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Abstract

Background: Among Myc family genes, c-Myc is known to have a role in neural crest specification in Xenopus and in
craniofacial development in the mouse. There is no information on the function of other Myc genes in neural crest
development, or about any developmental role of zebrafish Myc genes.

Principal Findings: We isolated the zebrafish mych (myc homologue) gene. Knockdown of mych leads to severe defects in
craniofacial development and in certain other tissues including the eye. These phenotypes appear to be caused by cell
death in the neural crest and in the eye field in the anterior brain.

Significance: Mych is a novel factor required for neural crest cell survival in zebrafish.
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Introduction

Myc genes function in cellular proliferation by regulating cell

cycle progression, apoptosis, and cell transformation. Myc factors

are thought of as regulators of gene transcription that activate or

repress multiple target genes [1,2,3,4,5]. Myc proteins have two

recognized functional domains, the N-terminal domain (NTD)

and the C-terminal domain (CTD). The CTD contains a basic

helix-loop-helix leucine zipper (bHLH-LZ) motif that is necessary

for target DNA binding and regulation of gene expression. The

Myc NTD contributes to the control of transcriptional activation

or repression of downstream target genes [6,7,8,9]. While the role

of the Myc family in cell proliferation and cancer has received

wide attention, comparatively less is known about its develop-

mental functions.

Neural crest cells originate at the edge of the neural plate and at

the dorsal aspect of the neural tube, and migrate to many locations

where they differentiate into a great variety of cell types [10]. In

Xenopus, c-Myc is expressed in early premigratory neural crest cells,

and inhibition of its expression results in a loss of neural crest

precursor cells and their derivatives [11]. The function of c-Myc in

the neural crest involves Id3, a gene likewise expressed in neural

crest precursors [12]. In the mouse, conditional inactivation of c-

myc using Wnt1-Cre for targeted inactivation, led to skull, middle

ear, and coat pigmentation defects [13]. These findings implicate

c-Myc in the regulation of neural crest formation in the mouse. In

zebrafish, Myc genes have been cloned and their expression has

been reported [14,15]. Here we present isolation of a novel

member of the family, mych (for nomenclature see Zebrafish

Information Network: http://zfin.org), and report its expression

pattern and a functional analysis using morpholino-based

depletion. Mych knockdown embryos experience excess apoptotic

cell death in the neural crest population and in anterior brain.

Subsequently, pharyngeal arches failed to develop properly and

the eyes were smaller than normal and lacked laminar organiza-

tion. Thus, mych function is required in neural crest and eye cell

survival and development.

Results

Isolation of full-length mych cDNA and sequence analysis
of Mych protein

A partial mych cDNA was identified previously in an in situ

hybridization-based gene expression screen [16]. We cloned full-

length mych containing 1,975 base pairs (bp) using the 59- RACE

method. The cDNA predicts a 360-amino acid protein that

contains a bHLH-LZ domain with high sequence identity with the

CTD of vertebrate N-myc and C-myc proteins (57%–72%)

(Fig. 1D). However there is only 39–57% identity in the NTD of

Mych as compared to other Myc family proteins, and the amino

acid sequences of the entire proteins are only 36–38% identical. A

phylogenic tree of the Myc family based on the CTD shows that

Mych is located between the c-Myc and N-Myc clusters, closer to

N-Myc (Fig. 1C). The mych gene is located on chromosome 6

according to the Sanger genome center, version Zv7 (http://www.

ensembl.org/Danio_rerio/index.html; Zv7 Scaffold638, contig

BX649289.11), and confirmed by radiation hybrid mapping using

the LN54 panel [17] (Fig. 1A). To address the intracellular

localization of Mych protein, a Flag-tagged mych construct was

transfected into NIH3T3 cells; the protein localized in the nucleus,

as is generally true for Myc family proteins (Fig. 1B).
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Dynamic and specific expression of mych during early
development

