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Abstract: In recent decades, many new and exciting findings have paved the way to the better
understanding of plant responses in various environmental changes. Some major areas are focused
on role of phytohormone during abiotic stresses. Salicylic acid (SA) is one such plant hormone
that has been implicated in processes not limited to plant growth, development, and responses to
environmental stress. This review summarizes the various roles and functions of SA in mitigating
abiotic stresses to plants, including heating, chilling, salinity, metal toxicity, drought, ultraviolet
radiation, etc. Consistent with its critical roles in plant abiotic tolerance, this review identifies the
gaps in the literature with regard to the complex signalling network between SA and reactive oxygen
species, ABA, Ca2+, and nitric oxide. Furthermore, the molecular mechanisms underlying signalling
networks that control development and stress responses in plants and underscore prospects for future
research on SA concerning abiotic-stressed plants are also discussed.
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1. Introduction

Salicylic acid (SA) is a phytohormone that plays multifaceted signalling roles in
mediating plant growth, development, and defences to environmental stresses [1,2]. It is a
simple beta-hydroxy phenolic acid that was firstly isolated from willow, and its name was
derived from the Latin word “salix”. The amount of SA across different plant species ranges
from 0.1 to 10 µg g−1 fresh weight, and most SA is stored in methylated and/or glucosylated
forms [3]. In plants, SA can be synthesized via two distinct enzymatic pathways: the
phenylalanine ammonia-lyase (PAL) and the isochorismate synthases (ICS) pathway, which
both require the primary metabolite chorismate [4]. The PAL pathway mainly takes place in
the cytoplasm. Firstly, the phenylalanine is converted into cinnamic acid by PAL; then, the
side chain of cinnamic acid is decarboxylated to form benzoic acid; and finally, the benzoic
acid undergoes 2-hydroxylation to form SA. This pathway has been confirmed by silencing
PAL genes in pathogen-attacked Arabidopsis, which resulted in a 90% reduction of basal
PAL activity and exhibited a 50% decrease in SA production [5]. Another pathway mainly
occurs in the chloroplasts, mediated by ICS, which directly catalyses the conversion of
chorismate into isochorismate. According to this pathway, SA is generated from chorismate
by the synthesis of ICS1 and ICS2 [6]. Loss of ICS1 suppresses the pathogen-induced SA
accumulation in SA-deficient mutants, sid2 [7], whereas loss of both ICS genes results in
further reduction in the biosynthesis of SA [6].

SA is best known as a defence hormone. The first report on SA signalling was involved
in plant immunity in 1979, which described that the application of aspirin (acetyl-SA) in
virus-susceptible tobacco conferred resistance against tobacco mosaic virus [8]. During the
early 1990s, studies with transgenic plants revealed how SA is perceived and synthesised
under pathogen attack [9]. Recently, increasing evidence has shown that SA plays an im-
portant role in mediating plant responses to various abiotic stresses, including chilling [10],
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drought [11], thermogenesis [12], osmotic stress [13], and metal toxicity [14]. Although
SA has been confirmed as an important signalling molecule for the regulation of reactive
oxygen species (ROS) production in plants [15], most of the literature so far has found that
pre-treatment with an appropriate level of SA may induce an acclimation effect on all kinds
of abiotic stresses [14,16,17]. Indeed, the signalling roles of SA depend on many factors,
including plant species, application mode, the exogenous and endogenous levels of SA, as
well as stress faced by the plants [16]. Although recent studies have unravelled some of
the molecular mechanisms’ signalling networks that control plant development and stress
responses, a few regarding them are still unknown. This review starts with the literature
on the role of SA in the protection of plants against abiotic stresses (including heat, chilling,
salinity, metal toxicity, drought, ozone, pesticide, and ultraviolet radiation), followed by a
proposal of possible mechanisms and prospects for research on SA in abiotic-stressed plants.

