dietary omega-3 fatty

acids, such as DHA and EPA, alter both lipid raft structure and

the signaling of proteins known to reside in lipid rafts [32] and this

may have functional consequences for interacting proteins that are

involved in AFT. Lipids in the surrounding membrane modulate

the functions of many proteins that are known to respond to

ethanol. For example, we have previously identified the SLO-1
BK channel as an ethanol target in C. elegans [8], and mammalian

BK channel activity is modulated by lipids [33–39]. We identified

a genetic interaction between SLO-1 and the triacylglyceride

lipase, lips-7, suggesting that the lipid milieu can modulate BK

function in vivo in worms [16]. While modulation of SLO-1
function is not the only mechanism of AFT [16], if EPA modifies

the function of it and/or other ethanol responsive proteins directly

or indirectly though changing membrane characteristics, then the

acute behavioral response to ethanol may be modified by dietary

intake of PUFAs.

A second possibility is that LC-PUFAs are acting as signaling

molecules or as precursors to signaling molecules that modulate

ethanol responses. AA and EPA are metabolized into a variety of

signaling molecules including eicosanoids and the resolvins.

Interestingly, in C. elegans, the primary LC-PUFA precursor for

the generation of eicosanoids is EPA, whereas in humans the

primary precursor is AA [40]. While we have not yet determined if

the requirement for EPA in AFT requires its metabolism to

eicosanoids, there is increasing evidence for important roles for

LC-PUFA derived eicosanoids in behavior in worms. EPA derived

eicosanoids were found to regulate pharyngeal pumping [41], a

neuromuscular behavior that is also affected by ethanol [8].

Furthermore, LC-PUFA derived eicosanoids have been found to

be required for the behavioral response to reoxygenation after

hypoxia [42]. Very recently, prostaglandin E2 has been demon-

strated to regulate the function of the BK channel in mammals

[43].

EPA could also be acting as a signaling molecule itself; Khan-
Kirby et al. [26] demonstrated that exogenously applied EPA

could acutely rescue a TRPV-dependent sensory response in

worms, indicating that it could directly alter the function of TRPV

channels. If EPA is acting as a signaling molecule in AFT, then its

Figure 4. Dietary supplementation of AA or EPA can enhance the development of AFT in wild-type animals. All trials in which N2 was
supplemented with AA or EPA are shown, n=21 for AA, n= 18 for EPA. (A) N2 animals supplemented with AA demonstrate increased initial sensitivity
to ethanol and enhanced development of AFT. (B) N2 animals supplemented with EPA demonstrate enhanced AFT. Error bars represent SEM. *p,
0.05; **p,0.01; ***p,0.001.
doi:10.1371/journal.pone.0105999.g004
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function differs from its signaling function with TRPV channels,

because Kahn-Kirby et al. [26] were able to use either EPA or AA

to modulate TRPV channels. Here we demonstrate that EPA and

not AA is required for AFT.

In humans, most omega-3 PUFAs are derived from dietary

sources, and diet can strongly influence the amount of omega-3
fatty acids in tissue reviewed in [44]. Millions of people routinely

take fish oil supplements containing EPA, which can significantly

increase plasma EPA levels [44]. There has been increasing

interest in the relationship between neurobiological disorders and

levels of omega-3 fatty acids. Several studies have demonstrated

abnormal omega-3 fatty acid metabolism in depressed patients

relative to controls [45,46], and decreases in omega-3 fatty acids

have been observed to correlate with deficiencies in dopaminergic

signaling [47]. Major depressive disorder and alcohol abuse

disorders (AUD) have been shown to be co-morbid [1,48] and the

dopamine pathway has been shown to respond profoundly to both

acute and chronic ethanol [49–53]. Although there have been few

studies on the relationship between omega-3 fatty acids and AUD,

in one study, three weeks of dietary supplementation with EPA

and DHA was found to significantly reduce stress and cortisol

levels in abstinent alcoholics [54].

There are both genetic and environmental influences on the

propensity to develop AUDs. The effect of fatty acids on ethanol

responses may also be modulated by genetics. There is a significant

genetic contribution to the acute level of response in humans [55].

