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Abstract: Patients with cancer are at particular risk for infection but also have diminished vaccine
responses, usually quantified by the level of specific antibodies. Nonetheless, vaccines are specifically
recommended in this vulnerable patient group. Here, we discuss the cellular part of the vaccine
response in patients with cancer. We summarize the experience with vaccines prior to and during
the SARS-CoV-2 pandemic in different subgroups, and we discuss why, especially in patients with
cancer, T cells may be the more reliable correlate of protection. Finally, we provide a brief outlook on
options to improve the cellular response to vaccines.
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1. Introduction

Vaccination is indispensable for infection control as has been demonstrated in the
SARS-CoV-2 pandemic. Patients with malignancies are at particular risk for infection and
vaccination is explicitly recommended [1,2], but humoral response to vaccination is often
impaired due to disease and treatment. In contrast, cellular response, in particular T cellular
response, has recently been recognized to be generally more robust than humoral response
and possibly even more predictive for protection [3,4]. A literature search on the experience
with vaccines prior to and during the SARS-CoV-2 pandemic in patients with cancer
was performed. Search sources were the electronic databases MEDLINE/PubMed and
Google Scholar; key search terms included “T cell response”, “cellular immune response”,
“cancer”, “malignancy”, “SARS-CoV-2”, and “vaccination”. Relevant content was extracted
and revised on the basis of an email-based discussion process.

In this review, we will describe what is known about the T cellular response to different
types of vaccines in cancer patients, delineate the influence of certain types of cancer and/or
the respective treatment, and finally, summarize what is currently known regarding the
cellular response of patients with malignancies towards SAR-CoV-2 vaccines.
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2. Characteristics of Cellular Vaccine Response
2.1. T Cell Populations Involved in Vaccine Response

Several types of T lymphocytes are deemed to play relevant roles in the cellular defense
against vaccine-preventable infections [5,6]. These include antigen-specific CD8+ T cells,
which kill human cells infected by the pathogen via release of cytotoxic enzymes such
as granzyme B. Similarly, antigen-specific CD4+ T cells with the ability to kill infected
cells have been described [7]. In addition, CD4+ T helper cells further support antibody
production and cytokine secretion.

In general, the cellular response to vaccination is more robust and more reliably
induced in vulnerable populations such as the elderly [3] or patients with comorbidities,
even including patients without B cells [8], than the humoral response. Although the
duration of T cell-induced protection is very variable and can be as short as six months [9],
durable responses as long as three years after vaccination with an inactivated herpes zoster
(HZ) vaccine have been described [10].

In addition, T cells are more likely to be cross-reactive to strains different from the
vaccination strain or strains that caused a prior infection. This phenomenon was observed
during the influenza H1N1 pandemic [11] in experimental set-ups of influenza infection [12],
as well as recently in COVID-19 [13]. In the SARS-CoV-2 pandemic, recent data showed a
reduced humoral immune response to variants of concern, in particular to delta, whereas T
cell response did not differ, suggesting a cell-mediated protection from severe disease [8,14].
However, for the very recently emerged variant of concern, Omicron, this has yet to be
confirmed. Generally, cross-reactive T cell responses may be induced and maintained by
repeated vaccination [15].

2.2. Risk Factors for Reduced T Cell Vaccine Response

Most risk factors that have been reported to be associated with a reduced cellular
response to vaccination are linked to immunosenescence. It is well known that older people
develop reduced vaccine efficacy, and this has recently been confirmed in the COVID-19
vaccine trials [16–18]. Not surprisingly, similar effects have also been observed in cancer
patients, both in serological [19] and clinical studies [20]. However, additional factors are
likely to contribute to a reduced vaccine response. One of those is a reduction in the naïve T
cell pool, contributing to a failure to expand clones on demand. This may be due to clonal
expansions of memory T cells at the cost of naïve T cells. The majority of these memory T
cells are CD8+ CD25−, which are often virus specific and have been associated with poor
response to vaccination (for example in CMV persistence) [21–23].