2. Functions of SA in Mitigating Abiotic Stresses
2.1. Heat

Global warming is causing a serious threat to plant growth and food security. Heat
stress disturbs plant cellular homeostasis, retards development, and causes sterility and
reduced yield [18]. It has been reported that the application of exogenous SA enhances
rice yield under high-temperature conditions [19], while inhibiting the synthesis of SA
markedly reduced the level of thermotolerance in pea plants [20]. Furthermore, the biosyn-
thesis of SA was increased under heat stress, as observed in many plant species, such as
mustard [21], creeping bentgrass [22], grape [23], and melon [24]. These findings indicate
that SA signalling is involved in heat acclimation in plants (See Table 1).

Photosystem II, which functions as an electron transport chain in chloroplasts, is one
of the most thermosensitive structures in plants [25]. A study found that spraying 0.25 mM
SA onto alfalfa leaves for 5 days ameliorated the heat damage to PSII and photosynthetic
efficiency [12]. This may be because SA improves the antioxidant system and chlorophyll
fluorescence [26], thus maintaining the thermo-stability of the electron donor and reaction
centres of PSII [27]. Heat stress also disturbs osmotic potential and destroys plasma mem-
branes, thereby leading to ion leakage in plant cells. The application of SA can enhance
free proline content, which plays a key role in the osmoregulation of plant cells. This
phenomenon has been widely observed in wheat [28], cucumber [26], and tomato [29,30].
Furthermore, spraying 100 mM SA on grape leaves stabilized the activity of the proton
pumps in membranes, including H+- and Ca2+-ATPase, which may be another important
mechanism for maintaining the integrity of the membrane under heat stress [31]. Activities
of SA contribute to better regulation of stomatal aperture along with photosynthetic appa-
ratus, such as PSII and Rubisco activity, and thus increase the capacity of photosynthesis
when subjected to stressful temperature conditions [30].

Transcriptome analysis of plants has revealed SA signalling of heat-stress-responsive
genes during thermotolerance, such as NPR1 (non-expresser of pathogenesis-related),
HSPs (heat shock proteins), MBF1c (multiprotein bridging factor 1c), TGA, and PR-1
(pathogenesis-related protein 1) [22,32]. Exogenous application of SA induces the synthesis
of heat shock proteins (HSPs), the proteins chiefly responsible for defence against heat
stress, as noted in Arabidopsis thaliana plants [33], tomato [34,35], and rice [36]. However,
a study with transgenic Arabidopsis obtained the inconsistent results that SA failed to
affected the expression of Hsp [33], indicating the molecular mechanism still needs to be
further investigated. Endogenous free SA stimulated the production of PIP2-phospholipase
C of pea, a lipid-associated enzyme involved in intracellular signalling, in response to heat
treatment. In response to heat stress, the pea plant elevated the synthesis of SA initially,
which then signalled the production of PIP2-phospholipase C, a lipid-associated enzyme
involved in intracellular signalling [37]. SA also increases the expression of the chitinase-1
gene in melons under heat shock [24]. Furthermore, cross–talk between SA and other plant
signallings, such as H2S, Ca2+, IAA, and ABA, has also been reported [38–40]. For example,
treatment with SA increases the activity of L-cysteine desulfhydrase, a key enzyme in H2S
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biosynthesis, indicating that H2S might be a downstream signalling molecule in SA-induced
heat tolerance [38].

Table 1. The collected references of SA on heat tolerance in plants.

SA
Heat Treatment Plant Species Main Responses ReferenceType of SA SA Treatment

0–0.5 mM 38 ◦C for 72 h Alfalfa (Medicago sativa L.) I, II, III [12]

0–1.5 mM T(max) ≥ 35 ◦C for
128 d Rice (Oryza sativa L.) I, II, III [19]

100 µM 38 ◦C for 24 h Grapevine (Vitis vinifera L.) I, II [23]
1 mM 40 ◦C for 24 h Cucumis sativa L. I, II, III, V [26]
100 µM 43 ◦C for 5 h Grape (Vitis vinifera L.) I, III, VII [27]
0.01% 15–35 ◦C for 60 d wheat (Triticum aestivum L.) I, II, III [28]

1 mM 42 ◦C for 36 h Tomato (Solanum
lycopersicum L.) I, II, III, V [29]

0.5 mM 40 ◦C for 6 h Wheat (Triticum
aestivum L.) I, II, III, Ethylene formation [30]

100 µM 45 ◦C for 3 h or 6 h Grape plants (Vitis
vinifera L.)