The expression of mych in developing zebrafish embryos was

examined by whole mount in situ hybridization. Maternal

transcripts are broadly expressed and appear to persist at least

through blastula stages (Fig. 2A). After shield formation, mych

expression is excluded from the dorsal marginal area but is

retained in the future prechordal plate region (Fig. 2B). During

gastrulation, mych transcripts are found in distinct dorsal and

ventral expression domains in the embryo (Fig. 2C,C9). To

interpret the early brain expression pattern of mych, we carried out

double staining with eye, tectum, and prechordal plate markers,

using mab21l2, dmbx1a/mbx, and ctsl1b/hgg1 [18,19,20]. At the 3-

somite stage, mych is expressed in the eye field (Fig. 2E,E9,F,F9),

midbrain (Fig. 2F,F9), and prechordal plate (Fig. 2G,G9). The

bilateral expression of mych in the hindbrain was analyzed by

double staining with egr2b/krox20, a marker for rhombomeres 3

and 5. Mych is expressed in rhombomere 4 (Fig. 2I), and this

expression is strongly increased in the neurogenic mutant mibta52b

[21], suggesting that mych transcripts are present in neuronal cells

in rhombomere 4 (Fig. 2H). Mych expression in the presumptive

hindbrain begins at 90% epiboly (data not shown), and thus the

gene is a very early marker for this region. During mid-

segmentation stages mych is mainly expressed in the eye, midbrain,

and somites (Fig. 2J,K). At 24hpf, mandibular, hyoid, and

branchial arch expression increases (Fig. 2L), and eye expression

is detected primarily in the photoreceptor layer at 36hpf (Fig. 2M).

At 72hpf, brain, heart and gut show strong mych expression

(Fig. 2N,O). To test whether mych is expressed during neural crest

development we carried out two-color in situ hybridization with

early neural crest marker foxd3 [22] and the pharyngeal arch

marker dlx2a [23]. At the 4-somite stage, foxd3 and mych are

colocalized in the region of the premigratory neural crest

(Fig. 2P,Q), and at 32 hpf colocalization with dlx2a was seen in

the pharyngeal arches (Fig. 2R,S). These observations indicate a

wide but differential expression pattern for mych during embryonic

development in the zebrafish.

Mych knockdown phenotypes
To study the function of mych in embryonic development, we

used two morpholino oligonucleotides targeted against the 59-

untranslated region of the mRNA (UTR MO) and against the

intron 1 splice donor site (SP MO). To determine MOs specificity,

UTR MO was coinjected with mRNA for a fusion protein of

Mych and GFP, showing a loss of GFP expression (Figure S1A,B).

The SP MO specificity is examined by RT-PCR, using two sets of

primers flanking the intron; the results show effective suppression

of splicing (Figure S1C,D,E). Mych UTR MO injected embryos

showed widening of the future trunk region at the 3-somite stage

(75%, n = 109) (Fig. 3B and Fig. 4L,N) compared to control MO-

injected embryos (5%, n = 77) (Fig. 3A and Fig. 4K,M). At 24hpf,

UTR MO and SP MO-injected embryos (80%, n = 72) had a

Figure 1. Characterization of mych and comparison of verte-
brates Myc proteins. A. Radiation hybrid mapping determined the
location of mych on chromosome 6. B. Nuclear localization of Flag-
Mych protein (green) in NIH3T3 cells; nuclei were stained with DAPI
(blue). C, D. Evolutionary comparisons. H, human; M, mouse; X,
Xenopus; Z, zebrafish. C. Phylogenic tree of Myc family proteins. D.
Amino acid sequence alignments of the C-terminal regions containing
highly conserved basic helix-loop-helix domains. Amino acid identities
are shown in color, with the basic, helix-loop-helix, and leucine-zipper
domains marked in green, red, and blue, respectively. The GenBank
Accession Number for mych is EU232118.
doi:10.1371/journal.pone.0002029.g001