2.3. Assessment of T Cell Vaccine Response

Several methods are commonly used to assess the cellular response to vaccination
induced by T cells [5]. These include the quantification and characterization of pathogen-
specific T cells as well as the estimation of the T cell function by cytokine measurement.
For enumeration of antigen-specific T cells, flow-cytometrical approaches using tetramer-
staining are commonly employed. This facilitates the assessment of the antigen-specific T
cell activation levels by analyzing the co-expression of activation markers such as CD25 or
CD40L. Additionally, cytotoxic activity can be measured on the cellular level by CD107a
upregulation, and functionality can be assessed using intracellular cytokine staining (e.g.,
interferon gamma (IFNγ), interleukin-2 (IL-2), or tumor necrosis factor-α (TNFα)). Another
method to measure the cytokine response on a single cell basis is the ELISPOT technique
(typically IFNγ ELISPOT). This can be advanced by the fluorospot technique, which can
analyze up to three analytes on one cell. On a broader level, cytokine concentrations can be
measured in soluble samples. Here, platforms with >10 analytes are often implemented in
modern laboratories. Novel techniques further use Omics approaches such as RNA-seq to
detect up- or downregulation of proteins in activated T cells.

As most of these techniques are labor-intensive and time-consuming, few assays have
found their way into clinical practice. By far the most frequently used test for vaccine
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induced T cell response is the IFNγ ELISPOT, which is reported by most diagnostic trials
involving large patient populations [8,24–26].

2.4. T Cells as Correlates of Protection

An important issue is the correlation of the cellular response to vaccination with
protection against vaccine-preventable infection and infectious disease. In a very early
experimental trial, the presence of cytotoxic T cells elicited by prior infection was found to
be more protective of influenza disease than the presence of antibodies. Additionally, T
cells were found to be cross-reactive between strains and thus less susceptible to antigenic
drift [12]. Another experimental trial inducing influenza infection in sero-negative healthy
individuals confirmed the protective effect of pre-existing T cells (T helper cells in particular)
on the duration and severity of symptoms [27]. These findings are supported by clinical
observations: in a prospective diagnostic study during one influenza season comprising
mostly elderly people, post-vaccination antibody titers were less useful in predicting
protection from influenza infection than the induction of a cellular cytokine response [3].
Additionally, the protective role of cross-reactive T cells in naturally sero-negative healthy
individuals on the severity of illness could be confirmed during the influenza H1N1
pandemic in 2009/2010 [11].

Data regarding T cells as correlates of protection in cancer patients are still scarce.
However, there are indirect data supporting a significant role of cellular vaccine response
in cancer patients. In several recent diagnostic studies, patients with hematological ma-
lignancies showed markedly reduced serological responses to the messenger ribonucleic
acid (mRNA) vaccines against COVID-19 compared to patients with solid tumors [8,19,24].
Yet, despite these notable differences in serological vaccine response, the clinical vaccine
efficacy of mRNA vaccines against COVID-19, as shown in a large clinical study comparing
more than 20,000 immunocompromised with more than 60,000 immunocompetent people,
was rather similar between patients with hematological malignancies and those with solid
tumors (74% and 79%, resp.) [20]. Thus, it is conceivable that the cellular vaccine response
may actually be more predictive as a correlate of protection in patients with cancer, similar
to the observations made in the geriatric population [3].

Overview of Vaccines Used in Cancer Patients

Patients with malignancies are known to be at an increased risk for severe infections
since the underlying malignancy and its treatment, ranging from steroids to hematopoietic
cell transplantation (HCT), can cause profound suppression of both cellular and humoral
immune responses [28–30]. Consequently, limitations in vaccine efficacy and immunogenic-
ity are to be expected. However, while many studies report on the humoral responses to
vaccination, much less is known about individual vaccine induced cell-based responses
in immunocompromised patients [29,31–34]. Notably, recent publications suggest an im-
portant role for T cells [35–38], although the extent depends on the underlying disease
and treatment.

Vaccines licensed for human use can be categorized according to the vaccine platform
technology used for development. Classical platforms include live-attenuated pathogens
(e.g., measles, rubella, mumps), inactivated pathogens (e.g., polio, first influenza vaccines),
and (viral) protein platforms (e.g., influenza, human papillomavirus, hepatitis B), while new
approaches, so-called next-generation vaccine platforms, are based on genome sequence
information [39–41] and include mRNA vaccines as well as vector-based vaccines.