I, Plasma membrane
H+-ATPase, Ca2+-ATPase [31]

10 µM 40 ◦C for 1 h etr-1, nahG mutants I, II [32]

0–1 mM 38 ◦C for 16 h npr1 mutant, NahG plants,
cpr5 mutants I, V, VII, VI, PR genes [33]

0–1 mM 40 ◦C for 30 min Lycopersicon esculentum L. I, VII, Membrane
permeability [34]

1 mM 41 ◦C for 2 h Rice (Oryza sativa L.) I, VII [36]

100 µM 45 ◦C for 3 h Pea (Pisum sativum L.) I, VI, Expression of
PIP2-PLC+ [37]

100 µM 44 ◦C for 3 h Grape plants (Vitis
vinifera L.)

I, II, V, PM-Ca2+ATPase,
V-Ca2+ ATPase

[40]

Endogenous SA

37 ◦C for 2 h Pea (Pisum sativun L.) I, II, VII, VI [20]
45 ◦C for 1 h Mustard (Sinapis alba L.) I, II [21]
50 ◦C for 20 s Melon (Cucumis melo L.) I, Up-chitinase1 gene [24]

40 ◦C for o–48 h Maize (Zea mays L.) I, III, VII, VI, II, III, ABA,
and IAA [39]

I, Growth; II, Antioxidant system; III, Photosynthesis; IV, SA-induced genes; V, Electrolyte leakage; VI, Endogenous
free SA; VII, Heat shock proteins.

2.2. Chilling

Chilling injury is one of the main limitations in the growth and productivity of tropical
and subtropical crops. The regulatory role of SA in defending against chilling stress has
been reported in many plant species, such as maize [41], mountain rye [42], watermelon [43],
beans [44], wheat [10,45], and barley [46]. Furthermore, low temperatures induced the
accumulation of endogenous SA in Arabidopsis thaliana and wheat plants, which further
confirmed the relationship between SA and cold stress responses [45,47] (See Table 2).

Low temperatures are effective for the storage of fruits and vegetables, but they may
also cause chilling injury. SA as a highly efficient buffering agent against cold stress has
been widely demonstrated in many fruits. For example, spraying 0.5 mM SA changed
H2O2 metabolisms and increased the chilling tolerance of banana seedlings [48,49]. Similar
results have been reported in cut flowers [50], bamboo shoots [51], as well as fruits in
lemons [52,53], cucumbers [54], bell peppers [55], peaches [56,57], pomegranates [58,59],
and plums [60].

A study also reported that SA exposure alleviated chilling injury on the seed germi-
nation of mountain rye, musk melon, and bean plants [42,44,61]. This may be because
SA activates protein synthesis, such as that of 20S proteasome, and simulates the activity
of enzymes, such as pentose phosphate, gluconeogenesis, and glycolysis, which together
release the plant from the quiescent state [62]. Meanwhile, Zhao et al. (2021) found that
treatment with 1 µM SA alleviates chilling injury in peach fruit through enhancing the
total soluble sugars together with related genes expression (SPS4, NINV2, SuSy2, and
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SUT1) and cold-response genes expression (DREB1A and DREB2A) [63]. SA has also been
shown to play a key role in growth development (including phonological aspects such as
photosynthesis, respiration, and osmolytes synthesis) under cold stress. For example, SA
treatment promotes the chilling tolerance of shoots in maize, rice, and cucumber, which is
accompanied by an increase in the activities of glutathione reductase (GR) and guaiacol
peroxidase [64]. Spraying SA maintained photosynthesis and chloroplast construction and
mitigated chilling damage in grape leaves [40]. Methyl SA alleviated cold-injury-induced
oxidative damage on sweet peppers by activating the alternative oxidase [65] gene expres-
sion, the key oxidase enzymes involved in electron transfer [66]. The synthesis of soluble
sugars and proline might also be involved in SA signalling in Phaselous vulgaris [67] because
these osmolytes can maintain the composition and ratio of fatty acids in membranes due to
antioxidant (form of NADH or NADPH) and osmotic adjustment [68], thus stabilizing the
overall structure of cells, which is a prerequisite for cold tolerance [52,69,70]. Furthermore,
it was reported that exogenous SA (1mM) promoted chilling tolerance in cucumber plants
by upregulating the cold signalling pathway (ICE1, CBF1, and COR47) and genes related
to SA metabolism (PAL, ICS, and SABP2) [71].

