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Abstract: Microcapsules are attractive core-shell configurations for studies of controlled release,
biomolecular sensing, artificial microbial environments, and spherical film buckling. However,
the production of microcapsules with ultra-thin shells remains a challenge. Here we develop a
simple and practical osmolarity-controlled swelling method for the mass production of monodisperse
microcapsules with ultra-thin shells via water-in-oil-in-water (W/O/W) double-emulsion drops
templating. The size and shell thickness of the double-emulsion drops are precisely tuned by
changing the osmotic pressure between the inner cores and the suspending medium, indicating the
practicability and effectiveness of this swelling method in tuning the shell thickness of double-emulsion
drops and the resultant microcapsules. This method enables the production of microcapsules even
with an ultra-thin shell less than hundreds of nanometers, which overcomes the difficulty in producing
ultra-thin-shell microcapsules using the classic microfluidic emulsion technologies. In addition, the
ultra-thin-shell microcapsules can maintain their intact spherical shape for up to 1 year without
rupturing in our long-term observation. We believe that the osmolarity-controlled swelling method
will be useful in generating ultra-thin-shell polydimethylsiloxane (PDMS) microcapsules for long-term
encapsulation, and for thin film folding, buckling and rupturing investigation.
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1. Introduction

A microcapsule is a micrometer-scale core-shell structure, with compartments encapsulated in a
solid shell. This kind of core-shell configuration not only can protect the core materials from external
disturbance or even contamination, but can also perform the on-demand delivery and release of the
aqueous core under various external stimuli [1,2]. Thus, microcapsules can serve as model systems in
various applications, such as drug delivery and controlled release [3–7], photonic capsule sensors [8–10],
artificial microbial environments [11,12], foods [13,14], and biomolecular sensing [15,16].

Microfluidics technology supplies a simple and effective method for the production of various
microcapsules with well-defined compositions and structures via double-emulsion drops templating [1,17].
For instance, by solidifying the liquid shell of the double-emulsion drops using temperature, pH, chemistry
or light-sensitive materials, microcapsules with controlled release behaviors can be mass produced [18–25].
A porous shell endows microcapsules with a size-selective permeability [26]. Multicompartment
microcapsules with multi-cores or capsule-in-capsule structures are designed for co-encapsulation
and diverse programmable sequential release [27–31]. Smart microcapsules, which have magnetic
materials embedded on the shell or in the cores, have been used for direction-specific delivery and
release [32–34].
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In particular, microcapsules with ultra-thin shells are critical templates for the above mentioned
applications, and for studies of folding and buckling behaviors of spherical thin films [35]. However,
the production of microcapsules with ultra-thin shells remains a challenge. It is very difficult to
fabricate a double-emulsion drop with an ultra-thin shell less than several hundred nanometers using
classic capillary microfluidic devices. There have been some configurations of capillary microfluidics
to fabricate such ultra-thin-shell double-emulsion drops and microcapsules [36–42]. For example,
an ultra-thin middle layer of double-emulsion drops can be stably created by squeezing a thin layer of
middle fluid between the inner wall of the capillary and the innermost fluid [36]. The middle fluid
needs to have high affinity to the capillary wall. The phase compositions and wettability of the middle
fluid, however, are strictly required to create the thin shell. Therefore, developing an alternative
method with simple configuration and practical performance for mass production of ultra-thin-shell
microcapsules is of great significance.

In this study, we demonstrate an easy and practical method to generate highly monodisperse
ultra-thin-shell microcapsules via osmolarity-controlled swelling behaviors of water-in-oil-in-water
(W/O/W) double-emulsion drops. To achieve this, a classic capillary microfluidic device is firstly
designed to fabricate monodisperse W/O/W double-emulsion drops, as shown in Figure 1a. Then, an
osmolarity-controlled swelling method is developed to make the shell thinner by increasing the drop
diameter, as the schematic illustration shown in Figure 1b. Here, the swelling process of the emulsion
drops is simply controlled by the osmotic pressure between the inner aqueous and the suspending
medium. The shell material, polydimethylsiloxane (PDMS), enables the transportation of water into or
out of the drops when they are subjected to an osmotic pressure difference [43,44]. The shell thickness
of the double-emulsion drop after swelling is figured out by measuring the volume of the PDMS shell
phase after an electro-triggered rupturing, the value of which can be several hundreds of nanometers
or less. Finally, the double-emulsion drops are transformed into ultra-thin-shell microcapsules by a
thermal curing method to solidify the PDMS shell phase. This method enables the mass production of
microcapsules with ultra-thin shells, and the shell thickness can be controlled precisely.
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Figure 1. (a) Schematic illustration of the capillary microfluidic device for generating
water-in-oil-in-water (W/O/W) double-emulsion drops; (b) schematic illustrations showing the
osmolarity-controlled swelling process of W/O/W double-emulsion drop, and the thermal curing
process from liquid emulsion drop to solid microcapsule.
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2. Materials and Methods

