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DNA methylation is a widely investigated epigenetic mark that plays a vital role in 
tumorigenesis. Advancements in high-throughput assays, such as the Infinium 450K 
platform, provide genome-scale DNA methylation landscapes in single-CpG locus 
resolution, and the identification of differentially methylated loci has become an insightful 
approach to deepen our understanding of cancers. However, the situation with extremely 
unbalanced numbers of samples and loci (approximately 1:1,000) makes it rather difficult 
to explore differential methylation between the sick and the normal. In this article, a hybrid 
approach based on ensemble feature selection for identifying differentially methylated 
loci (HyDML) was proposed by incorporating instance perturbation and multiple function 
models. Experiments on data from The Cancer Genome Atlas showed that HyDML 
not only achieved effective DML identification, but also outperformed the single-feature 
selection approach in terms of classification performance and the robustness of feature 
selection. The intensive analysis of the DML indicated that different types of cancers have 
mutual patterns, and the stable DML sharing in pan-cancers is of the great potential to 
be biomarkers, which may strengthen the confidence of domain experts to implement 
biological validations.

Keywords: DNA methylation, differentially methylated loci, ensemble feature selection, robustness, pan-cancers

INTRODUCTION

DNA methylation is one of the essential epigenetic mechanisms, which plays a vital role in normal 
development and is closely correlated with the cell growth, differentiation, and transformation in 
eukaryotes (Robertson, 2005; Suzuki and Bird, 2008; Laird, 2010; Jones, 2012).Failure of proper 
maintenance of epigenetic marks, like abnormal DNA methylation, may result in inappropriate 
activation or inhibition of various signaling pathways, leading to diseased states, even cancers 
(Esteller, 2007; Hanahan and Weinberg, 2011; Dawson and Kouzarides, 2012; Aran and Hellman, 
2013; Tolstorukov et al., 2013). For example, aberrant promoter hypermethylation that is associated 
with inappropriate gene silencing affects virtually every step in tumor progression (Jones and Baylin, 
2002). So, the investigation of differential methylation, which displays the inherent difference 
between normal and tumor samples, could help us deepen our perception of oncogenesis and may 
assist in the early diagnosis of cancers (Tost, 2007; Deng et al., 2010).

High-throughput bisulfite sequencing provides a new stage for researchers to analyze methylation 
variability at single-base resolution, and the identification of differentially methylated loci (DML) 
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has become an insightful attempt for detection of tumor markers 
(Cokus et al., 2008; Down et al., 2008). In the early stage, obtaining 
methylation data is based on bisulfite sequence technique 
(BS-seq), and Lister et al. (2009) first use Fisher exact test to select 
differential methylation sites. Then, more R packages have been 
developed for identifying DML with this kind of data. BiSeq 
(Hebestreit et al., 2013) and DSS (Feng et al., 2014) concentrate 
on identifying DML through Wald tests, whereas MethylSig (Park 
et al., 2014) applies likelihood ratio tests for DML identification. 
Infinium HumanMethylation450 BeadChip is now widely used 
in methylation analysis for its advantages of lower cost and easier 
experimental protocol compared with BS-seq, like WGBS, and is 
suggested to be suitable for large-scale studies (Dedeurwaerder et al., 
2011). For example, IMA achieves detection of site-level differential 
methylation using Wilcoxon rank-sum tests with HM450 data 
(Wang et al., 2012). Compared with IMA, based on the analysis 
of covariance, FastDMA performs better in identifying DML 
with higher computational efficiency (Wu et al., 2013). RnBeads 
provides a comprehensive pipeline for analysis and interpretation 
of DNA methylation with t statistics analysis based on linear model 
and empirical Bayes (Assenov et al., 2014). We consider that the 
identification of DML is to search for loci that can significantly 
distinguish between the normal and the sick, and therefore the 
essence of this problem can be regarded as applying feature 
selection to the identification of DML. Additionally, compared with 
the methods mentioned above, feature selection approaches can 
take the feature redundance and irrelevance into account, and this 
could be a benefit for selecting more significant DML. 