Proteomic studies have gradually uncovered the relationship between SA and proteins
expressed under low-temperature stress. Treatment with SA has been reported to reduce
ice nucleation and induce anti-freezing protein, which inhibits ice crystal formation in
plant cells [72]. Treatment with 0.01 mM methyl SA induced pathogenesis-related protein
expression and increased the cold tolerance of tomatoes [73]. Introduction of 2 mM SA
enhanced the γ-aminobutyric acid shunt pathway of anthurium-cut flowers during storage
at 4 ◦C, providing sufficient ATP content to cope with the oxidative damage induced by
the low temperature [74]. Treatment with 2 mM SA reduced chilling injury in lemons by
increasing the production of HSPs [53]. Furthermore, it was reported that exogenous SA
(1 mM) improved chilling tolerance in cucumber plants by upregulating the cold signalling
pathway (ICE1, CBF1, and COR47) and genes related to SA metabolism (PAL, ICS, and
SABP2) [71].

However, a study using an SA-deficient mutant, NahG, showed a higher growth rate
than wild-type plants under cold stress. After being stored at a temperature of 5 ◦C for a
2-month-long cultivation, NahG plants displayed 2.7-fold larger biomass than the wild-type
plant Col-0, while the free SA levels of NahG were only 5% of Col-0. This indicates that
SA-mediated cold tolerance still needs to be studied further, in particular, regarding SA
homeostasis in plants [47].

Table 2. The collected references of SA on chilling tolerance in plants.

SA Treatment Chilling Treatment Plant Species Main Responses ReferenceType Treatment

Exogenous SA

100 µM 4 ◦C for 7 d Wheat (Triticum aestivum L.) II, IV [10]
0.5 mM 2 ◦C for 2 d Maize (Zea mays L.) I, II, III, Ethylene [41]

0–100 mg kg−1 10 ◦C for 12 h–15 h;
15 ◦C for 12 h

Mountain rye (secale
montanum) I [42]

0–1mM 10/5 ◦C for 7 d Watermelon (Citrullus
lanatus)

I, II, III, IV, V, SA
biosynthesis [43]

0.1 mM 15 ◦C for 0–30 d Bean (Phaseolusvulgaris L.) I, II, III, Phytohormone [44]
0.1 mM 7/5 ◦C for 0– 28 d Barley (Hordeum vulgare) II, Apoplastic proteins [46]

5 ◦C for 36 d NahG, npr1 mutant,
cpr1 mutant I, II, VI [47]

0.5 mM 5 ◦C for 3 d Banana (Musa acuminata coll) II [48]

1 mM 5 ◦C for 10 d Banana fruits (Musa
AAA group.) I, II, V [49]

0–4 mM 4 ◦C for 21 d Anthurium andraeanum I, II, V, VIII [50]



Life 2022, 12, 886 5 of 25

Table 2. Cont.

SA Treatment Chilling Treatment Plant Species Main Responses ReferenceType Treatment

Exogenous SA

0–3 mM 1 ◦C for 50 d Bamboo shoots I, II, V, VIII [51]

2 mM −0.5– 4.5 ◦C for 28
d Lemon (Citrus limon L.) I, II, V, VIII [52]

2 mM −0.5–4.5 ◦C for 28 d Lemon (Citrus limon L.) II, VII, IV [53]

7 mM 2 ◦C for 50 d Cucumber (Cucumis
sativus L. I, II, III, V, VI, VIII [54]

200 µM 4 ◦C for 25 d Pepper (C. annuum L.) I, II, V, Fatty acids
metabolism [55]

0–1 mM 0 ◦C for 28 d Peach (Prunus persica L.) I, II, VII [56]

1 mM 0 ◦C for 35 d Peach fruit (Prunus
persica Batsch) II, Polyamine contents [57]

0–1.0 mM 0 ◦C for 0–84 d Pomegranates (Punica
granatum L.)