2.1. Materials

Polyvinyl alcohol (PVA, 87–89% hydrolyzed, average Mw = 13,000–23,000), potassium chloride
(KCl), octadecyltrichlorosilane (OTS), and methylene blue were purchased from Sigma-Aldrich
(St. Louis, MO, USA). PDMS kit (Sylgard 184) and silicone oil (50 cSt, PMX-200) were purchased from
Dow Corning (Midland, MI, USA). As the outer continuous phase (Wouter), aqueous solution of 5 wt%
PVA was used. PVA served as a surfactant in this case. As the middle oil phase (Omiddle), a mixture
of PDMS and silicone oil with the volume ratio of 3:1 was employed, in which 10 wt% curing agent
was added for solidifying the double-emulsion drops into microcapsules. As the inner phase (Winner),
aqueous solution of 1 wt% PVA was used. Depending on different experiments, KCl was added into
the inner phase and suspending medium to adjust the osmotic pressure between the inner and outer of
the PDMS shell. In some experiments, methylene blue was dissolved into the inner core as a dye for
better visualization. All water used in this study was deionized (DI) water unless otherwise noted.

2.2. Fabrication of the Glass Capillary Microfluidic Device

A classic glass-capillary microfluidic device was used to fabricate the W/O/W double-emulsion
drops, as described previously [17,45]. Briefly, two circular capillary tubes (ID of 0.58 mm, OD of
1.03 mm, World Pricision Instrument Inc., Sarasota, FL, USA) were given tapered openings of 38 and
170 µm in diameter using a micropipette puller (P-97, Sutter Instrument Inc., Novato, CA, USA) and
a microforge (Narishige MF-900, Tokyo, Japan). The outside of the glass capillary tube for the inner
fluid was hydrophobically functionalized with OTS to enhance the wettability of the capillary tube
with oil phase, facilitating the fabrication of W/O/W double-emulsion drops. The two tapered circular
capillary tubes were coaxially aligned and opposed to each other within a square glass capillary (ID of
1.05 mm), which were spaced from each other by 80 µm, as shown the optical microscope image in
Figure 2a. All the capillaries and needles used for channels were connected using a transparent epoxy.
Such a configuration possessed the hydrodynamic flow-focusing and coflowing functions for one-step
fabrication of highly monodisperse W/O/W double-emulsion drops.
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Figure 2. (a) Optical microscope image showing the inner configuration of the classic capillary
microfluidic device and the generation of W/O/W double-emulsion drops using this device; (b) optical
microscopy image of highly monodisperse W/O/W double-emulsion drops (inset: size distribution of
the emulsion drops). (c) Influence of continuous phase flow rate on dimensions of double-emulsion
drops, where Qouter is varied from 8 to 18 mL/h; Qmiddle and Qinner are maintained at 120 and 1000 µL/h.
Scale bars are 200 µm.
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2.3. Generation of Monodisperse W/O/W Double-Emulsion Drops

To generate W/O/W double-emulsion drops, three liquid phases, Wouter, Omiddle and Winner, were
pumped into the microfluidic device by three syringe pumps (Harvard Apparatus, PHD 2000 Series,
Holliston, MA, USA). The generation process of the W/O/W double-emulsion drops in the device
was monitored by a digital CMOS camera (Prime 95B, Qimaging, Surrey, BC, Canada). By tuning
the flow rates of three phases, monodisperse W/O/W double-emulsion drops were formed through
one-step emulsification, as shown in Figure 2a, where the flow rates of outer continuous phase (Qouter),
middle oil phase (Qmiddle) and inner aqueous phases (Qinner) are 16,000, 120 and 1000 µL/h, respectively.
The double-emulsion drops generated using this classic capillary microfluidic device were highly
monodisperse, of which the size distribution can be maintained at 2.35% or less, as shown in Figure 2b
and the inset bar graph. The drop diameter (d) was controlled precisely by varying Qouter. For example,
as Qouter increased from 8 to 18 mL/h, d decreasedfrom 159.9 to 125.4 µm, as shown in the graph in
Fig. 2c, where Qmiddle and Qinner are maintained at 120 and 1000 µL/h, respectively. The reason can be
understood that the increased Qouter induces a higher shear force acting on the emulsion drop, leading
to the decrease in d.