However, considering that the HM450 data have a small 
number of samples but high dimensional features (approximately 
1:1,000), the results from general feature selection methods 
for identifying DML will have poor robustness (Kim, 2009). 
The robustness (reproducibility or stability) of selected loci is 
extremely important for identifying DML, as domain experts 
tend to do subsequent analysis and validations with stable results. 
While feature selection has been considered a de facto standard 
in microarray data mining (Bolon-Canedo et al., 2014), how to 
identify robust DML with feature selection has received little 
attention. Recent advancements in ensemble feature selection 
provide a promising approach to solve the robustness problem in 
large-scale biological data (Saeys et al., 2008; Abeel et al., 2010; 
Liu et al., 2010; Yang et al., 2010; Haury et al., 2011; Yang et al., 
2011; Yu et al., 2012). The rationale for this idea is combining 
single, less stable feature selectors to yield a more robust one, 
which is the same as ensemble learning: in a first step, a number 
of different feature selectors are used, and in a final phase, the 
output of these separate selectors is aggregated and returned as the 
final (ensemble) result. Specifically, there are two major means to 
achieve ensemble feature selection; one of them is data diversity 
(instance perturbation), which uses the same feature selection 
method on different data subsets from multiple sampling on 
the original data set, and the other is function diversity, which 
implements different feature selection methods on the original 
data set (Saeys et al., 2008; Yang et al., 2010; Awada et al., 2012; 
Yu et al., 2012).

In this article, we aggregate data diversity and function 
diversity to propose a hybrid ensemble approach for identification 

of DML (HyDML). Under the framework of ensemble feature 
selection, this newly proposed method not only can realize the 
effective identification of DML, but also can accommodate for 
the robustness of the results. Additionally, taking advantage 
of the large-scale Infinium 450K methylation data produced 
by The Cancer Genome Atlas (TCGA) project, we performed 
intensive analysis to look further into interrelationships between 
differential methylation and cancers and found that different 
cancers have common patterns, and robust DML sharing in pan-
cancers is of the great potential to be biomarkers.

MATERIALS AND METHODS

Cancers and Samples
For feeding the algorithm and analysis, in total 13 cancers are 
selected with both normal and tumor samples. Specifically, these 
cancers are bladder urothelial carcinoma (BLCA), breast invasive 
carcinoma (BRCA), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), head and neck squamous cell carcinoma 
(HNSC), kidney renal clear cell carcinoma (KIRC), kidney renal 
papillary cell carcinoma (KIRP), liver hepatocellular carcinoma 
(LIHC), lung adenocarcinoma (LUAD), lung squamous cell 
carcinoma (LUSC), prostate adenocarcinoma (PRAD), thyroid 
carcinoma (THCA), and uterine corpus endometrial carcinoma 
(UCEC). In all, there are 6,189 samples including 699 normal 
samples and 5491 tumor samples (Table S1).

DNA Methylation Data and Preprocess
We downloaded the DNA methylation data from TCGA data 
portal (https://tcga-data.nci.nih.gov/tcga/) for our selected 
samples. The methylation data are generated by Illumina 
Infinium HumanMethylation450k BeadChip technique. The 
Illumina Infinium assay utilizes a pair of probes for each CpG 
site, one probe for the methylated allele and the other for the 
unmethylated version. The methylation level is then estimated, 
based on the measured intensities of this pair of probes, as 
the ratio of methylated signal to the sum of methylated and 
unmethylated signal, which ranges from 0 (absent methylation) 
to 1 (completely methylated). To assess the ability of the selected 
DML to distinguish between the two types of samples (tumor 
and normal), we retrieved three independent test sets from 
the NCBI database. The three data sets are also obtained by 
HM 450 technique, including samples of breast (GSE52635), 
liver (GSE54503), and lung (GSE66836) cancer, as well as 
corresponding normal tissue data records (Table S1). For 
each type of cancer, the original methylation data record 
the methylation level at more than 450,000 loci. A series of 
preprocessing is required before implementing the selection of 
DML, which can reduce the computational complexity as well as 
improve the accuracy of the final results. The preprocessing steps 
for the methylation data are as follows: i) The 450k methylation 
chip uses two different types of probes (type I and type II) when 
measuring the locus methylation and results in two different 
types of data distribution. We use the SWAN algorithm to 
eliminate the abiotic variation caused by the measurement 
of the two probes while preserving the biological differences 
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of the samples (Maksimovic et al., 2012). ii) Eliminate batch 
effects caused by system bulk effects or abiotic differences 
using empirical Bayesian (EB) methods (Johnson et al., 2007). 
iii) Filter out some of the minimal variance loci to avoid 
dimensionality disasters and remove significantly unrelated 
redundant loci. After completing all of the preprocessing steps, 
approximately 350,000 feature sites are obtained for each cancer 
for subsequent feature selection. Considering polymorphisms 
(single-nucleotide polymorphisms), we chose to mark these 
sites in the results, and users can decide the stringency of probe 
filtering appropriate for their analysis.