2.5. Cellular Responses Induced by Classical Vaccines

Live-attenuated vaccines consist of pathogens weakened by repetitive passages through
non-human cell cultures. Mimicking natural infection, attenuated pathogens elicit a strong
cellular and humoral immune response without causing a severe disease in healthy in-
dividuals [2,39,42,43]. In contrast, live-attenuated vaccines are contraindicated for use in
immunocompromised individuals, as they have the capacity to uncontrolled replication



Vaccines 2022, 10, 182 4 of 16

and reversion to the wild phenotype, potentially causing lethal disease [2,44]. Inactivated
pathogen vaccines are inactivated by irradiation, chemicals, or heat and are therefore less
immunogenic when compared to live-attenuated vaccines. Here, the addition of an ex-
ternal adjuvant and booster vaccinations are ways to elicit a sufficiently strong immune
response, even in immunocompetent individuals [39,45,46]. (Viral) protein-based vaccine
platforms comprise subunit, split virus vaccines, and virus-like particles (VLP). They are
developed by protein isolation and purification or recombinant synthesis [45]. While
subunit protein vaccines contain surface glycoproteins, split virus vaccines contain both
surface and internal proteins. Following vaccination, the pathogen is processed by antigen
presenting cells (APC) and presented to adaptive immune cells inducing a humoral and
cellular response [46]. VLP are empty virus particles presenting numeric copies of key viral
structure proteins on their surface, inducing a strong antigen-specific immune response by
interacting directly with APC [45]. Seasonal trivalent or quadrivalent influenza vaccines
are protein-based and may contain either subunit products or split-virus products. While
the humoral immune response is reported to be comparable following subunit or split
virus vaccination, cellular immune response seems to be stronger in case of split virus vac-
cines [47–49]. Regarding SARS-CoV-2, several vaccines based on classical platforms already
entered phase II/III clinical trials or in approval phase. Novavax is the first of these classical
platform-based COVID-19 vaccines that received both approval by the Food and Drug
Administration (FDA) and the European Medicines Agency (EMA). It is a recombinant
subunit protein vaccine containing the adjuvant Matrix M1, which is known to stimulate
the cell-mediated immune system [50,51]. A CD4+ T cell activation was measurable in all
tested individuals, while the addition of M1 enhanced cell-mediated immune response
with a strong bias towards a Th 1 phenotype [45,51]. Another of these classical vaccines
is CoronaVac, an inactivated virus, alum-adjuvanted, vaccine. In addition to a humoral
immune response, cellular immunogenicity was seen in the majority of recipients. Notably,
in individuals without a measurable number of neutralizing antibodies, virus specific mem-
ory CD4+ and CD8+ T cells were detected [52]. A recently published phase I open-label
trial on CoVac-1, a peptide-based vaccine, showed a SARS-CoV-2 specific CD4+, namely Th
1 phenotype, and CD8+ T cell response. To stimulate a stronger cellular immune response,
an adjuvant (Montanide ISA 51—a water–oil emulsion) was added [53]. A plant-produced
virus-like particle vaccine (CoVLP) was introduced by Ward et al., demonstrating both
a humoral and cellular immunogenicity. Of note, again, immunogenicity was enhanced
using an adjuvant [54].

2.6. Cellular Responses Induced by Nucleic Acid Vaccines

Nucleic acid vaccine platforms consist of deoxyribonucleic acid (DNA) or ribonu-
cleic acid (RNA), encoding the vaccine antigen [39]. For subsequent processing, DNA
vaccines must enter the nucleus, while mRNA vaccines only need to penetrate the cellular
membrane [39,45]. Following processing of mRNA, antigens are presented to adaptive
immune cells [45]. By now, two mRNA vaccines are licensed by FDA/EMA for human use,
BNT162b2 and mRNA-1273, both known to elicit humoral and cellular immunogenicity
in healthy individuals [33,55–57]. Upon vaccination with BNT162b2, a strong response
of virus-specific Th1 and CD8+ T cells was reported, in some of them more than tenfold
compared to responses to common viruses [33,56,57]. In individuals who received mRNA-
1273, a strong CD4+ cytokine response involving Th1 cells was seen. In line with this,
the response involving virus-specific Th 2 cells was only minimal [58]. A T cell response
dominated by CD8+ T cells expressing both IFN
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and TNFα was shown by preliminary
data from a phase I trial on 40 healthy individuals who received INO-4800—a SARS-CoV-2
DNA vaccine [59]. Following official approval, several research groups assessed humoral
and cell-mediated immune responses following mRNA vaccination in cancer patients. One
common feature was a discordance in humoral and cellular immune response in specific
patient groups. Whereas in the majority of immunocompetent patients the humoral and
the T cell vaccine response correlated well, in B cell depleted patients a drastically reduced
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antibody response was observed, while about a third of these patients still had specific T
cells. In contrast, patients after HCT showed a more pronounced reduction in T cellular
response whilst preserving the antibody response [8,29,31,32,60–62]. Relevant factors im-
pacting T cell vaccine-induced immune response beyond humoral response and vice versa
are yet to be determined in studies of larger sample sizes.

