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Abstract
The Maximum Hardness Principle – and its reformulation by Chattaraj as the Minimum Polarizability Principle – is an im-
mensely useful concept which works in support of a chemical intuition. As we show here, it may also be used to rationalize the
scarcity of high-temperature superconductors, which stems – inter alia – from rarity of high-density of state metals in Nature. It is
suggested that the high-temperature oxocuprate superconductors as well as their iron analogues – are energetically metastable at
T➔ 0 K and p ➔ 0 atm conditions, and their tendency for disproportionation is hindered only by the substantial rigidity of the
crystal lattice, while the phase separation and/or superstructure formation is frequently observed in these systems. This hypothesis
is corroborated by hybrid density functional theory theoretical calculations for Na- (thus: hole) or La- (thus: electron) doped
CaCu(II)O2 precursor. Non-equilibrium synthetic methods are suggested to be necessary for fabrication of high-temperature
superconductors of any sort.
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The dream of room-temperature
superconductivity

Superconductivity is a fascinating collective quantum phe-
nomenon which consists of unhindered transport of electric
current (supercurrent) through a solid [1]. Superconductivity
finds many uses, including construction of powerful magnets,
fast processors, and Superconducting Magnetic Energy
Storage devices, but its most important economic aspect is

that it helps to save vast amount of money (or fossil energy
resources) if used for transfer of large densities of electric
current. To date, superconducting cables have been success-
fully applied when placed between the power plant and the
energy distributing centers at the city outskirts, as in Detroit
[2] or Essen; mega amperes of electric current density may be
safely transmitted using this technology (http://www.aist.go.
jp/aist_e/list/latest_research/2018/20180305/en20180305.
html). The widespread use of the superconductor technology
is, however, limited by the relatively low superconducting
critical temperature, TC, values, for most types of
superconductors known; this prevents superconducting
cables to be used at ambient temperature conditions. The
current TC record is 138 K (at 1 atm; for oxocuprate material
[3]) and 203 K (at impractically high pressure exceeding 2
mln atm; for sulfur-hydrogen system [4]). As comfortable
illusions are unfold of the energy- and cost-saving world, the
quest for the room-temperature superconductor continues and
keeps attracting many new acolytes of science.

Regretfully, as one may readily notice, there is currently
just one family of high-TC superconductors at 1 atm condi-
tions, i.e. oxocuprates, the Bhigh-TC Blabel being traditionally
defined as TC > Tboil(N2) [5]. As the world is filled with zil-
lions of low-TC materials, encompassing virtually any chem-
ical class of alloys and chemical compounds (including
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organic ones), this scarcity of high-TC materials is striking and
disturbing. Indeed, collective quantum phenomena such as
superfluidity or superconductivity may too easily be destroyed
by thermal excitations. While hope never dies and many re-
searchers show considerable optimism (https://www.
houstonchronicle.com/local/history/medical-science/article/
Houston-scientist-Dr-Paul-Chu-upends-the-physics-8406495.
php), are there any rational reasons why the situation might be
considerably improved in the near future?

In this contribution we try to understand the scarcity of
high-TC - and even moderate-TC materials (77 K > TC >
23 K for Nb3Ge) - by applying the reasoning based on the
Maximum Hardness Principle (MHP) from Pearson [6].

The maximum hardness principle and its
application to metallic state

The Maximum Hardness Principle [6] – and its reformulation
by Chattaraj as the Minimum Polarizability Principle [7] – is
an immensely useful qualitative concept which works in sup-
port of a chemical intuition, and it may be applied to a vast
array of important problems [8, 9]. The hardness in question,
η, is the electronic (and not mechanical) hardness, i.e. a mea-
sure of the ease of deformation of the electronic density.
Within the conceptual density functional theory (DFT) frame-
work, η is the second derivative of system’s energy with re-
spect to the number of electrons.