Hybrid Ensemble Approach for 
Identification of DML
First, in order to obtain a diverse set of feature selectors, we 
perform multiple samplings on training samples to generate 
data subsets. To this end, we make use of resampling and cross-
validation, integrating classifier training into the ensemble 
feature selection framework for selecting loci that are informative 
for classifying tumor and normal samples. In each sampling, the 
whole data set is divided into 10 pieces with the same number 
of samples, and each of them can be regarded as a test subset 
to validate subsequent classification performance, while the rest 
automatically becomes a training set for feature selection and 
classifier training (constructed with support vector machine) 
(Cortes and Vapnik, 1995). The instance level perturbation here 
can bring in the stability for feature selection after aggregating 
the result of each data subset, because the stable features are 
more likely to appear in different training subsets when the 
sample changes slightly. Then, generating functional diversity 
is achieved by using multiple feature selection methods on the 
same training set. With consideration of high dimensionality 
and small sample size of the 450k methylation data, embedded 
feature selection methods could be a practical choice for 
the appropriate computation complexity. Thus, we choose R 
packages “glmnet,” “MDFS” and “rmcfs” as the basic feature 
selection approaches (Friedman et al., 2010; Draminski and 
Koronacki, 2018; Piliszek et al., 2018). Taking the advantages 
of combing L1 and L2 regularization (elastic net), glmnet can 
achieve variable extraction for the microarray data with high 
dimension but small number of samples. Combining linear 
model with elastic net for feature selection, the optimization 
function is as follows:
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where w  represents the feature weight coefficient, m represents 
the number of samples, and p represents the total number of 
features in the data set. λ is used to balance the empirical risk and 
model complexity, whereas α is used to balance the regularization 
of L1 and L2. In MDFS, we apply feature selection with max 
information gain criterion, which measures the worth of a 
feature by computing the information gain values with respect 

to the class. For rmcfs, it relies on a Monte Carlo approach to 
select informative features and is capable of incorporating 
interdependencies between features. The three basic feature 
selection algorithms can be well adapted to the high-dimensional 
and small-sample characteristics of 450k methylation data, and 
the whole calculation amount is moderate, while classification 
performance can be guaranteed. For each data subset, aggregating 
the results of multiple feature selection methods could further 
enhance the stability. More formally, consider an ensemble 
feature selector E = {F1, F2,… ,Fs} and each Fi provides a feature 
ranking fi = …( )f f fi i i

N1 2, , ,  , fi denotes the feature weight of each 
Fi and N represents the nth feature. Hence, a general aggregation 
formulation for the ensemble ranking f, obtained by weighted 
summing the ranks over all fi, is as follows:
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=
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where acci donates the accuracy of the corresponding test set 
on the classifier trained by feature selector Fi, and f also can be 
regarded as the aggregation ranking for the ensemble feature 
selector. Here, s = 3, which represents the three basic feature 
selection methods, and we can get the preliminary DML at this 
level of aggregation. Then, taking the union set of obtained loci 
subsets is the second level of aggregation, and the corresponding 
formula representation is as follows:
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where s donates the number of data subsets, and fi is the feature 
ranking of corresponding data subset. In this way, one aggregated 
ranking of all the features for each sampling can be yielded. 
We perform 10 iterations for generating more data subsets to 
further improve the stability of selected loci, and with the idea 
of bagging, the final DML set consisted of loci that appear more 
than five times in 10 iterations. The overall algorithm framework 
for one sampling is shown in Figure 1, and pseudo code flow is 
as follows:

ALGORITHM: HYDML

Require: methylation data D 
Ensure: Divide data set D into {D1, D2,…, Dk,…D10} for 10-fold cross-validation;
1: begin
2:  for k = 1 to 10 do. The data subset Dk is used as a test set, while other data 

subsets are used as a training set to produce DML with multiple feature 
selection methods; calculate fi

k fk   for each feature in Dk with acci(i = 1, 
2, 3); filter out loci with the fk < 0.01; end for;

3: Take union set of {f1, f2,,, f10} to obtain F1

4: for t = 1 to 10 do, step 2 and step 3; end for;
5:  Aggregate F1 ~ F10 with bagging which filters out loci which appears less than 

five times; record as F

6: return F;
7: End
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PERFORMANCE EVALUATION AND 
COMPARISON

Stability Measure
To measure the effect of our hybrid ensemble technique on 
the feature selection results, following Saeys et al. (2008), 
we take a similarity-based approach where feature stability 
is measured by comparing the signatures from the k feature 
selectors. The more similar all signatures are, the higher the 
stability measure will be. The overall stability can be defined as 
the average over all pairwise similarity comparisons between 
different signatures:

S
S f f

k ktot
i

k

j i

k

i j
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where fi represents the signature obtained by the selection 
method on subsampling i(1 ≤ i ≤ k); k is the number of data 
subsets; S(fi, fj) is a similarity measure for feature subsets, which 
denotes the stability of fi and fj. Here, we use Jaccard index (Saeys 
et al., 2008) as S(fi, fj):
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where the indicator function I(.) returns 1 if its argument is 
true, and zero otherwise. In the sequel, the overall stability Stot is 
simply denoted by S(fi, fj).

Classification Performance Measure
To evaluate the classification performance and perform 
comparisons, we use several characteristics of classification 
performance all derived from the confusion matrix. These 
characteristics are TP, TN, FP, and FP, which denote true-
negatives, true-positives, false-negatives, and false-positives, 
respectively. All the performance metrics are calculated by 
these characteristics, including TPR (true-positive rate), FPR 
(false-negative rate), ACC (classification accuracy), Precision, 
Recall, and F1 score. We also include the area under the receive 
operating characteristic curve, which is defined by a function of 
sensitivity and specificity, further abbreviated as AUC.

RESULTS

Characteristics of Differentially Methylated 
Loci in 13 Cancers
For each of the 13 cancers, we finally obtained a set of DML, 
which varies from 5,700 in COAD to 14,516 in THCA (Table S2). 
Through t-SNE clustering (van der Maaten and Hinton, 2008), 
we found that these differential methylation sites were able 
to distinguish the difference between the normal and the sick, 
especially in COAD, ESCA, and KIRC (Figure 2). While very few 
samples were misclassified, it was probably due to the information 
compression since the original feature dimension is reduced by 
thousands of times during the t-SNE clustering process.

We first explored the distribution of DML in 22 pairs of 
autosomes for each cancer, which could help us to find out which 
chromosome gets potential extensive genetic variation when 
cancer occurs. To this end, we calculated the distribution density 
of the DML on each autosome, using ratio of the number of 
DML to the number of CpG sites determined by the 450K chip 
(Figure S1A). We can see from the results that chromosome 20 was 