Naturally occurring genetic polymorphisms in the fatty acid

metabolism enzyme-encoding genes have been shown to detec-

tably alter lipid profiles in humans [56]. Our work suggests that

genetic variation in genes that modulate the physiological profile

of LC-PUFAs could impact the acute response to alcohol, and

therefore such genes represent potential risk loci.

Little is known about the environmental influences on the

behavioral responses to alcohol. Our data indicate that by simple

dietary supplementation with EPA, we can make measurable

changes in acute ethanol tolerance in wild-type populations in C.
elegans. In humans, acute ethanol tolerance is strongly correlated

with abuse liability. Taken together, this and previous studies

suggest that lipid metabolism and profile can influence responses

to alcohol, and provide strong evidence for diet to be considered as

a possible environmental risk factor in the liability for alcohol use

disorders.

Experimental Procedures

Nematode husbandry
Unless otherwise noted, strains were maintained on nematode

growth media (NGM) plates at 20uC. Before use, NGM plates

were seeded with OP50 E. coli and a lawn of bacteria was allowed

to grow overnight at room temperature. Strains used in this study

were: Wild-type N2 (var Bristol), BX24 fat-1(wa9), BX17 fat-
4(wa14), BX30 fat-3(wa22).

Locomotion tracking
Speed was analyzed as described previously [9] with minor

changes: Assay plates (NGM) were dried for one hour at 37uC with

the lids removed. Four copper rings were heated and melted into

the surface of the agar. For ethanol treatment plates, ice-cold

100% ethanol was added to a final concentration in agar of

400 mM. Previously, we showed that a 10-minute 400 mM

exogenous ethanol exposure produces a tissue concentration of

ethanol of approximately 44–67 mM [10]. Plates were immedi-

ately sealed with Parafilm and the ethanol was left to absorb into

the plate for two hours at room temperature. Age-matched first

day adults were acclimated by moving them to unseeded plates

with copper rings for thirty minutes. At thirty minutes ten worms

of each strain were then moved from acclimation plates to the

corresponding copper ring on the assay plate. Locomotion was

recorded at 10 and 30 minutes of exposure. Movies were made on

a Leica MZ6 stereo microscope with a 0.5x objective and 0.8x

magnification using a Retiga 4000R camera (QImaging) and

ImagePro Plus (6.2) (MediaCybernetics) software. Recordings were

made at one frame per second and the speed of each worm was

determined using ImagePro Plus software. The average speed for

each group of 10 animals was calculated and treated as a single

trial. All strains were tested a minimum of five times.

Fatty acid supplementation
Fatty acid supplementation was performed as previously

described [26]. Fatty acid salts (arachidonate and eicosapentaeno-

ate; Nu-Chek Prep, Elysian, MN) were diluted to 20 mM in

dH2O. NGM solutions were prepared with the addition of 0.1%

NP-40 (Sigma), autoclaved, and maintained in a 60uC water bath.

EPA or AA was added to a final concentration of 160 mM, control

plates were supplemented with an equal volume of water. Plates

were poured immediately and dried overnight at room temper-

ature in a dark box. Plates were seeded with bacteria the following

day and stored at 20uC for 48 hours before use.

The NP-40 vehicle itself causes a decrease in the overall speed of

all animals that are exposed to it but does not affect animals in a

genotype specific manner (Table S1). In each experiment using

NP-40, the control animals were reared on plates containing NP-
40 to account for this general slowing.

Age synchronization
Egg laying: First day adult worms were allowed to lay eggs for

two hours on seeded NGM or fatty acid supplemented plates. The

adults were then removed and eggs were allowed to hatch and

develop to first day adults before assaying.

Assessment of ethanol response
A relative speed for each time point is calculated by dividing the

speed of animals on ethanol (treated speed) by the speed of animals

of the same genotype at the same time points on 0 mM ethanol

(untreated speed). Strains that were compared were tested in

parallel at the same time. We assess initial sensitivity by comparing

the ten minute relative speeds between strains. A statistical

difference in the speeds reflects a significant change in the initial

sensitivity. We define a statistically significant increase in the

relative speed at 30 minutes versus 10 minutes as the development

of AFT. Degree of AFT is quantified as percent recovery of speed

and is calculated by subtracting the 10-minute relative speed from

the 30-minute relative speed.