Viral vector vaccines consist of an attenuated recombinant virus (vector virus), express-
ing genes encoding for specific epitopes [63]. Common vectors are adenovirus, measles,
and vesicular stomatitis virus (VSV) [45]. Viral vector vaccines can induce robust humoral
and cellular responses with a single dose. Notably, pre-existing immunity against a human
viral vector can weaken the immune responses [45,64]. The first viral vector vaccine was
approved in 2019. It is based on a recombinant VSV vector that contains the genetic infor-
mation codifying for an Ebola glycoprotein [65]. With the SARS-CoV-2 pandemic, further
viral vector vaccines were approved. All of them elicit specific CD8+ and Th1-biased CD4+
T cell responses in healthy individuals [64,66–68].

3. Cellular Immune Response to Vaccination with Classical Vaccines in Patients with
Cancer—Special Patient Populations and Therapeutic Subgroups
3.1. Patients with Hematological Malignancies

Regarding the annual inactivated influenza vaccine, a vaccine-induced T cell response
has been described. In a small cohort of 13 patients with myeloproliferative neoplasms
(MPN), the percentages of naïve and active CD4+ T cells were measured prior, three weeks
following, and three months following vaccination. Compared to healthy individuals,
both naïve and active CD4+ T cells were significantly lower at baseline. In contrast, after
three weeks, the number of naïve CD4+ T cells and, after three months, the number of
active CD4+ T cells were significantly higher compared to healthy individuals, suggesting a
delayed cellular immune response in this patient population [69]. Another study showed a
similar T cell response increasing from day 50 in patients with hematological malignancies
compared to healthy individuals [70].

3.2. High-Dose Therapy and Stem Cell Transplantation

Cellular immunogenicity of inactivated vaccines in patients with malignancies is best
described in patients who underwent HCT. In the post-engraftment period following HCT,
a marked decrease in cellular immunity is observed, most severely in allogeneic HCT pa-
tients [71,72]. T cell reconstitution after allogeneic HCT requires several months, especially
in older patients and after myeloablative conditioning. It may be further hampered by
graft-versus-host disease (GVHD) and immunosuppressive treatment [72]. Vaccination is
therefore usually not recommended until at least six months after allogeneic HCT using
inactivated vaccines and until at least two years using live vaccines [2,73]. In contrast, after
autologous HCT, this long pause may not be necessary, as suggested by the data from the
following studies.

For pneumococcal vaccination Locke et al. demonstrated that the conjugate vaccine
Prevenar-13 (PCV-13), administered to patients with multiple myeloma before G-CSF
mobilization and during the lymphopenic period up to 21 days after autologous HCT,
elicited an increase in T helper cells and intracellular IFNγ and cytotoxic T cells [74].
A phase I/II observer-blind, randomized, and placebo-controlled trial investigated an
adjuvanted recombinant subunit HZ vaccine in autologous HCT recipients. Cell-mediated
immune response was measured by antigen-specific CD4+ T cell frequency. Compared to
the control group (saline), cellular immune response was significantly higher in vaccinated
patients. Notably, three doses was superior to two vaccine doses [75]. Other studies
showed that heat-inactivated varicella zoster virus (VZV) vaccines in adult autologous
HCT recipients elicited early recovery of T cell responses to the virus. Concomitantly,
expression of INFγ, TNFα, and IL-10 was significantly higher among patients with virus-
specific T cell proliferation [76,77]. The cellular immunogenicity correlated with a reduced
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risk of HZ [76]. Thus, a strong cellular response to vaccination seems to be achievable even
relatively early after autologous HCT.

This strategy on early vaccination after autologous HCT was further pursued with
recombinant VZV subunit or inactivated VZV vaccines [75,78–80]. The ZOE-HSCT ran-
domized, placebo-controlled phase 3 trial demonstrated efficacy of a two-dose regimen
of a recombinant VZV vaccine against VZV glycoprotein E administered 50–70 days after
autologous HCT against development of HZ [80]. Cellular vaccine response, assessed by
frequency of glycoprotein E specific CD4+ T cells expressing at least two activation markers,
was achieved in 93% of patients in the vaccine group at one month after the second dose and
declined to 71% after two years, while no increase in activated CD4+ T cells was observed
in the placebo cohort post vaccination compared to prior to vaccination [80]. The V212-001
phase 3 trial evaluated a four-dose regimen of inactivated VZV vaccine administered prior
as well as 30, 60, and 90 days after autologous HCT [78]. Cellular response to vaccination,
assessed by IFNγ enzyme-linked immunospot assay, showed a ratio of estimated geometric
mean fold rise (GMFR) in vaccine versus placebo group of 5.41 at four weeks after dose 4
and 3.32 at two years [79]. Compared to baseline, a GMFR of 1.85 was observed in vaccine
recipients at four weeks after dose 4, which increased to 3.32 at two years, while estimated
geometric mean count in the placebo group was actually lower at four weeks after dose 4
compared to baseline [79].