FIGURE 1 | The framework of HyDML for identifying differentially methylated loci using hybrid ensemble feature selection approach.
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enriched with more sites, whereas the DML were less distributed 
on chromosome 1, 9, oppositely. Combining the functional regions 
of genes on the chromosome, we further analyzed the distribution 
of DML in the promoter region (regions from 2,000 bps upstream 
to the transcription start site), gene body (excluding promoter 
region), and intergenic region for each cancer. Most of DML 
were located in nonpromoter regions (gene body and intergenic 
region; Figure  S1B). However, considering that the promoter 
region occupied only a small part of the genome, the number of 
DML accounted for more than 20%, indicating that the abnormal 
methylation of this short functional region had an important 
impact on the tumorigenesis (Jones and Baylin, 2002; Baylin 
and Ohm, 2006). Most DML were distributed on CpG islands 
(Figure S1C), which has been reported that aberrant methylation 
of CpG islands was related to transcriptional gene silencing or 
activation of multiple oncogenes (Costello et al., 2000; Chan et al., 
2002; Klutstein et al., 2016; Soozangar et al., 2018).

We also observed that biologically similar cancers shared more 
mutual DML through hierarchical clustering using similarity metric 
based on Jaccard index (Figure S2). Specifically, smoking- and drug 
addiction-related cancers, like LUSC and HNSC, were clustered 
together (Brennan et al., 1995; Johnson et al., 2005; Campbell et al., 
2016). KIRC and KIRP were both due to renal lesion. High-risk 
cancers that were predisposed to women, such as BRCA and UCEC, 
shared more DML and were clustered together.

Robust Feature Selection Improves the 
Classification Performance
First, we compared our newly proposed method to its baseline 
methods, glmnet, rmcfs, and MDFS when the number of loci 
gradually decreased. This could help us analyze the robustness 

of the results from different feature selection methods as the 
features reduced, or if a feature selection method could identify 
more robust features, the decrement of features would not 
have a significant impact on the results. Here, for the three 
baseline methods, the feature sets were produced by a default 
configuration. Using the comprehensive classification metric, 
AUC, Figure 3A displays the trend of AUC change as the feature 
number reduced on PRAD data set. It can be observed that 
our ensemble approach clearly improved upon the baselines in 
terms of classification performance as the loci decreased. We also 
implemented the comparison on data of the other 12 cancers, 
and the results showed that the hybrid ensemble framework was 
superior to single-feature selection methods, thus demonstrating 
that the ensemble methods were better capable of eliminating 
noisy and irrelevant dimensions (Figure S3). We also compared 
the stability or robustness measure Stot (based on Jaccard Index, 
see Materials and Methods), and the results in all 13 cancers 
showed the hybrid ensemble approach (HyDML) performed 
better than single-feature selection methods, which could be 
a benefit in performing subsequent analysis with the selected 
differential methylation sites (Figure 3B).

Moreover, three independent test sets from the NCBI database 
(BRCA: GSE52635; LIHC: GSE54503; LUAD: GSE66836) were 
used to compare HyDML with classical DML identification 
methods, including FastDMA and RnBeads, for analyzing the 
differences between the ensemble feature selection approach and 
the statistical test method. Using the original DML previously 
selected from the three cancers as training sets, we constructed 
a classification model based on SVM and performed the 
verification with the test sets. The results showed that DML 
selected by HyDML performed better than FastDMA and 
RnBeads (Table  1). Compared with the two classical DML 

FIGURE 2 | The clustering results by t-SNE using the obtained differential methylation sites for each cancer.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Identifying Robust Differentially Methylated LociTian et al.

6 September 2019 | Volume 10 | Article 774Frontiers in Genetics | www.frontiersin.org

finding approaches, the selected feature from HyDML showed 
better generalization ability in distinguishing the normal and 
tumor samples. Then, we analyzed the loci selected by the three 
methods to verify whether the loci were distinct from each other. 
Experiments on data of the three cancers showed that most DML 
were identical for the three methods, whereas FastDMA and 
RnBeads shared more mutual DML (Figure 3C). To capture the 
key differences of the three methods, we further studied the DML, 
which were uniquely selected by the corresponding method (the 
loci selected by one of the methods and not selected by the other 
two methods), through t-SNE clustering, and the results of BRCA 

showed that the uniquely selected DML from HyDML were more 
able to describe the difference between the normal and the sick 
(Figure 3D). The clustering results of the other two cancers can 
be obtained in Figure S4, and HyDML not surprisingly displayed 
better performance in classifying normal and tumor samples. 
This indicated that the differential methylation sites obtained 
by the hybrid ensemble approach were more likely to be reliable 
in biological validations. One evident reason for this was that 
HyDML takes the robustness of selected loci into account, and this 
could be rewarding to produce better DML in terms of analyzing 
the difference between the normal and the sick.