Figure 2. Detection of mych transcripts by in situ hybridization.
A. Dorsal view of 8-cell stage embryo. B. Double staining of mych (blue)
and gsc (red) at the shield stage; arrowhead points to the shield. C-C’.
Lateral (C) and anterior dorsal (C’) views of 80% epiboly stage. Red
asterisk points to the anterior-dorsal area shown in C’. D–I. 3-somite
stage embryos. D. Dynamic expression of mych in the anterior brain
region. E-E’. Double staining with mab21l2 (red) as a marker for eye and
midbrain. F-F’. Double staining with dmbx1a (red) as marker for eye
field and midbrain; red arrowhead indicates eye field. G,G’. Co-
expression with ctsl1b (red), marking the prechordal plate. H-H’. Dorsal
view of HuC-positive neuronal cells (red) and mych staining (blue) in
wild type (H) and the mibta52b mutant (H’). I. Rhombomeres 3 and 5 are
marked by egr2b (red), while mych stains the anterior part of
rhombomere 4. J–K. Dorsal views of 10-somite stage embryo showing
mych expression in the eye and midbrain (J) and in trunk somites (K). L.
Lateral view of mych expression in the brain and pharyngeal system at
24hpf; mandibular (m), hyoid (h), and branchial (b) arches are indicated.
M. Expression of mych in the eye at the 36hpf. Arrowhead points to
presumptive photoreceptor cell layer. N. mych expression in the heart
and intestine (int; magnified in O) at 72hpf. P–Q. Co-expression with
foxd3 (red) at the 4-somite stage. The yellow open square area in P is
shown as a section in Q. R–S. Pharyngeal arch marker dlx2a (red in S) is
co-expressed with mych at 32hpf. b, branchial arch; e, eye; h, hyoid arch;
ht, heart; int, intestine; le, lens; m, mandibular arch; mi, midbrain; ov,
otic vesicle; pp, prechordal plate; r, rhombomere; s, somite.
doi:10.1371/journal.pone.0002029.g002
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small head and reduced trunk (Fig. 3C–F). To confirm that the

two MOs affect the same process we injected a combination of

half-maximal doses of each MO into the embryo and observed a

similar phenotype (Fig. 3L) (85%, n = 88). The phenotypes elicited

by each MO and by the combination of MOs were rescued by

coinjection of mych mRNA coinjection (Fig. 3I: 73% rescued,

n = 65; Fig. 3M,N: 85%, n = 94; Fig. 3O: 70%, n = 68). Head and

eye defects were also seen at later stages (Fig. 3G–H,J–K), and

layering of the retina failed to develop normally in the UTR MO-

injected embryos at 48hpf (Fig. 3J9,K9).

Suppression of mych affects expression of anterior brain
markers

To further analyze the mych UTR MO phenotype we carried

out in situ hybridization using early brain markers. During

gastrulation the expression of hesx1/anf, six3a, otx2, and zic1/opl

were dramatically reduced in intensity and in the size of their

expression domains (Fig. 5A–H). The regions marked by these

genes contribute to the specification of the eye territory and the

telencephalon [24]. By comparison, the reduction in the

expression of hoxb1b in the posterior hindbrain and eve1 in the

future trunk-tail were only slightly reduced in mych MO-injected

embryos (Fig. 5I–L). Reduced anterior development in mych MO-

injected embryos was also seen at the 3-somite stage. Mab21l2 and

dmbx1a, marking the eye and midbrain anlagen, were reduced in

size and expression level in mych MO-injected embryos (Fig. 4A–

D), while the eye-specific gene rx3 showed a size but not intensity

reduction (Fig. 4G,H). In contrast, the diencephalon marker barhl2

was not altered by mych MO injection (Fig. 4E,F).