The MHP in its original formulation states that the chemi-
cal system adopts such geometry of nuclei that the associated
electronic hardness is maximized. This statement, first voiced
by Pearson [6], founder of the hardness concept [10], in fact is
a generalized form ofMHP, abbreviated here as GMHP [8, 9].
The GMHP does not universally hold and it cannot be proved,
since it has one important exception – namely it does not
apply to totally symmetric vibrations of the chemical system.
In other words, if a chemical system with a given nuclear
geometry (corresponding to equilibrium structure) is com-
pressed (squeezed) along the totally symmetric vibrational
coordinate, the hardness will inevitably increase.
Consequently, GMHP should be understood in more practical
sense in such a way that among all nuclear positions, which a
chemical system may freely adopt without any external con-
straints, the one which corresponds to a ground state usually
exhibits the largest electronic hardness; other less stable nu-
clear configurations (which may correspond to metastable
forms, i.e. isomers or polymorphs in the solid state) tend to
have smaller electronic hardness (cf. Ref. [8, 9] and numerous
examples from literature discussed therein). This behaviour is
nicely exemplified by elemental tin for which the semimetallic
gray form with the direct band gap of ca. 0.1 eV constitutes an
electronic ground state at T➔ 0 K, while the metallic white tin

(with closed fundamental band gap) is a high-energy poly-
morph, which is observed at ambient temperature conditions.

At the first sight any metal (with its band gap closed) is
infinitely soft. However, albeit any metal’s softness is large as
compared to those of semiconductors or insulators, it is in fact
finite. Yang and Parr have derived useful equation relating
hardness of a metal to the density of states, DOS, at its
Fermi level, EF [11]:

η ¼ DOS EFð Þ–1 ð1Þ

This intuitive formula informs that a metal which has many
electrons at its Fermi level (and thus ready to be used for
dielectric polarization) is softer than the one, which has only
small electron density available for the same reason. Majority
of known Bgood^ metals, such as Li or Cu, have very small
DOS(EF), which stems from appreciable width of electronic
bands in question. For example, valence and conduction band
dispersion in metals often exceeds 5 eVand at high pressure it
may surpass 10 eV. Consequently, most metals host charge
carriers with small effective mass; such light electrons do
not readily couple to lattice vibrations (phonons) of much
heavier atomic cores and thus, according to the BCS theory
of superconductivity [12], the prospect for high values of TC

in conventional metals is rather limited. Hence, as it has been
early noticed, the Bbetter^ the metal, the Bworse^ is TC in the
superconducting state. Consequently, to this day superconduc-
tivity has not been observed for the best metallic conductors
such as Cu, Au or Au, while the observation of the
superconducting transition for lithium (at T < 0.4 mK!) has
stirred the community [13].

Given the above, it may seem that the scarcity of high-
temperature superconductors may be rationalized simply by
the rarity of high-density of state metals in Nature – as request-
ed by the Maximum Hardness Principle [9]. Here we compu-
tationally test this hypothesis by calculating the crystal and
electronic structures as well as stability of the simplest parent
compound of an oxocuprate superconductor, the layered form
of CaCuO2 [14, 15], and its electron- and hole-doped ana-
logues. We also study the disproportionation tendency for
doped phases, as well as their electronic structures, and in
particular DOS(EF) values.

Methods

Density Functional Theory (DFT) calculations were per-
formed using the plane-wave VASP code (https://www.
vasp.at/) [16–19]. Both spin-polarized and nonpolarized
calculations were performed for all models containing
Cu(II) cations with d9 electronic configuration, namely for
CaCuO2 and its 12.5% hole- and electron-doped variants.
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Both sets of data are presented in this work. The hole- and
electron-doping was simulated by exchanging one of the
Ca(II) centers in a 2x2x2 CaCuO2 supercell (Z = 8) by
Na(I) and La(III), respectively. Two electronic solutions
were calculated for doped systems: a metallic solution with-
out any spin polarization, and a magnetic model. The mag-
netic model (see Fig. 2 left panel, below) consisted of
2x2x2 CaCuO2 supercell (Z = 8) with intralayer AFM or-
dering and FM coupling of the CuO2 layers. The same
magnetic structure was assumed for the hole- and
electron-doped CaCuO2 systems, while one of the eight
Cu centers in the supercell was left non-polarized to mimic
the changed electronic situation due to the hole (Cu(II) ➔
Cu(III)) and electron-doping (Cu(II)➔ Cu(I)), respectively.