In a study investigating a two-dose regimen of inactivated H1N1 influenza vaccine in
adult hematological patients, induction of a significant H1N1 specific T cell response was
observed in the subgroup of allogeneic HCT patients [81]. Interestingly, T cell response did
not differ significantly between patients and healthy controls [81].

3.3. Cellular Therapy and Monoclonal Antibodies

B cell depletion following anti-CD20 or anti-CD19 directed therapies, such as anti-
CD20 monoclonal antibodies, anti-CD19 antibody drug conjugates (ADCs), or anti-CD19
chimeric antigen receptor (CAR) T cells, is generally assumed to impede an adequate
response to vaccination. Current guidelines recommend forgoing vaccination until B
cell recovery [2], as this is known to lead to dramatically reduced serological responses
after vaccination [19,82]. In contrast, cellular response is less well studied in this patient
population. Regarding protein- or polysaccharide-based inactivated vaccines, a small
study evaluated response to vaccination with haemophilus influenzae conjugate vaccine and
pneumococcal polysaccharide vaccine in patients with immune thrombocytopenia treated
with rituximab versus placebo 6 months earlier [83]. Compared to the placebo cohort,
significantly fewer INFγ-secreting T cells were observed in the rituximab cohort 4 weeks
after vaccination. However, the T cell response was more robust than the antibody response,
which was missing in about 70% of patients after rituximab [83].

A small clinical trial on immune response to vaccination with an inactivated VZV
vaccine in patients with hematological malignancies treated with anti-CD20 monoclonal an-
tibodies demonstrated a significant VZV-specific cellular immune response after dose 4, as
measured by INFγ enzyme-linked immunospot [26]. In a cross-trial comparison to patients
with hematological malignancies without anti-CD20 monoclonal antibodies, the strength
of cellular immune response between the two patient populations was comparable [26,84].

In summary, a cellular immune response to vaccination can be achieved in B cell
depleted patients, which seems to be decreased compared to healthy individuals but
similar when compared to patients with hematological malignancies on other treatment
regimens. Regarding the more recently approved plasma cell directed therapies, such as
anti-CD38 monoclonal antibodies, anti-BCMA ADCs or bispecific antibodies, or anti-BCMA
CAR T cells, far less is known on their impact on vaccine response, and most data come
from recent studies analyzing response after COVID-19 vaccination, as described below.
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3.4. Anti-Cancer Treatments: Chemotherapy, Immune Checkpoint Blockade and Small Molecules

The cellular response in patients undergoing chemotherapy was investigated in a
phase II/III study including 232 patients with solid cancer who received an adjuvant recom-
binant HZ vaccine. In treatment-naïve patients, the first dose was scheduled 8 to 30 days
before, and in patients currently under anticancer therapy, at the start of a treatment cycle.
The second dose was administered with a subsequent chemotherapy cycle. An increase
in antigen-specific CD4+ T cells was seen in both groups compared to placebo. Notably,
the humoral response was higher in treatment-naïve patients [85]. In solid tumor patients
receiving immune checkpoint inhibitors, vaccine-induced expression of H1N1-specific
CD4+ and CD8+ T cells were more frequent compared to patients under conventional cyto-
toxic chemotherapy [86]. A further analysis on influenza vaccines included patients with
metastatic renal cell cancer or GIST and healthy participants. Cellular immune response
was measured at baseline and day 8. The majority of patients were treated with tyrosine
kinase inhibitors (i.e., sunitinib or sorafenib). Functional T cell response was observed in
all patients with the exception of a lower concentration of IFN
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was seen in the majority of recipients. Notably, in individuals without a measurable num-
ber of neutralizing antibodies, virus specific memory CD4+ and CD8+ T cells were de-
tected [52]. A recently published phase I open-label trial on CoVac-1, a peptide-based vac-
cine, showed a SARS-CoV-2 specific CD4+, namely Th 1 phenotype, and CD8+ T cell re-
sponse. To stimulate a stronger cellular immune response, an adjuvant (Montanide ISA 
51—a water–oil emulsion) was added [53]. A plant-produced virus-like particle vaccine 
(CoVLP) was introduced by Ward et al., demonstrating both a humoral and cellular im-
munogenicity. Of note, again, immunogenicity was enhanced using an adjuvant [54].  