In addition to genes that mark the anterior neural plate we also

tested posterior brain and trunk markers after injection of mych

MO. Double staining with pax2a and egr2b in the mid- and

hindbrain indicates that these areas were not greatly affected by

mych MO, although egr2b expression in rhombomere 5 is reduced

Figure 3. Mych morphant phenotypes. A–B. Group image of 3-
somite stages. Mych MO-injected embryos (B) have reduced anterior
and caudal regions compared to control MO-injected embryos (A). C–F.
Lateral view of 24hpf MO-injected embryos; (C,D) Control, (E) mych UTR
MO, (F) mych SP MO. G–H, J–K. Lateral (G–H) and ventral (J–K) views of
control (G,J) and mych UTR MO injected embryos (H,K) at 72hpf.
Arrowhead in G points to the eye. Methyl green stained sections of the
eye are shown as insets (J’,K’).Yellow arrowhead in J’ indicates ganglion
cell layer, and red arrow indicates photoreceptor cell layer of control
embryos; mych UTR MO-injected embryos show no retinal layering. F,I.
Lateral view of 24hpf mych SP MO injected embryo (F), and embryo
rescued by coinjection of mych mRNA (I). L,O. Embryo injected with
mych UTR MO (2ng) plus mych SP MO (2.5ng) at 24hpf (L), and rescued
embryo after coinjection of mych mRNA (O). M–N. The phenotype of
mych UTR MO-injected embryos (M) was rescued by mych mRNA (N), as
seen at 24hpf. h, heart.
doi:10.1371/journal.pone.0002029.g003

Figure 4. Mych MO affects multiple regions at the 3-somite
stage. A–P. Lateral views (A–H) and dorsal views (I–P) of control MO-
injected (A,C,E,G,I,K,M) and mych MO-injected embryos (B,D,F,H,J,L,N).
Mab21l2 (A–B’) as eye anlage and midbrain marker; dmbx1a (C–D’) as
eye territory and tectum marker; barhl2 (E,F) as diencephalon marker;
rx3 as eye field marker. (I–J) double label with pax2a (red) and egr2b
(blue). (K–P). Embryos were examined using four probes, ctsl1b (red),
dlx3b (blue), ntl (blue), and pcdh8 (red). (O–P) mych MO-induced defects
were rescued by co-injection with mych mRNA. lnp, lateral neural plate;
mi, midbrain; n, notochord; pp, prechordal plate; r, rhombomere; psm,
pre somitic mesoderm.
doi:10.1371/journal.pone.0002029.g004
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(Fig. 4I,J). Further, these markers suggest a widening of the axis, as

also seen in unstained embryos (Fig. 3B). Such widening was

further illustrated by using probes that label the polster (future

hatching gland; ctsl1b), neural plate boundary and placodal anlage

(dlx3b), the notochord (ntl), and early somites (pcdh8/papc). All of

these markers were expressed in approximately normal patterns in

the experimental embryos except that a widened axis was seen in

82% (n = 89) of mych MO-injected embryos, whereas 92% (n = 45)

of control MO-injected embryos were normal (Fig. 4K–N). This

axis abnormality was fully rescued by coinjection of mych mRNA

(85% normal, n = 80) (Fig. 4O,P).

Early neural crest specification requires Mych function
Mych is expressed in the mid- and hindbrain at early neural plate

stages including the preplacodal regions (Fig. 2), and specifically in

the early neural crest as seen by overlapping staining with the crest

marker foxd3 (Fig. 2P,Q). This pattern suggests a possible function

in neural crest specification which proceeds at this stage at the

junction between the neural and non-neural ectoderm [25]. We

tested the effect of injection of mych MOs on the expression of early

neural crest marker foxd3 (Fig. 6A–F). The foxd3 expression is

dramatically reduced by mych UTR MO (Fig. 6B), SP MO (Fig. 6

C), and combination of half-maximal dose of both MOs (Fig. 6E).