All structural models were first optimized using the PBEsol
functional [20]. Then single-point total energy and electronic
density of states were calculated for the optimized models
using hybrid DFT functional HSE06 [21]. The thresholds for
electronic and ionic convergence were set to 10−7 and 10−5 eV,
respectively. In case of extremely computational resources-
demanding hybrid DFT calculations the threshold for elec-
tronic convergence was reduced to 10−5 eV. Plane-wave cutoff
energy was set to 520 eV, and k spacing to 0.2 Å−1. The
DFT + U structure optimizations utilized U(Cu3d) = 9 eV,
J(Cu3d) = 1 eV.

The crystal structures, which subsequently underwent full
structure and energy optimizations were taken from the ICSD
depository: structure No.86544 for CaCu(II)O2 [22], 80,561
for NaCu(III)O2 [23] and 18,102 for LaCu(I)O2 [24] (Fig. 1).

Results

Crystal structures for reference compounds

The unit cell of CaCuO2 optimized in its metallic state shows
the CuO bond length of 1.913 Å, thus not far from the exper-
imental value of 1.928 Å (Table 1).

The optimized unit cell vectors of NaCu(III)O2 and
LaCu(I)O2 also fall rather close to the experimental values;
and their discrepancies partially cancel out as far as volume
and relevant CuO bond lengths are considered.

Crystal structures of 1/8-doped compounds

Doping to [CuO2] sheets in cuprates may be realized via sev-
eral different approaches, such as introducing additional O or
F atoms to the structure (for hole doping), applying external
pressure (to inject charge from charge reservoir layers), or
performing isoelectronic substitution, e.g. La(III) ➔ Ba(II),
La(III) ➔ Sr(II), Ca(II) ➔ Na(I), Nd(III) ➔ Ce(IV), etc. The
last method is very elegant and it works well for many other
families of superconductors, such as bismuthates (Ba(II) ➔
K(I)), plumbates, etc. This type of doping may also rather
easily be reproduced using theoretical calculations for period-
ic systems (while assuming crystallinity i.e. ordering at the
dopant sites), and we have chosen to mimic this particular
method in our computational modelling approach.

Correspondingly, in a subsequent step, we have mimicked
the formation of the high-TC superconductor by substituting 1/
8 of Ca atoms in the CaCuO2 structure by either Na (this
corresponds to hole doping as 1/8 Cu(II) formally becomes
Cu(III)) or La (this stands for electron doping) [25]. The
choice of a doping level set at 1/8 comes from purely technical
reasons as such doping may easily be modelled in theory by
using of the 2x2x2 supercell of CaCuO2 (Z = 8) while still
keeping symmetry high [26–31]. Note that superconductivity
in oxocuprate materials arises for a quite broad doping level
(Bsuperconducting domes^), with TC maximized at doping
level close to 15–16% i.e. ±1/6 (which, simply, is less

Fig. 1 Crystal structures relevant to this work: infinite layer CaCu(II)O2 –
top left [22], NaCu(III)O2 – bottom left [23], and LaCu(I)O2 – right [24].
The Cu–O bonds were drawn, while other bonds were omitted

Table 1 Selected optimized and experimental (bracketed [22–24])
structural parameters of antiferromagnetic CaCu(II)O2, as well as
diamagnetic NaCu(III)O2 and LaCu(I)O2

Parameter CaCu(II)O2 NaCu(III)O2 LaCu(I)O2

a /Å 3.8255 (3.8555) 6.4614 (6.363) 3.8189 (3.83)

b /Å 3.8255 (3.8555) 2.7457 (2.753) 3.8189 (3.83)

c /Å 3.1517 (3.1798) 6.1846 (6.110) 16.8090 (17.10)

β /deg 90 (90) 122.632 (120.78) 90 (90)

V /Å3 46.125 (47.27) 92.402 (91.95) 212.300 (217.23)

R(Cu–O) /Å 1.913 (1.928) 1.834 (1.846) 1.795 (1.847)
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convenient to model than 12.5% adopted here). Thus, the
doped structures were calculated here using periodic boundary
conditions and assuming ordering of dopant atoms on a prim-
itive tetragonal lattice within the 2x2x2 supercell of CaCuO2.
Due to symmetry constraints this model does not permit a
genuine localization of Cu(I) or Cu(III) sites, which would
obviously be an undesired feature of the model.