I, II, Primary
metabolism [58]

0–2.0 mM 2 ◦C for 90 d Pomegranates (Punica
granatum) I, II, V [59]

0–2.5 mM 1 ◦C for 0–60 d Plums (Prunus
salicina Lindl.) I, II, V, Ethylene [60]

0–0.5 mM 20 ◦C for 8 d Muskmelon (Cucumis melo
L.) I, II [61]

0.5 mM 2.5 ◦C for 1–4 d Maize, Cucumber, Rice I, II, V [64]
0.1 mM 0 ◦C for 14 d Pepper (C. annuum L.) I, IV [65]

0–3 mM 0 ◦C for 2–4 d Bean (P. vulgaris L.) I, II, III, IV, Soluble
sugars [67]

0–5 mM 4 ◦C for 2 d Acha inchi (Plukenetia
volubilis) II, Soluble sugars [70]

0–1 mM 15/10, 10/5, 5/3 ◦C
for 0–45 d Wheat (Triticum aestivum L) I, II [72]

0–0.5 mM 4 ◦C for 2 w–4 w Tomato (Lycopersicon
esculentum L.) I, IV [73]

2 mM 4 ◦C for 21 d Anthurium cut flowers I, II, Fatty acid
metabolism [74]

Endogenous SA 4 ◦C for 0–21 d Wheat (Triticum aestivum L.)
Stress-protective
proteins,
Phytohormone

[45]

I, Growth; II, Antioxidant system; III, Photosynthesis; IV, SA-induced genes; V, Electrolyte leakage; VI, Endogenous
free SA; VII, Heat shock proteins; VIII, Phenolic metabolism.

2.3. Salinity

When grown in saline soils, plants may suffer from superabundant ion and osmotic
stress, leading to ion imbalance and toxicity in plant cells [75]. It has been found that salt
stress can cause a decrease in SA content in plants, such as Iris hexagona [76], tomato [77],
and soybean [78], whereas the application of SA increased tolerance to salt toxicity in many
plant species, such as pepper [13], cucumber [79], and soybean [80] (See Table 3).

SA is an important regulator of influx and efflux of Na+. For instance, addition of SA
to soil alleviated salt toxicity in maize by decreasing Na+ accumulation [81]. Exogenous
foliar application of 1.5 mM SA reduced osmotic stress and improved the aerial K+/Na+

ratio of saffron under saline conditions [82]. Soaking seeds of Leymus chinensis in SA
solution lowered osmotic damage on the plasma membrane by accumulating K+ and
Ca2+ [83]. SA-signalled K+ accumulation might be due to the activation of H+-ATPase in
the membrane [84], which occurs via guard cells outwardly rectifying K+ channel (GORK),
as noted in Arabidopsis thaliana under salt stress [85]. The increase in Ca2+ influx in the
cytoplasm may activate the transport system of Na+/H+ in the plasma membrane, which
is mediated by the salt overly sensitive (SOS) signalling pathway [86]. Furthermore, the
application of SA has been shown to maintain the membrane integrity by regulating
compatible metabolites such as proline and soluble sugars. Irrigation of the solution with
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1 mM SA into soil increased proline content and sustained membrane integrity of pepper
cells [13]. Exogenous SA increases proline, soluble carbohydrates, and proteins contents
in soybean leaves, thereby adjusting the water content of cells [84]. Pre-treatment of SA
might induce a pre-adaptive response through a transient increase in H2O2 level, which
may act as a second messenger to “set up” the plant to defend the following salt stress
that may occur. Pre-treatment with SA enhances the activities of antioxidant enzymes in
plants, which in turn decreases stress-induced oxidative stress, as has been noted in Leymus
chinensis [83] and Iris pseudacorus [87]. The signalling role of SA is also cross-linked with
ABA, glycinebetaine, and ethylene (ET), as they are closely correlated with the synthesis of
stress proteins and maintenance of leaf water potential [88,89].