We also tested several early neural crest markers such as snail1a,

sox9b, and sox10 found them dramatically reduced in the midbrain

region and completely lost in the hindbrain and trunk neural crest

regions (Fig. 6G–L). To visualize the cellular context of the

reduction in the expression of these genes we sectioned foxd3-

stained embryos (Fig. 6M,N). The foxd3 positive cells in the mych

MO embryo contain a reduced number of neural crest cells and a

reduced thickness of the region at the neural plate-to-epidermis

boundary (Fig. 6M9,N9). We suggest that the inhibition of Mych

Figure 5. Reduced expression of early anterior brain markers
after mych MO injection. A–J. Dorsal views (A–J) and lateral views
(K–L) of control MO-injected (A,C,E,G,I,K) and mych UTR MO-injected
embryos (B,D,F,H,J,L) at the 80% epiboly stage. The probes are
indicated.
doi:10.1371/journal.pone.0002029.g005

Figure 6. mych MO impairs early neural crest induction. A–F.
Dorsal view of foxd3 expression at 4-somite stage embryos. Embryos
injected with 4ng of mych UTR MO (B), 5ng of mych SP MO (C), or 2ng of
mych UTR MO (B) plus 2.5ng of mych SP MO (C) showed reduced foxd3
expression. This phenotype was rescued by mych mRNA coinjection
(D,F). G–L. Dorsal view of control MO-injected (G,I,K) and mych UTR MO
injected embryos (H,J,L) hybridized to snail1a (G,H), sox9b (I,J), and
sox10 (K,L). M–N. Sections of the foxd3 expression region of cont MO
(M,M’) and mych UTR MO (N,N’) injected embryos. Red asterisks in A and
B indicate the location of transverse sections, and asterisks in M and N
indicate the regions magnified in M’, N’. h; hindbrain neural crest, m;
midbrain neural crest, tnc; trunk neural crest.
doi:10.1371/journal.pone.0002029.g006
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expression led to a loss of neural crest precursors in the embryo, as

supported by experiments below.

Mych knockdown disrupts pharyngeal arch development
At 24hpf, mych is strongly expressed in the developing

pharyngeal arches and maintained in this area for at least two

days of subsequent development (Fig. 2). We observed effects of

mych depletion on pharyngeal development by several approaches.

Whole mount in situ hybridization at 26hpf showed that dlx2a and

tbx1 expression was lost in the branchial arches, while defects in

the mandibular and hyoid arches were comparatively mild (Fig. 7A

and B, and data not shown). At 36hpf, hand2/dhand expression in

the branchial arches was likewise inhibited by mych MO

(Fig. 7C,D). Mesodermal and endodermal development was

likewise strongly inhibited after mych MO injection, as visualized

by tbx1 [26] at 45hpf (Fig. 7E,F). We also found a loss of myod

expression in MO-injected embryos, indicating a loss of pharyn-

geal muscle (data not shown). To test whether these defects lead to

loss of arch tissue, we injected mych MO into the fli1-eGFP

transgenic line in which the cranial neural crest is visualized by

GFP fluorescence [27]. A loss of branchial arches was seen,

whereas portions of the mandibular and hyoid arch structures

were maintained (Fig. 7G,H). These early pharyngeal defects lead

to the loss of most parts of the cranial cartilages while most of the

neurocranium was maintained, as seen by Alcian blue staining at

day 5 (Fig. 7I–L). These data indicate that Mych is required for

pharyngeal arch development in the zebrafish embryo.

Loss of mych leads to increased cell death in the early
neural plate

Myc family genes have been implicated in the regulation of cell

proliferation. Therefore we tested whether inhibition of mych

expression decreases cell division in the embryo. Using Phospho-

Histone H3 antibody to identify proliferating cells we found no

substantial difference between control and mych MO-injected

embryos (data not shown).