2.6. Cellular Responses Induced by Nucleic Acid Vaccines  
Nucleic acid vaccine platforms consist of deoxyribonucleic acid (DNA) or ribonucleic 

acid (RNA), encoding the vaccine antigen [39]. For subsequent processing, DNA vaccines 
must enter the nucleus, while mRNA vaccines only need to penetrate the cellular mem-
brane [39,45]. Following processing of mRNA, antigens are presented to adaptive immune 
cells [45]. By now, two mRNA vaccines are licensed by FDA/EMA for human use, 
BNT162b2 and mRNA-1273, both known to elicit humoral and cellular immunogenicity 
in healthy individuals [33,55–57]. Upon vaccination with BNT162b2, a strong response of 
virus-specific Th1 and CD8+ T cells was reported, in some of them more than tenfold com-
pared to responses to common viruses [33,56,57]. In individuals who received mRNA-
1273, a strong CD4+ cytokine response involving Th1 cells was seen. In line with this, the 
response involving virus-specific Th 2 cells was only minimal [58]. A T cell response dom-
inated by CD8+ T cells expressing both IFNɣ and TNFα was shown by preliminary data 
from a phase I trial on 40 healthy individuals who received INO-4800—a SARS-CoV-2 

in patients treated with
sorafenib [87]. Thus, little influence on the cellular immune response seems to be exerted at
least by these types of small molecules.

4. Special Situation: Cellular Response to Vaccination against SARS-CoV-2 in Patients
with Cancer
4.1. Patients with Hematological Malignancies

While most previous vaccination studies in cancer patients have mainly focused on
serologic data [88–91], few also describe cellular responses to determine immunogenic-
ity [92]. Regarding COVID-19 vaccines, several reports describe the dynamics of binding
anti-SARS-CoV-2 antibodies. They observed a reduced serologic response in hematological
patients [8,31,34,82,93–95]. The observed poor immunogenicity induced by COVID-19
vaccines in hematological patients is in line with other vaccines in this population such as
hepatitis B, influenza, and pneumococcal vaccines.

A defined correlate of protection is still lacking for COVID-19 vaccines, but there
are strong indications towards neutralizing antibodies as such against SARS-CoV-2 infec-
tion [96–98]. Yet, it is questionable if the serologic response can serve as reliable surrogate
in a population with an impaired B cell axis.

As previous investigations in hematological and B-cell depleted patients revealed,
the T cell response to SARS-CoV-2 infection and COVID-19 vaccination plays a vital role
and may ensure protection even in the absence of either humoral or B cell response [35,60].
Agammaglobulinemia patients were shown to recover from COVID-19 without adequate
serological responses, suggesting a T cell response to be sufficient for recovery from disease
and even for mounting protection from infection [99,100]. An undetectable B cell and
reduced T cell response in many hematological patients (ranging from 34.2 to 79.0%) com-
pared to healthy controls or solid tumor patients has so far been reported [31,61,62,101,102].
Age (>65 years), active disease, immunosuppressive treatment for GvHD, and lymphopenia
were associated with impaired cellular response.

Especially in patients treated with B cell depleting treatment, a significant dissociation
between humoral and cellular response was observed, as many of those lack humoral
response but were shown to have a SARS-CoV-2 specific T cell vaccine-induced immune
response. In contrast, patients with immunosuppressive treatment (e.g., for GvHD) tend to
have a stronger humoral, but reduced cellular response [62].

Few data suggest that heterologous vaccination [103] and a booster immunization
could enhance T cell response especially in immunocompromised patients. It might thus
be a reasonable approach to adapt the vaccination strategy for hematological patients
and those with otherwise caused B cell depletion. It is reassuring that a high vaccine-
induced T cell response is reported in immunocompromised patients, even if they fail to
seroconvert. The underlying mechanism is yet to be determined. Regulatory B cells and
antigen abundance due to antibody absence may subsequently modulate T cell activation
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and proliferation [104]. A more comprehensive picture by in-depth T cell analyses in this
population may grant further insights.