FIGURE 3 | Thorough classification performance and the robustness measure to compare different models in identifying differential methylation sites. 
(A) Classification performance of HyDML and its corresponding submethods as the selected features (loci) gradually reduce in PRAD. (B) Comparison of robustness 
measure using Jaccard index in 13 cancers for HyDML and its corresponding submethods. (C) Relationship of differential methylation sites obtained by HyDML/
FastDMA/RnBeads in BRCA; LIHC and LUAD (corresponding to the three independent test sets) using a Venn picture. (D) T-SNE clustering results in BRCA using 
the unique differential methylation sites selected by each method.
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Pan-Cancer–Related DML Provide a 
Landscape of Commonality in Different 
Cancers
In order to further analyze the association between DNA methylation 
and cancer, we investigated the differential methylation sites that 
occurred in multiple cancers, which could help us reveal the pan-
cancer–associated methylation patterns. First, we defined a selected 
site as a pan-cancer differentially methylated locus (pDML) if it 
occurred no less than 10 times in 13 cancers. We in total obtained 
338 pDML, in which some of them presented as hypermethylated, 
whereas the others presented obvious hypomethylation, expressed 
by median value in normal and tumor samples (Table S3). By 
combining the methylation expression levels of pDML in tumor 
samples, different cancers reflected similarities in methylation 
variation (Figure 4). For example, LUAD and LUSC were clustered 
together as a result of carcinogenesis of lung tissues, and kidney 
disease–related cancer, such as KIRC and KIRP, were also shown 
to be similar in terms of pDML. This verified the methylation 
specificity expression caused by the differentiation of tissues, and 
even when the tissues were cancerous, there was a certain degree of 
difference in methylation variability between tissues, or the cancer 
subtypes of the same tissue had more similar methylation patterns.

In these pDML, we also found that, one probe, cg02829688, 
was significantly hypermethylated (the methylation level of loci in 
tumor samples was higher than that in normal samples) in all 13 
cancers (Figure 5). Through the annotation files, we found that it 
was located at chr1:119527008 in a CpG island and belonged to 
a differentially methylated region (experimentally determined). 
Moreover, the corresponding upstream and downstream regions 
were located in a target gene, TBX15. It has been demonstrated that 
TBX15 plays a vital role in multiple cancers, such as non–small cell 
lung cancer (Carvalho et al., 2013), thyroid cancer (Arribas et al., 
2015), and ovarian carcinoma (Gozzi et al., 2016), and especially has 
been proved to be a methylation marker of prostate cancer (Kron et 
al., 2012). Moreover, Chelbi et al. (2011) identified a region located in 
the distal promoter of the TBX15 that was differentially methylated 
and suggested that TBX15 might be involved in the pathophysiology 
of placental diseases.

Using AME (McLeay and Bailey, 2010), the motif 
enrichment tool of MEME Suite, we detected sequence motifs 
that were enriched in the background sequences generated 
from the pDML, which were located in promoter regions and 
identified 84 motifs (Table S4). The motif of IRF3 was the most 
significantly enriched one (P = 5.55e-21) (Figure 6A), and the 
gene expression for IRF3 has been experimentally determined 
in multiple tissues (Figure 6B). IRF3 as a transcription factor 
has been reported as a regulator in type I interferon genes 
playing a vital role in mammalian response to pathogens and 
considered to be implicated in various biological pathological 
conditions, including cancer (Wang et al., 2017; Andrilenas 
et al., 2018). Baylin et al. (2006) also demonstrated that 
DNA methyltransferase inhibitors triggered viral defense 
and induced IRF3 to translocate to the nucleus and activated 
transcription of IFNβ1 to influence immune signaling in 
cancers (Chiappinelli et al., 2015).