In addition, the shell thickness (h) of double-emulsion drops was varied by modulating the flow
rates ratios of Qmiddle/Qinner, as shown in the graph and inset images in Figure 3. The stars represent
the experimental results of relative shell thickness 2h/d, which could be varied from 0.041 up to 0.386
with excellent control and reproducibility. The inset optical microscope images show emulsion drops
with varying relative shell thickness: 0.041, 0.128, 0.196, 0.232 and 0.386. Table 1 shows the W/O/W
double-emulsion drops with varying relative shell thickness, diameter, shell thickness for the relevant
flow ratios of Qmiddle/Qinner. The line in Figure 3 is plotted to illustrate the relative shell thickness 2h/d
as a function of Qmiddle/Qinner, which is rearranged by the mass balance equation in reference [16,45,46].
The experimental results are in good agreement with the line plotted in Figure 3, indicating that the
microfluidic emulsion technology is good at controlling the shell thickness of the double-emulsion
drops. However, it is difficult to generate monodisperse double-emulsion drops with ultra-thin shells
using this classic microfluidic emulsion technology. Based on the reliable generation of monodisperse
double-emulsion drops, the osmolarity-controlled swelling method was developed to produce the
ultra-thin-shell double-emulsion drops and the resultant microcapsules.
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Table 1. W/O/W double-emulsion drops with varying relative shell thickness, diameter, shell thickness
for the relevant flow ratios of Qmiddle/Qinner.

Qmiddle/Qinner Rel. Shell Thickness D (µm) h (µm)

0.154 0.041 132.5 2.7
0.511 0.128 139.6 8.9
0.881 0.196 136.6 13.4
1.00 0.208 133.5 13.9
3.20 0.386 132.0 25.5

2.4. Electrotriggered Rupturing of W/O/W Double-Emulsion Drops

In this study, the W/O/W double-emulsion drop needed to be triggered to rupture by applying
an alternating current (AC) electric field to calculate the shell thickness. Two acupuncture needles
immersed in the suspending medium acted as electrodes with a distance of 800 µm, through which a
square-wave AC voltage signal was applied to develop an AC electric field between the electrodes.
During this process, the AC signal was generated by a function generator (TGA 12104, TTi, Manchester,
UK), and amplified by an amplifier (model 2350, TEGAM, Geneva, OH, USA). Under an appropriate
field strength and frequency (30 V, 5 KHz) applied, the double-emulsion drop between the two
electrodes ruptured immediately due to Maxwell−Wagner interfacial polarization [47–49].

3. Results and Discussion

3.1. Osmolarity-Controlled Swelling Behavior

The core diameter and shell thickness of the W/O/W double-emulsion drops can be tuned by the
osmolarity-controlled swelling behavior. When the salt concentration of outer suspending medium
is higher than it in the inner aqueous core, water in the suspending medium has a higher chemical
potential than that of the inner core, as shown in the schematic illustration in Figure 4a. As a result,
water in the suspending medium will penetrate through the oil shell into the core, leading to the
osmolality-controlled swelling behaviors of the inner core [43,50]. Along with the swelling of the inner
core, the oil shell becomes sufficiently thinner and thinner, leading to the generation of ultra-thin-shell
double-emulsion drops.
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To study the effect of osmolality-controlled swelling behavior on shell thickness of double-emulsion
drops, the swelling phenomena of emulsion drops with varying osmotic pressure between the inner
core and outer suspending medium are investigated. Firstly, double-emulsion drops with a given KCl
concentration of 0.25 mol/L as the inner aqueous cores are generated in our capillary device, which
are collected in 1 wt% PVA solution with KCl concentration of 0.25 mol/L to prevent the spontaneous
swelling and coalescence of these drops, as shown in Figure 4b. Here, Qouter, Qmiddle and Qinner

are 16,000, 120 and 1000 µL/h, respectively. The drop diameter is about 129.5 µm. According to the
relationship between the relative shell thickness 2h/d and Qmiddle/Qinner shown in Figure 3, we can
derive the shell thickness of the double-emulsion drop is 2.4 µm. Then, the KCl concentration of the
suspending medium is double diluted by adding 1 wt% PVA solution every 30 min. Here, the dilution of
the KCl concentration in the suspending medium induces the varying osmotic pressure between inner
cores and the suspending medium, resulting in the osmolality-controlled swelling of the inner core.
Meanwhile, the drop size is measured before every dilution process, as shown in the optical images in
Figure 4b–d. After five times dilution, finally, the diameter of the double-emulsion drops increases from
129.5 to 360 µm along with the osmolality-controlled swelling process. Knowing the initial diameter,
shell thickness and the swelled diameter of the double-emulsion, the shell thickness of the swelled
emulsion can be derived geometrically, the value of which is 300 nm. As a result, the shell thickness of
the emulsion decreases from 2.4 µm to about 300 nm, indicating that the osmolarity-controlled swelling
method enables the mass production of microcapsules with ultra-thin-shell.