4.2. Solid Malignancies

While hematological diseases are associated with impaired humoral and—partly—
cellular vaccine immune responses, this is not necessarily the case for patients with solid
malignancies. In a cohort of 180 patients with solid cancer, 90% of patients exhibited an
adequate antibody response to the BNT162b2 vaccine, although their amounts of antibody
titers were significantly lower than those of healthy controls [105]. Of note, 75% had
metastatic disease demanding excessive treatment. Yet, further studies of similar size
and with different distribution of solid cancer location showed lower seroconversion
rates compared to healthy controls [106,107]. As the serological vaccine immune response
depends on underlying disease and type of treatment, the same may be assumed for cellular
response. The latter was shown to be impaired in many patients with solid cancer (46%)
in a recent observation [31]. Although more recent studies describe higher rates (up to
89.5%) of achieved vaccine-induced cellular responses, they also describe substantially
reduced magnitudes of vaccine-induced antibody and T cell responses in patients with
cancer compared to healthy individuals [34,61]. Depending on the underlying disease and
type of treatment, cancer patients also exhibited discordant immune responses and may
have a T cell response even if failing seroconversion.

Of note, the third immunization may improve the cellular immune response to the
vaccine [108], although this is considered controversial [34]. In a situation of increasing
COVID-19 case numbers and novel variants of concern, this must be investigated in studies
of larger scope to conclude clinical implications.

4.3. High Dose Therapy and Stem Cell Transplantation

In a prospective cohort study investigating safety and immunogenicity of the COVID-
19 BNT162b2 vaccine in allogeneic transplant patients, 75% of patients, all at least 3 months
after HCT and without severe GVHD, showed a serologic response, while a cellular vaccine
response was only achieved in 19% of evaluable patients [62]. A positive correlation
was observed between a higher CD4+/CD8+ ratio and a cellular response, although
statistical power was hampered by small sample size [62]. Similarly, in a large cohort study
on more than 100 allogeneic HCT patients vaccinated with two doses of BNT162b2 at a
median of 30 months following transplant, cellular response to vaccination was significantly
reduced [109]. The time interval between HCT and vaccine response assessment positively
correlated with both humoral and cellular response [109]. In contrast, a smaller prospective
study analyzing T cell responses to sequential COVID-19 vaccination, mostly mRNA-based,
in allogeneic HCT patients reported a significantly positive impact of repeat vaccination
with an increase in T cell response from only 35% of patients (after the first dose) to 82%
(after the second dose) [110].

4.4. Cellular Therapy and Monoclonal Antibodies

Recent observations in COVID-19 vaccine response in patients with chronic lymphatic
leukemia confirm the absence of development of (mRNA) vaccine antibody titers in case of
treatment with anti-CD20 monoclonal antibodies within the last 12 months [82]. A recent
study in patients with autoimmune disorders and a history of anti-CD20 directed therapies
observed a cellular vaccine response after mRNA vaccination in 20% of patients [111].
However, the proportion of patients with cellular vaccine response was significantly lower
than observed among healthy controls (75%) [111]. Of note, most patients had immunosup-
pressive co-medication, in particular steroids in nearly half of patients [111]. In contrast,
in a small study of multiple sclerosis patients on active monotherapy with anti-CD20
monoclonal antibodies, all patients developed a CD4+ and CD8+ T cell response to vacci-
nation with COVID-19 mRNA-based vaccines, which suggests that, in CLL, the underlying
hematological disease might also play a role [60].
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In a further cohort study on lymphoma patients with a history of anti-CD20 treatment,
a cellular response to COVID-19 vaccination, mostly mRNA-based, was observed in 58% of
evaluable patients with no association between T cell response and time to last anti-CD20
therapy [112]. A larger study evaluating response to COVID-19 mRNA vaccines in a cohort
of cancer patients reported a SARS-CoV-2-specific T cell reactivity in 45% of patients with
hematological cancer and 34% of patients with anti-CD20 therapies and notably observed
no significant association between anti-CD20 therapy versus other types of therapies and T
cell reactivity [31].

Following cellular therapy with anti-CD19 CAR T cells, a positive cellular response to
BNT162b2 vaccination was observed in 50% of patients in a small prospective cohort trial,
including patients without humoral response and complete B cell aplasia [62]. In multiple
myeloma patients receiving either one of the COVID-19 mRNA vaccines or the vector-based
vaccine AZD1222, treatment with anti-CD38 monoclonal antibodies or anti-BCMA ADCs
was associated with significantly reduced humoral vaccine response [113,114]. With respect
to cellular vaccine response, a small study on myeloma patients following COVID-19
mRNA vaccination found a similar SARS-CoV-2 specific CD4+ and CD8+ T cell response in
seropositive myeloma patients and healthy controls, while seronegative myeloma patients
showed significantly reduced CD4+ T cell responses [115]. In particular, active treatment
with anti-CD38 monoclonal antibodies or anti-BCMA bispecific antibodies was associated
with decreased CD4+ T cell responses, while patients treated with anti-BCMA CAR T cells
mounted similar CD4+ T cell responses compared to myeloma patients receiving other
therapies [115].