As the phenotypes resulting from mych depletion might also be

caused by cell death, we tested for cell death at different times

during gastrulation to segmentation stages. The earliest cell death

was observed at about the 80% epiboly stage in the anterior dorsal

region, with a moderate increase in the number of TUNEL-

positive cells (data not shown). At bud stage, mych MO-injected

embryos showed highly increased numbers of apoptotic cells,

especially at the lateral edge of the neural plate and in the brain

(65%, n = 67), as compared to control MO injected embryos, 95%

of which showed very low levels of TUNEL-positive cells (n = 45)

(Fig. 8A,B). The cell death phenotype was rescued by mych mRNA

(80% normal, n = 76) (Fig. 8C). In the neural plate of such

embryos at the 3-somite stage, a dramatic increase in TUNEL-

positive cells was observed in 85% (n = 45) of mych MO-injected

embryos (Fig. 8E,E9), as compared to 1% (n = 34) in control MO-

injected embryos (Fig. 8D,D9). Again this phenotype was rescued

by injection of mych mRNA in 80% (n = 65) of the embryos

(Fig. 8F,F9). For statistical analysis, we counted the number of

TUNEL-positive cells in the anterior neural plate in 20 embryos

for each injection condition; the changes are highly significant

(Fig. 6G). These data indicate that mcyh is important for the

survival of neural plate cells in early embryo development.

Discussion

We have isolated the mych gene as a novel member of the Myc

family in zebrafish, and have shown that it is involved in the survival

of cells in the neural plate including the region from which the neural

crest is derived. Zebrafish Myc family genes, including c-myc, N-myc,

L-myc and max have been isolated previously and the distribution of

their transcripts has been reported [14,15]. The Mych protein is

related to other Myc proteins, showing low sequence similarity in the

N-terminal Myc domain (NTD), but high similarity in the bHLH-

LZ domain. As other Myc proteins, Mych is localized in the nucleus

and may therefore function as a transcriptional factor (Fig. 1). Mych

mRNA is expressed maternally, is restricted to a dorsal and a ventral

domain at gastrulation, and later shows a dynamic expression

Figure 7. Multiple defects in pharyngeal arch development
caused by mych MO. Control MO (A,C,E,G,I,K) and mych UTR MO-
injected embryos (B,D,F,H,J,L). A–B. Lateral view of dlx2a expression in
mych UTR MO-injected embryos at 26hpf (B). C–D. Ventral view of
expression of hand2 at 36hpf. E–F. Ventral view of tbx1 expression at
45hpf. G–H. Lateral view of fli1-eGFP transgenic line at 40hpf. I–L.
Lateral (I,J) and ventral (K,L) views of Alcian blue stained day 5 control
(I,K) and mych UTR MO-injected embryos (J,L). ch, ceratohyal, b,
branchial arch; e, ethmoid plate; g, gill arches; h, hyoid arch; hs,
hyosymplectic; ht, heart; m, mandibular arch; mc, Meckel’s cartilage; me,
mesoderm; pec, pectoral fin; pq, palatoquadrate.
doi:10.1371/journal.pone.0002029.g007
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pattern with a high level of expression in certain regions of the

anterior brain. For comparison we carried out in situ hybridization

with zebrafish c-myc and its binding partner max. Both were present

maternally and were later expressed in a very broad pattern (data not

shown). In contrast, nmyc1 expression was only zygotic, and its tissue

distribution in the endoderm, retina, midbrain, hindbrain and

branchial arches is similar to that of mych [15]. While the mych

expression pattern at gastrulation suggests an involvement of this

gene in dorsal-ventral patterning we found no substantial changes in

the expression of bmp2, chordin, and goosecoid in mych MO-injected

embryos (data not shown).

Inhibition of mych expression resulted in reduced size of the

anterior brain without major changes in patterning (Figs. 4 and 5).