At the doping level as small as 3% (for hole-doped mate-
rials) and around 10% (for electron-doped systems) the long-
range magnetic ordering disappears and superconductivity
arises, while the electronic state above the TC value corre-
sponds to a metal. Therefore, we have carried out calculations
for the 12.5%-doped phases.

The crystal structure model of 1/8-doped CaCu(II)O2 is
showed in Fig. 2 (right), and the respective optimized param-
eters are listed in Table 2.

As expected, the hole- or electron-doping to CaCuO2 by
substituting Ca(II) with nearly identically sized Na(I) or
La(III) cations, respectively [25], does not yield large struc-
tural changes to the rigid structures featuring a network of
rather covalent CuO bonds. However, although the changes
are small, yet they may be rationalized: introduction of holes
to the [CuO2] sheets (i.e. a partial depopulation of the Cu-O
σ* states) leads to a decrease of tetragonal lattice parameters
by some 0.02–0.04 Å thus to a simultaneous shorting of intra-
sheet CuO bond lengths by ca. 0.01–0.02 Å. On the other
hand, introduction of electrons to the sheets is reflected in
elongation of the tetragonal lattice parameter by up to ca.
0.03 Å, which translates to elongation of the CuO bonds (on
average) by up to half of this value. These changes nicely
agree with what is expected from molecular orbital theory
considerations, as bond elongation is expected upon gradual
population of the Cu-O σ* states. Additionally, the small
values of changes reflect the well-known rigidity of the
[CuO2] manifold.

In both cases (electron and hole doping) the value of unit
cell vector c slightly increases; this is supposedly due to a

slightly larger size of the dopant cations as compared to pris-
tine Ca(II); c increases so that the strain may be relaxed.
However, the net effect of all these changes on volume of
the unit cell is relatively small: −0.5% for Na-doping and +
2.2% for La-doping.

Energetics of the formation reaction

Of immediate interest is energetics for the reaction:

1=8 MCuO2

þ 7=8 CaCuO2➔ MCuO2ð Þ1=8 CaCuO2ð Þ7=8: ð2Þ

Table 3 lists the calculated energies of the substrates and
products of this reaction separately for M =Na and M = La,
without zero-point vibrational energy correction (which is
usually very small except for hydrides), as well as reaction
energy (Eq. 2).

It is clear from Table 3 that the formation of metallic (as
follows from spin-unpolarized calculations) (MCuO2)1/
8(CaCuO2)7/8 from 1/8 MCuO2 and 7/8 CaCuO2 precursors
is energetically uphill by quite a substantial energy. For M =
Na this energy is nearly identical to the energy difference
between the metallic and antiferromagnetic form of
CaCuO2, calculated here to be −0.382 eV. For M = La the
energy of reaction is even larger than that, by ca. 0.02 eV.
Although our initial model of the doped phases assumed their
metallic character (with no magnetic interactions whatsoever),
it is clear that even if short-range antiferromagnetic interac-
tions are still present in the Bweirdmetal^ (electronic form of a
superconductor for T > TC) yet the energy gain associated
with these interactions may only constitute a fraction of the
−0.382 eV stabilization energy; ergo, the doped metallic
phases are not stable in terms of energy with respect to pre-
cursors at the left hand side of reaction equation, Eq. 2.