3.2. Measuring of the Shell Thickness

To evaluate the shell thickness of the double-emulsion drop after swelling, scanning electron
microscope (SEM) imaging is the most direct way to get this value [8,36,40]. However, it needs expensive
SEM equipment and multiple operations to take SEM images. In other way, if we know the initial
data (diameter and shell thickness before swelling) and the swelled diameter of the double-emulsion
drop, the shell thickness of the swelled emulsion drop can be derived geometrically, as demonstrated
in Section 3.1. In some cases, however, the initial data of the original capsules are missing or not
attainable, leading to the difficulty in calculating shell thickness. Here, we present a simple and useful
strategy to quickly derive the shell thickness by measuring the volume of oil shell phase after the
emulsion drop rupturing. As a comparison, the original emulsion drops are generated using the same
flow rates with Section 3.1, the diameter and shell thickness of which are 129.5 and 2.4 µm, respectively.
Time-lapse microscopy images in Figure 5 show the rupture process. Methylene blue is dissolved into
the inner core as a dye for better visualization. When the emulsion drop is swelling to about 360 µm
in diameter, the drop is triggered to rupture by applying an alternating electric field as described in
Section 2.4. From 0.5 s, the aqueous core of the emulsion drop sprays out because of the interfacial
tension, and the oil shell shrinks into a wrinkled membrane. At about 35 s, most of the inner phase
is discharged from the core. The empty oil shell assembles into a spherical drop under the action of
surface tension. After 75 s, the oil shell transformed into a tiny oil drop with a diameter of 64 µm.
By comparing the diameters of the oil drop after rupturing and the double-emulsion drop before
rupturing, we can readily figure out the shell thickness of the swelled double-emulsion drop, which
is about 338 nm. This indicates that the shell thickness evaluated using the drop rupturing method
(338 nm) is in good agreement with that derived geometrically (300 nm).
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Figure 5. Time-lapse microscopy images showing the rupture process of the W/O/W double-emulsion
drop. A digital charge coupled device (CCD) camera (Retiga 2000R, Qimaging) is used to take these
images. Scale bar is 200 µm.

3.3. Curing Process – Transform the Double-Emulsion Drops to Solid Core-Shell Microcapsules

For some situations, the emulsion drops need to be transferred to microcapsules for long-term
observation and thin shell buckling investigation [35]. Herein, we cure the PDMS shell at 37 ◦C for
24 h to obtain the microcapsules with highly robust ultra-thin shells, as the schematic illustration
shows in Figure 6a. An number of solid microcapsules with an ultra-thin shell after thermal curing is
shown in Figure 6b. As can be seen in Figures 2b and 6b, the size distribution of the double-emulsion
drops (polydispersity of 2.35%) and swelling produced ultra-thin-shell microcapsules (polydispersity
of 2.56%) shows good uniformity, clearly indicating that the osmolality-controlled swelling method
for mass production of ultra-thin-shell microcapsules is feasible and efficient. Furthermore, the solid
ultra-thin-shell microcapsules can maintain their intact spherical shape for up to 1 year with no rupture
in our long-term observation, indicating that the ultra-thin-shell PDMS microcapsules are robust as
vesicles for long-term encapsulation and observation.
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To demonstrate the uniformity of the shell thickness, we compress the ultra-thin-shell
microcapsules by imposing a strong osmotic pressure. When these ultra-thin-shell microcapsules
are placed in a suspending medium with KCl concentration of 0.5 mol/L, the inner aqueous phase
diffuses out from the PDMS microcapsules, resulting in a volume shrinkage of the microcapsules.
As the shrink process goes on, wrinkles develop on the ultra-thin-shell microcapsules. After 30 min,
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wrinkles with remarkable uniformity grow up on the shell of microcapsule, as shown in Figure 6c.
Direct observation of uniform wrinkling on the surface of the ultra-thin-shell microcapsules after
osmolality-controlled shrink confirms that the shell thickness of the microcapsules is ultra-thin and
relatively uniform. We believe this kind of ultra-thin-shell PDMS microcapsule is an attractive template
for studies of folding, buckling and rupturing behaviors of spherical thin films.

4. Conclusions

In this study, an osmolarity-controlled swelling method is presented to generate highly
monodisperse microcapsules with an ultra-thin shell via W/O/W double-emulsion drops templating.
The shell thickness of the emulsion drops can be tuned precisely off-chip through osmolarity-induced
swelling of the emulsion drops. Here, this swelling process is simply controlled by the osmotic pressure
between the inner aqueous and the suspending medium. Using this method, a shell thickness of
hundreds of nanometers can be developed. Furthermore, after a thermal-curing process, the emulsion
drops can be transformed to ultra-thin-shell microcapsules, which can maintain their intact spherical
shape for up to 1 year with no rupture in our long-term observation. This method enables the
mass production of microcapsules with ultra-thin shells, which are robust as vesicles for long-term
encapsulation and observation, and attractive templates for studies of folding, buckling and rupturing
behaviors of spherical thin films.
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