4.5. Anti-Cancer Treatments: Chemotherapy, Immune Checkpoint Blockade and Small Molecules

As vaccination studies tend to report mainly on humoral vaccine response, data on
cellular vaccine response in specific subgroups of the large variety of anti-cancer therapies
are scarce and often hampered by small sample size and insufficient statistical power. Given
the unique challenge of the COVID-19 pandemic and the observation of strong cellular
immune response in COVID-19 vaccines [56,64], recently, several studies on COVID-19
vaccination in cancer patient also report on cellular vaccine response and help to elucidate
this issue.

The prospective VOICE trial reported on response to two-dose COVID-19 mRNA
vaccination with mRNA-1273 in solid tumor patients [25]. A SARS-CoV-2 spike-specific
IFNγ T cell response at four weeks after dose 2 was observed in 67% of evaluable patients
with chemotherapy, 66% with immunotherapy, and 53% with chemoimmunotherapy,
compared to 69% in controls [25]. Of particular interest, a cellular vaccine response was
observed in 43% of serological non-responders and 47% of suboptimal responders among
cancer patients [25].

To assess the impact of booster vaccination of mRNA-based COVID-19 vaccines
in cancer patient on active immunosuppressive therapy, by the vast majority, cytotoxic
chemotherapy, a prospective cohort study evaluated humoral and cellular response follow-
ing one to three doses [34]. While the control cohort already showed a significant increase in
INFγ producing T cells after the first dose compared to pre-vaccination, in cancer patients, a
clear four-fold increase was only observed after the second dose, with T cell frequencies still
significantly lower than observed in healthy controls [34]. Notably, while humoral vaccine
response significantly improved after a third dose in cancer patients, no overall increase
in T cell response could be observed following booster immunization [34]. This contrasts
with a recent report from the UK showing that after a third vaccination dose specific T
cell response increased from around 35% to around 73% in patients with solid tumors and
hematological malignancies [108]. In particular, the T cell responses were more robust
against variants of concern, therefore possibly providing a more durable protection [8,108].

A cohort study on the immunogenicity of COVID-19 vaccine BNT162b2 in cancer
patients receiving immune checkpoint inhibitors either targeting programmed cell death
protein 1 (PD-1) or programmed death-ligand 1 (PD-L1) showed a spike-specific T cell
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response, assessed by ELISpot, in 72% of patients after one dose and in 92% after the
second dose [116]. Both CD4+ and CD8+ T cells were elicited by vaccination, and no
significant correlation between increase in spike-specific T cells and time interval between
start of immunotherapy and vaccination was observed [116]. A small study on patients
with chronic myeloid leukemia under active treatment with tyrosine kinase inhibitors also
reported highly promising humoral and cellular response to one dose of COVID-19 vaccine
BNT162b2 with polyfunctional T cell responses observed in 80% of evaluable patients [117].

In summary, recent COVID-19 vaccination studies in patients with cancer have shown
a depth of analysis that has not been reported before and provides important and novel
evidence supporting the essential role of the T cellular response for protection against
vaccine-preventable disease.

5. Development of Novel Vaccines

In light of the essential role of T cell response to vaccination, vaccines that specifically
target this axis are needed for immunocompromised patients. Currently, such develop-
ments are under investigation. A novel COVID-19 vaccine consisting of several viral
peptides and a TLR-1/2 agonist as adjuvant has shown promising activity in eliciting T cell
responses [118,119]. Importantly, in first clinical trials, the vaccine CoVac1 is well tolerated
and induces T cells to all viral strains tested so far [53]. This implies that protection from
COVID-19 will be robust and durable even after antigenic shift caused by VOC. Further, it
has been shown that heterologous prime-boost schedules favor T cell responses and may
therefore be reasonable approaches for immunocompromised patients [120].

6. Conclusions and Outlook

Cellular response, in particular T cell response, is often more reliably induced in
cancer patients than the antibody response. It may be a suitable correlate of protection
and, further, more robust against the antigen drift and possible ensuing immune escape
resulting from pathogen mutations. Novel vaccines developed especially for patients with
impaired immune response may take this into account.
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