At later stages we observed strongly reduced size of the head and

eyes. These phenotypes may be due to the fact that mych

knockdown greatly increases the level of cell death in the anterior

neural plate (Fig. 8). While several tissues are affected in mych MO-

injected embryos, neural crest differentiation seemed especially

sensitive to the loss of Mych function. Early markers of neural crest

differentiation were strongly reduced by mych knockdown (Fig. 6),

and the development of branchial arches was severely disrupted,

while the effect was less extensive in the mandibular and hyoid

arches (Fig. 7). Neural crest cells arise at the border of neural and

non-neural domains, and subsequently migrate to multiple target

organs [10]. After migration into the pharyngeal arches, neural

crest cells undergo condensation and chondrogenic differentiation

to form the cartilage elements of the developing craniofacial

skeleton. Expression of mych is maintained in these regions during

their differentiation. A function for mych is supported by the

observation that knockdown of its expression causes reduction of

known regulatory genes in the branchial arches, such as dlx2a, and

ensuing morphological malformations (Fig. 7). These effects may

be a consequence of the increased apoptosis in mych MO-injected

embryos, as disruption of branchial arch development in

conjunction with apoptosis as a result of loss of Ap2 transcription

factor has been observed previously in zebrafish [28,29]. The

specific involvement of Myc family genes in neural crest

development has been studied in Xenopus and in the mouse. In

Xenopus, c-Myc is involved in early neural crest specification [11],

and conditional deletion of c-Myc in the mouse results in neural

crest defects, including reduction of skull size and deficits in coat

pigmentation and hearing [13]. In Xenopus, c-Myc appears to have

a role in maintaining neural crest stem cells by acting through its

target Id3 to prevent premature differentiation [11.12]. Zebrafish

often contains additional members of gene families as compared to

tetrapods, due to a genome duplication during evolution [30]. The

resulting paralogs often have partly overlapping, partly distinct

functions that together correspond to the functions of the single

ortholog in other vertebrates. Therefore it is possible that in

zebrafish mych takes on some of the functions carried out by N-Myc

and c-Myc in Xenopus or the mouse. Such a model might explain

the role of mych in neural crest development, although it is not

clear whether the molecular function of mych in zebrafish is similar

to that of c-Myc in Xenopus. In spite of this uncertainty, the

requirement for mych function in zebrafish neural crest develop-

ment supports the view that Myc family members are essential

regulators of neural crest development in all vertebrates.

Materials and Methods

Fish strains
Wild type zebrafish strains AB* were maintained according to

The zebrafish book: A Guide for the Laboratory Use of Zebrafish

(Danio rerio) [31]. The mibta52b mutant line was obtained from Ajay

Chitnis, and homozygote fli1-eGFP y1 transgenic line from Brant

M. Weinstein.

Isolation of full-length mych cDNA and RH mapping
The original partial clone 5144 [16] contains 1.6 kb, and was

extended to 1.9 kb full-length mych cDNA using the SMART RACE

cDNA Amplification Kit (ClonTech). Radiation hybrid mapping

was done with the LN54 panel [17], using two primer sets: (1)

Forward 59-GCCGCAAGGAGGATCTGCGGACTT-39, Reverse

59-AGATACTAAC TCCAGCTGGTCCAC-39; and (2) Forward

59-TCGCCGACGTTTTCCGTCTACTTT-39, Reverse: 59-

CAGTTGGAGAAAGTCTGTGTCCTC-39. Amino acid se-

quence comparisons and phylogenic tree analysis were carried out

with DNASIS MAX version 2.0 (MiraiBio, Hitachi software).

Figure 8. Mych depletion results in apoptosis in the early neural
plate. A–F’. Detection of cell death by TUNEL assay. Lateral views
(D,E,F) and dorsal views (A,B,C,D’,E’,F’) of control MO (A,D,D’), mych UTR
MO (B,E,E’), and rescued embryos that received mych UTR MO and
mRNA (C,F,F’) at the bud (A–C) and 3-somite stage (D–F’). Arrows in B
point out TUNEL positive cells at the lateral edge of the neural plate. An
arrowhead in B indicates TUNEL positive cells in the neural plate.
Bracket in D and D’ indicates the anterior neural plate region in which
TUNEL-positive cells were counted. The results are shown in G. Average
numbers of positive cells per embryo were obtained by counting 20
embryos in each group. For both comparisons p,0.01: Cont MO vs.
mych MO: p = 5.27e-14; mych MO vs. rescue: p = 4.87e-17.
doi:10.1371/journal.pone.0002029.g008
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RT-PCR analysis
To isolate to total RNA, 20 each of cont MO and mych SP MO