Fig. 2 (left) Magnetic model used in spin-polarized calculations of
CaCuO2 and its doped variants. The small red balls are oxygen atoms,
and light and dark blue balls represent Cu atoms with spin up and down,
respectively (he biggest light-blue ball represents Cu center, on which a

hole (or an extra electron) was imposed. The cationic layers (containing
Ca, La and Na) are left out for clarity). (right) Optimized crystal structure
of 1/8-doped CaCu(II)O2: dopant atoms sit in (0,0,0) and to allow for this,
the original CaCuO2 cell contents is shifted by the (0.5,0.5,0.5) vector
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Indeed, this is confirmed by our calculations involving spin
polarization, which yield (MCuO2)1/8(CaCuO2)7/8 energeti-
cally uphill with respect 1/8 MCuO2 and 7/8 CaCuO2 by
0.14–0.15 eV; this means that about 2/3 of magnetic interac-
tions are preserved in the doped systems, which, however, is
insufficient to energetically stabilize the (MCuO2)1/
8(CaCuO2)7/8 product.

This conclusion obviously holds for T ➔ 0 K and p ➔

0 atm, i.e. ground state conditions, but it translates also to free
energy due to vanishing of the pV and ST factors. Moreover,
since the energy stabilization of the superconducting state
with respect to a parent metal corresponds to absorption in
microwave region, and thus it is of the order of 1 meV, it is
clear that the doped systems in their ground superconducting
state are not energetically and thermodynamically stable with
respect to 1/8 MCuO2 and 7/8 CaCuO2 precursors, as well.

The situation would be quite different if CaCuO2 was me-
tallic; however, it is rather an antiferromagnetic insulator and
the fact that injection of holes or electrons into the [CuO2]
sheets disrupts the perfect 2D network of antiferromagnetic
interactions is the key reason why the doped phases are
metastable.

Electronic DOS(EF)

The HSE06 hybrid-functional DFT calculations allowed us to
assess the size of the fundamental bandgap of the systems
studied, as well as the density of states of all systems (Table 4).

All precursors of the reaction described by Eq. 2 are insu-
lators, with sizeable band gaps; the calculated band gap ap-
proaches 2.2 eV for antiferromagnetic CaCuO2, exceeds

2.4 eV for low-spin [33] NaCuO2 with its totally empty
d(x2–y2) / px,py σ* conduction band, and is even larger than
4.0 eV for LaCuO2, the d

10 system. On the other hand, metal-
lic spin-unpolarized solutions of the doped systems show ap-
preciable DOS(EF) values [34], which stems mostly from par-
tial occupation of the nearly half-filled d(x2–y2) / px,py σ*
band, doped at ±12.5%. When spin polarization of the doped
structures is taken into account, the Na-doped compound
shows even higher (two-fold larger) DOS(EF) value than in
the spin-unpolarized solution. On the other hand, the spin-
polarized La-doped system is on the verge between the metal-
lic and semiconducting behaviour, the DOS(EF) values
strongly depending on the fine details of parameters used to
describe band occupation and convergence algorithms.

MHP considerations

Analysis of the doped systems using ramifications of theMHP
is pretty straightforward, regardless of the nature of doping
(holes, electrons): the chemical reaction proceeding according
to Eq. 2 is energetically uphill (section BMethods^) since it
corresponds to a formation of electronically soft metals or
narrow-gap semiconductors (though the metallic behaviour
is more likely for La-doped system [32]) starting from much
harder insulators. Progress of reaction (Eq. 2) is obviously
forbidden by the MHP. In fact, the opposite reaction should
occur, i.e. a once-prepared doped system should exhibit ten-
dency towards phase separation, in which all doping should be
eliminated, and all extra charge (electrons or holes) should be
localized within a separate minority phase (LaCuO2 or
NaCuO2, respectively). In other words, a doped system would

Table 2 The optimized selected
structural parameters of 1/8-
doped CaCu(II)O2 (Na doping &
La doping) as compared to the
undoped system; the lattice
vectors of doped systems were
divided by 2 for comparison; the
CuO bond lengths for doped
systems were additionally
averaged for each Cu site to
mimic the Bperfectly disordered^
model