Additionally, we had a deeper insight into the relationship 
between methylation and cancers through analyzing the 
corresponding biological pathways. Using the KEGG pathway 
database (Kanehisa and Goto, 2000), Figure 7 showed the 
number of metabolic pathways for DML-associated genes in 
each cancer (P < 0.05). Then, we summarized the pathways that 
occurred in at least seven cancers and denoted as pan-cancer 
methylation-related pathways (PMPs) and obtained in total 11 
PMPs, where 10 of them have been reported to be associated 
with cancers (Table 2). The only one PMP, neuroactive ligand-
receptor interaction, has not been proven to be directly or 
indirectly associated with cancers, but further research is needed 
for deeper exploration.

DISCUSSION

Identifying DML is a promising approach to reveal the 
inherent intricacy between aberrant DNA methylation and 
tumorigenesis, and recent studies have paid more attention 
to this essential epigenetic mechanism. Taking advantage of 
the large-scale DNA methylation data produced by TCGA, 

TABLE 1 | Classification performance comparison on three independent test sets.

GSE52635

TPR FPR ACC AUC Precision Recall F1
FastDMA 0.958 0.083 0.938 0.924 0.921 0.958 0.939
RnBeads 0.938 0.042 0.948 0.935 0.957 0.938 0.947
HyDML 0.979 0.042 0.969 0.968 0.959 0.979 0.969

GSE54503

TPR FPR ACC AUC Precision Recall F1
FastDMA 0.909 0.1667 0.8712 0.897 0.779 0.909 0.839
RnBeads 0.955 0.1515 0.9016 0.923 0.863 0.955 0.906
HyDML 0.969 0.091 0.9408 0.962 0.914 0.969 0.941

GSE66836

TPR FPR ACC AUC Precision Recall F1
FastDMA 0.909 0.316 0.886 0.876 0.961 0.909 0.934
RnBeads 0.915 0.263 0.896 0.893 0.968 0.915 0.940
HyDML 0.951 0.158 0.94 0.943 0.981 0.951 0.966

In bold font: best performance.
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FIGURE 5 | Probe cg02829688 showed significant hypermethylation (the methylation level of loci in tumor samples were higher than those in normal samples) in all 
13 cancers.

FIGURE 4 | The hierarchical clustering with heat map using all predefined pan-cancer differential methylation sites in 13 cancers.
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we investigated the differential methylation in 13 cancers with 
a newly proposed approach under hybrid ensemble feature 
selection framework. Compared with single-feature selection 
methods in identifying DML, HyDML could achieve identifying 
more robust loci, and the improvement of reproducibility of 
feature selection algorithm’s results can enhance the confidence 
of researchers in experimental verification, especially in finding 
biomarkers. Compared with classical DML identification 

methods based on traditional statistic theory (such as FastDMA 
and RnBeads), feature selection–based approaches could select 
more informative loci that are closely related to the difference 
between the normal and the sick, as well as eliminating noisy 
and irrelevant loci, especially when dealing with microarray 
data of sparse samples and high-dimensional features. By 
t-SNE clustering, the results showed that the selected loci could 
distinguish between the normal and the sick well in each cancer, 
and the results from the independent test sets demonstrated that 
the classification model constructed by loci from HyDML had 
better generalization ability.