injected embryos were collected and isolated using TRIzol reagent

(Invitrogen). The first-strand cDNA synthesis was performed

SuperScript III First-Strand System (Invitrogen). RT-PCR reactions

accomplished using two following sets of primers: Forward

F1-CTGGACTGCCACAC CGCGGCGCTCGCCTG/Reverse

R1-GCTGGAGCGCCGCACCGTCACCACATC; Forward F2-

GACAGCCAGGAGCAGATCGAATCCAC/Reverse R2-GCA-

CGCTGCT GCTCCCGCCGGCTGTCCTC. The amplified

genomic DNA were confirmed by sequencing analysis.

Whole mount in situ hybridization
Whole mount in situ hybridization and two-color in situ

hybridization performed as previously described [32]. Both

digoxigenin- and fluorescein-labeled antisense RNA probes were

generated using an RNA labeling kit (Roche).

mych MO and rescue mRNA injection
Antisense oligonucleotide Morpholinos (MO) were designed

and obtained from Gene Tools, LLC. The mych 59untranslated

MO (UTR MO) does not contain AUG translation start site

sequences. The sequence of the UTR MO is 59- ACTGTGGT-

GATAAAAGT AGACGGAA-39, The mych splicing MO was

designed splicing donor region of intron between exon 1 and exon

2 (Figure S1 C). The sequence of the SP MO is 59-GCAAAAGA

CTCACCAGAATCGCTAG-39, the control MO is 59-CCTC-

TTACCTCAGTTACAATT TATA-39. In all experiments 10ng

of Control MO, 4ng of mych UTR MO, and 5ng of SP MO were

injected into one-cell stage embryos. Full-length mych mRNA was

subcloned into pCS2+ or pCS2+-eGFP1 vectors and synthesized

by mMessagemMachine SP6 Kit (Ambion), and 30 pg mRNA per

embryo were injected in rescue experiments.

TUNEL assay and immunocytochemistry
TUNEL assay was performed as described previously [32]. The

localization of Mych protein was determined after transfection of

flag-tagged mych DNA into NIH3T3 cells using FuGENE 6

tranfection reagent (Roche). We used 1:1000 dilution of the mouse

mono clonal anti-flag antibody (Sigma), and 1:2000 dilution of

mouse Alexa 488 (Invitrogen) as a secondary antibody. DAPI was

used to stain nuclei. The images were scanned in a Zeiss LSM 510

confocal microscope.

Alcian blue and Methyl Green staining
Pharyngeal cartilage staining was carried out as previously

described [32] using Alcian blue (Sigma). The 0.5% methyl green

(Sigma) solution was prepared in 0.1 M sodium acetate buffer

(pH 4.2). After 5 minute staining, samples were rinsed in water

and dehydrated in 95% ethanol.

Histology
For sections, dehydrated embryos were embedded in JB-4

plastic resin (Polyscience Inc.), and 7 mm sections were obtained

using a Leica RM2165 microtome. The two-color double staining

sample was embedded with 10% gelatin (Electron Microscopy

Sciences) in 1XPBS and section was performed using a Vibratome

3000 (Ted Pella Inc.) with 10 mm thickness.

Supporting Information

Figure S1 Mych MO specificity. A–B. Mych:GFP signal

detection at the bud stage after injection with (B) or without (A)

mych UTR MO. C. Schematic drawing of mych SP MO design

and two different sets of RT-PCR primers. D–E. RT-PCR shows

that the SP MO eliminates the normal mature mRNA band.

Embryos were collected at the 3-somite stage.

Found at: doi:10.1371/journal.pone.0002029.s001 (8.19 MB TIF)
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