Statistics
Animals that were compared to each other were treated on the

same plate at the same time under identical conditions. Data were

converted to relative speeds to account for basal speed differences

between strains (Table S1). Statistics were performed using Prism

5.0 (GraphPad). For comparisons of a single strain or treatment to

a control, two-tail paired t-tests were performed. When multiple

comparisons were necessary, as in the fatty acid supplementation

assays, one-way ANOVA with a Dunnett’s post hoc test was used.

Aldicarb assays were analyzed by two-way ANOVA with a

Bonferroni post-hoc test.
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Aldicarb assay
Plates containing 1 mM aldicarb (Sigma) were prepared fresh

for each set of paralysis assays as described previously [57].

Twenty adult animals were scored per experiment and three

independent experiments were carried out [58]. Worms were

scored at 30-minute intervals for three hours. They were counted

as paralyzed if they were unable to respond to any of three pokes

with a platinum wire on the head and tail.

Supporting Information

Figure S1 EPA is required for normal speed of locomotion.

Worms were reared on 0 or 160 mM AA (left graphs) or 0 or

160 mM EPA (right graphs) supplemented NGM plates containing

0.1% NP-40, and locomotion of first day adults was assessed. (A)

fat-3(wa22) mutant animals lack all LC-PUFAs and have a slow

locomotion phenotype. Dietary supplementation with AA (left) or

EPA (right) can restore locomotion to wild-type speed. (B) fat-
4(wa14) mutant animals lack AA and EPA, and dietary

supplementation by either AA or EPA can restore wild-type

locomotion speed. (C) fat-1(wa9) mutant animals lack EPA and

cannot convert AA to EPA. Dietary supplementation with EPA

but not AA is able to restore wild-type locomotion speeds to fat-1
mutants, indicating that EPA is required for normal locomotion

speed. Error bars represent SEM. **p,0.01; ***p,0.001 for

comparison of unsupplemented mutant to unsupplemented N2;

###p,0.001 for comparison of supplemented mutant to

supplemented N2; $$p,0.01, $$$p,0.001 for comparison of

unsupplemented mutant to supplemented mutant. n=6 for AA

supplementation and n=5 for EPA supplementation.

(PDF)

Figure S2 EPA and AA are required for acetylcholine signaling.

Aldicarb is an acetylcholinesterase inhibitor that causes a

progressive tonic paralysis that is dependent on the level of

acetycholine (ACh) release. Worms were treated with 1 mM

aldicarb and paralysis was assessed at 30-minute intervals. (A) fat-
1(wa9) and fat-4(wa14) mutant animals are resistant to the

paralyzing effects of aldicarb relative to N2, suggesting that they

have decreased ACh neurotransmission. (B) EPA and AA

supplementation do not alter aldicarb sensitivity in N2. (C–D)

The aldicarb resistance of fat-4(wa14) mutant animals is rescued

by dietary supplementation of either EPA or AA. (D) The aldicarb

resistance of fat-1(wa9) is rescued by EPA or AA, demonstrating

that AA alone is able to function to restore ACh signaling in

animals lacking both AA and EPA. Filled symbols indicate time

points that are statistically different (at least p,0.05) from N2 in

(A), and from the non-supplemented animals in (B, C and D). (E)

Dietary supplementation of AA or EPA are able to rescue the

aldicarb resistance phenotypes of fat-1 and fat-4 animals at the

180 minute time point, while N2 is unaffected by the supplemen-

tation. *p,0.05; ***p,0.001 for comparison of unsupplemented

mutant to supplemented mutant. Error bars represent SEM. n=3.

(PDF)

Table S1 Raw locomotion data for all experiments. The raw

locomotion data that is used to generate the relative speed

measurements is presented. Each experiment includes an exper-

imental group and its paired controls, which were reared in

identical conditions and tested on the same plates at the same time.

The treated and untreated animals for a given experiment were

tested on the same day. There is some day-to-day variation in the

absolute speeds of animals. In addition, the presence of NP-40 on

the culture plates causes a general slowing of all genotypes of

animals. In each case, the relative numbers that we present in the

figures and text are derived from the experimental and their

paired control animal data.

(PDF)
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