However, a transgenic investigation revealed a negative result while comparing wild-
type Arabidopsis thaliana and an SA-deficient mutant (NahG) under salt stress. Wild-type
plants showed extensive necrosis in shoots when grown in a 100 mM NaCl medium. Under
the same conditions, NahG plants were more tolerant and retained green leaves [90]. Sub-
sequent research on Arabidopsis thaliana transgenic mutants or lines further demonstrated
that the high level of SA (snc1, 15 fold higher than wild-type) [91] in plants increased
salt-induced damage, while a low level of SA contributed to the tolerance of plants to salt
toxicity [92]. It seems as though the excessive levels of SA in plants may aggravate the
oxidative burden induced by salt stress, as SA is a key signalling compound during the
regulation of the antioxidant system [93,94].

The molecular basis for salinity amelioration associated with SA positively regulates
the antioxidant genes, especially for GST-gene family members [16]. Pre-treatment with
SA reinforced the antioxidant defence systems and mitigated the negative effects of salt
stress in barley (Hordeum vulgare L.) [95]. Exposure of SA alleviated the salinity stress in
Solanum lycopersicum by regulating the expression of SlGSTT2, SlGSTT3, and SlGSTF4 [94].
Exogenous application of SA improved the salt tolerance in Triticum aestivum due to the
enhancement of transcript levels and activities of ascorbate (AsA)-GSH pathway enzymes
antioxidant genes, such as GPX1, GPX2, DHAR, GR, GST1, GST2, MDHAR, and GS [93].

Table 3. The collected references of SA on salinity tolerance in plants.

SA Treatment Salinity Plant Species Main Responses ReferenceType Treatment

Exogenous SA

1 mM 0–150 Mm for 10 d Capsicum annuum I, II, III, Phenolic
content [13]

200 µM 100 mM for 4 h Tomato (Lycopersicon
esculentum Mill.) I, II [77]

1 mM 0–10 dS m−1 Soybean (Glycine max L.) I, II, III, VI [80]
0–1.0 mM 40 Mm for 56 d Maize (Zea mays L.) I, II, III, VI [81]
1.5 mM 0–15 dS m−1 for 900 d Saffron I, II, III, VI [82]
0–0.5 mM 2.51 g kg−1 for 17 d Leymus chinensis Trin.Tzvel. I, II, V, VI [83]
1 mM 0–100 mM Soybean (Glycine max L.) I, III, VI, H+-ATPase [84]

50 µM 100 mM for 14 d rbohD mutant, gork1-1
mutant I, V, VI [85]

0.5 mM 100 mM for 15 d Mungbean (Vigna radiata L.) I, II, III, VI, Ethylene [88]
0.05 mM 2% for 24 h Wheat (Triticum aestivum L.) I, II, Phytohormones [89]
0.5 mM 250 mM for 72 h Wheat (Triticum aestivum L.) I, II, IV [93]
0–0.1 mM 100 mM for 7 d Solanum lycopersicum II, GST genes [94]

Endogenous SA

0–400 mM for 0–48 h Iris hexagona walter Phytohormones [76]
0–140 mM for 80 d Soybean (Glycine max L.) I, III, Phytohormones [78]

0–100 mM for 0–7 d Cucumber (Cucumis sativus
L.)

I, II, VI,
Phytohormones [79]

100 mM for 15 d NahG plants I, II,
Stress-induced genes [90]

0–300 mM for 14 d nahG, npr1-1, snc1/nahG
mutants I, II, V [92]

I, Growth; II, Antioxidant system; III, Photosynthesis; IV, SA-induced genes; V, Electrolyte leakage; VI, Ion uptake.
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2.4. Metal Toxicity

Metal phytotoxicity has been a major subject of current plant biology research. Heavy
metals can be absorbed easily by plant roots, transported into shoots, and cause various
visible toxic symptoms, such as growth retardation, leaf chlorosis, wilting, and cell death.
The beneficial role of SA in defence against metal toxicity has been reported in a wide
range of plant species [96,97]. For instance, application of SA improved the growth and
photosynthetic abilities in Pb-stressed rice [98], Cu-stressed Phaseolus vulgaris [99], and
Ni-stressed mustard [100]. Recently, the co-reaction of SA with other promoters has also
been evaluated. For example, combination exposure of SA and plant-growth-promoting
bacteria reduced the Cr-induced oxidative damage in maize [101]. SA in combination
with kinetin or calcium ameliorated Ni and Pb stress in Phaseolus vulgaris plants [102].
The combined supplementation of melatonin and SA effectively detoxified As toxicity by
modulating phytochelatins and nitrogen metabolism in pepper plants [103] (See Table 4).