Additionally, comprehensive investigation of the pDML 
showed that different cancers shared some common patterns 
in methylation variability at CpG locus resolution and revealed 
the potential similarities in different cancers. We found that 
same tissues share more abnormal methylation patterns 
with different subtypes of tumorigenesis, such as KIRC and 
KIRP, and LUAD and LUSC. This may indicate that the tissue 
specificity of methylation is preserved even when the tissue 
is cancerous. We also found a locus (cg02829688), which 
was hypermethylated in 13 cancers, located in a functional 
region on the genome, and could be of great potential to be 
an oncogenesis biomarker. Enriched motifs analysis from 
the background sequences of pDML revealed the potential 
influence on transcription function by CpG methylation, 
and the most significantly enriched motif, IRF3, has been 
reported playing a vital role in tumorigenesis. Through 
pathway analysis, some pan-cancer–related pathways were also 
determined, which have been reported playing a vital role in 
start, development, and metastasis of tumors.

As an import epigenetic mark, DNA methylation has been 
widely investigated to deepen our understanding of its mechanism 
and correlation with human illness, and it is possible to analyze 
methylation at all levels with the massive data generated by high-
throughput detection technology. However, how to effectively 
identify DML from high-throughput methylation data is still 
a tough challenge even if feature selection methods have been 
extensively explored in the context of gene expression data. 
Innovatively, combining the instance perturbation and function 
diversity, the newly proposed method HyDML achieved effective 
identification of DML, and this demonstrated that ensemble 

FIGURE 6 | The most significantly enriched motif, IRF3. (A) The motif logo of IRF3. (B) The gene expression for IRF3 in multiple tissues.

TABLE 2 | PMPs and their corresponding relations to cancer.

Pan-cancer methylation related pathways Related to cancer? 

Antigen processing and presentation (Chapman et al., 2013) Yes
Allograft rejection (Leone et al., 2013) Yes
cAMP signaling pathway (Fajardo et al., 2014) Yes
Cell adhesion molecules (Okegawa et al., 2004) Yes
Graft-versus-host disease (Curtis et al., 2005) Yes
MicroRNAs in cancer (Wiemer, 2007) Yes
Nicotine addiction (Benowitz, 2009) Yes
Rap1 signaling pathway (Zhang et al., 2017) Yes
Type II diabetes mellitus (Shlomai et al., 2016) Yes
Autoimmune thyroid disease (Turken et al., 2003) Yes
Neuroactive ligand-receptor interaction Unknown

FIGURE 7 | The number of metabolic pathways for DML-associated genes 
in each cancer.
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feature selection could be used in dimension reduction for large-
scale biological data. This will not only facilitate future early 
diagnosis of cancers based on the DNA methylation signatures but 
also enable additional investigations into the utilization of feature 
selection on other biomarker analysis domains. In the future, 
we will continue to study in depth the application of machine 
learning in biomarker identification and achieve better selection 
and prediction effect by combining more related information.

CONCLUSION

In this article, a hybrid ensemble approach is proposed by 
incorporating instance perturbation and multiple functions to 
identify differential methylation sites across 13 cancers from TCGA. 
The specially designed framework makes it possible to select robust 
differential methylation sites, which not only improves the accuracy 
of the classifier built by the selected sites, but also enhances the 
confidence of domain experts to implement biological validations. 
Further intensive analysis reveals that different cancer types 
have common methylation patterns, and part of the differential 
methylation sites shared in pan-cancers is of great potential to be 
crucial in the early diagnosis of cancers. All findings demonstrate 
that abnormal DNA methylation could be regarded as a marker that 
expresses the difference between the normal and the sick.
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FIGURE S1 | (A) The distribution density of DML in 22 pairs of autosomal 
chromosomes in 13 cancers. (B) The distribution of DML in different functional 
regions in 13 cancers. (C) The distribution of DML in CpG island and non-CpG 
island in 13 cancers.

FIGURE S2 | Unsupervised hierarchical clustering of mutual DML in 13 cancers 
using similarity measure with Jaccard distance.

FIGURE S3 | The AUC changed when the number of selected loci gradually 
reduced in each cancer. All the results show that HyDML performed better than 
single-feature selection methods as it can select more robust loci for distinguish 
normal and tumor samples.

FIGURE S4 | The t-SNE clustering results with the loci that were uniquely 
selected by the three methods, HyDML, FastDMA, and RnBeads. Each row 
represents the loci from the corresponding cancer type, and each column 
represents the result of corresponding method.
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