Parameter CaCu(II)O2 (NaCuO2)1/8(CaCuO2)7/8 (LaCuO2)1/8(CaCuO2)7/8

Without spin
polarization

Magnetic
model

Without spin
polarization

Magnetic
model

a /Å 3.826 3.804 3.786 3.855 3.832

b /Å 3.826 3.804 3.786 3.855 3.832

c /Å 3.152 3.173 3.178 3.171 3.169

V /Å3 46.125 45.896 45.553 47.128 46.536

R(Cu–O) /Å 1.913 1.890, 1.917 1.879–1.910 1.913, 1.943 1.848–1.992

Raver(Cu–O) /Å 1.913 1.903 1.894 1.928 1.916

Table 3 The calculated energy of
the substrates and products of Eq.
2 [eV], as well as energy of
reaction (Eq. 2)

M 1/8 MCuO2 + 7/8
CaCuO2

(MCuO2)1/8(CaCuO2)7/8 Δprod–subst / eV

Without spin
polarization

Magnetic
model

Without spin
polarization

Magnetic
model

Na −27.560 −27.184 −27.418 +0.376 +0.141

La −28.790 −28.386 −28.642 +0.404 +0.149
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prefer to disproportionate and place two different valences of
copper in two distinct crystalline phases.

But, this leads us to an important question, how a metasta-
ble superconductor may be manufactured at all?

The success of preparation of superconductor precursor,
i.e. a metal (or a heavily doped semiconductor with many
charge carriers available for pairing) seems to originate from
using of (p,T) conditions which are very far from p➔ 0 atm,
and T➔ 0 K. A typical method of manufacturing relies on
multiple firing up of a mixture of oxides, and once the correct
crystal structure has been reached, oxygen gas is used at high
temperature to dope the system with holes. Once the extra O
atoms are trapped in the structure (usually in the reservoir
layers), the sample is cooled down, and the escape of O atoms
become impossible even if thermodynamics dictates so.
Moreover, the reconstruction of the entire crystal lattice
(which is needed for the reaction reversed to that described
by Eq. 2) to occur, is also prevented by huge barriers associ-
ated with ionic mobility within a rigid lattice of the ceramic
oxide. Yet another method of preparation utilizes F2 gas as a
dopant, and – due to high reactivity of this element – the
doping reaction is usually downhill in energy; again, the main
framework of the copper oxide is preserved, and energy bar-
riers for phase separation prevent formation of insulating met-
al fluorides (precisely this would be expected based on chem-
ical intuition, and MHP considerations as well).

Conclusions and prospect

Summarizing, oxocuprate superconductors are not stable at p
➔ 0 atm and T ➔ 0 K conditions. Use of non-equilibrium
conditions for their preparation is the key to achieving the
Bweird metal^ precursor whichmay enter the superconducting
state upon cooling below TC. Since the methods for prepara-
tion of iron pnictides and chalcogenide superconductors do
not differ much from those used for oxocuprates, and the
undoped compounds show strong 2D antiferromagnetic inter-
actions (just like CaCuO2) it is assumed without a proof that
the situation for iron superconductors is similar. Moreover, the
superconducting H3S [4] owes its stability only to ultra-high
pressure conditions (p > 2 mln atm), and it readily decom-
poses to H2S and ½ H2 (both systems are broad band gap

insulators) when external constrains are released.
Supposedly, the key to all high-TC superconductors sits in
their metastable character, and hindering of the phase separa-
tion either due to rigidity of crystal lattice alone, or by using of
an external pressure. Still, many of these systems are known to
show propensity towards phase micro-separation or super-
structure formation, which are the ways the system tries to
minimize energy, and obey MHP to some extent. Similar
problems may be anticipated for other exotic systems, where
superconductivity is searched, as well [35].

Nevertheless, since the key preoccupation of chemists is
the successful preparation of novel compounds, majority of
which are metastable, hence, justifiably, hope for room-TC
superconductivity never dies.
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convergence algorithms; the system is on the verge of a metal [32] and being a narrow band gap semiconductor
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