Cadmium is one of the most toxic and widespread heavy metals in the world [104].
It is the typical toxic metal that can induce representative symptoms in plants, such as
replacing and inactivating essential elements, destroying protein structure, and interfering
with photosynthesis, respiration, and cell division [14]. A wide range of plant species have
shown that SA is deeply involved in promoting Cd tolerance during processes such as
plant growth, element assimilation, Cd translocation, photosynthesis, and senescence [14].
Therefore, this review on the topic of metal toxicity is focused on the interaction of SA and
Cd in plants.

The phytotoxicity of cadmium (Cd) is a major subject of current plant biology research.
Recent studies have shown that the synthesis of SA in plants is markedly promoted by
Cd stress. For example, after 25 µM Cd treatment, the bound SA of maize was 10 times
higher than that of untreated plants [105]. Similar phenomena have been observed in
barley [106] and Pisum sativum [107]. Studies on a wide range of plant species have shown
that SA is deeply involved in promoting Cd tolerance, including in plant growth, element
assimilation, Cd translocation, photosynthesis, and senescence [14].

The mediation of SA in Cd tolerance has been noted in all plant developmental
stages [3]. Pre-soaking seeds with SA improved the germination rate of bluegrass and
wheat when subjected to Cd toxicity [108,109]. This might be because SA upregulated
protein (superoxide dismutase, NAC domain-containing protein, pathogenesis-related
protein) [62] synthesis and degraded the stored proteins (storage proteins 7S, albumin
2, α-cruciferin 12S seed storage protein, aminopeptidase) [110] during seed maturation.
Furthermore, SA is cross-linked with the synthesis of ABA-regulated proteins, such as
dehydrins, late embryogenesis abundant proteins, and HSPs, during seed germination [62].
Furthermore, exogenous exposure to SA mitigated the inhibitory effects of Cd toxicity
on growth. Pre-treatment of rice roots with 10 µM SA for 24 h significantly reversed the
growth-inhibitory effect of Cd stress on day 6 compared to Cd treatment alone [81]. Cd
treatment reduced the dry weight of barley seedlings by approximately 35%, whereas
pre-treatment with SA significantly alleviated these inhibitory effect [106]. The effect of SA
on Cd phytotoxicity is dose–dependent. No or negative effects were observed in high-SA
treatments in a few plants when subjected to Cd stress, such as ryegrass [111], hemp [112],
and bluegrass [109]. Furthermore, equivocal conclusions have been reported in transgenic
Arabidopsis thaliana plant sand mutants. Excessive SA in snc1 mutants aggravated Cd-
induced inhibition, whereas SA depletion in nahG was mitigated by Cd toxicity [113].
However, another SA-deficient phenotype, sid2 mutants, showed accentuated symptom
when subjected to Cd stress [114].

The role of SA in Cd uptake and translocation signalling remains controversial. Foliar
spraying of SA significantly decreased Cd uptake in radish plants [115]. Studies of blue-
grass [109] and oilseed rape [116] also reported this finding. In contrast, the barley seedlings
pre-treated with SA failed to impede Cd influx into vacuoplasts and mesophyll [106]. Stud-
ies with SA-deficient mutants, such as sid2 and NahG, reported that SA did not influence
Cd assimilation either in shoots or roots [115,117], and the simultaneous application of
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SA and Cd further increased Cd assimilation in soybean [118]. Rice roots immersed in SA
experienced Cd translocation from Cd-treated parts to the Cd-untreated parts, as studied
using a split-root system [119], which indicated that SA might not mediate an avoidance
mechanism in Cd uptake in plants. The Cd translocation in plant roots mediated by
SA might be associated with cell wall modification since the expression levels of pectin
methylesterase inhibitor-encoding genes in nahG were dramatically higher than wild-type
plants [120].

As SA plays an important role in regulating the activity of H+-ATPase in the plasma
membrane [121], it can stabilize the optimal nutritional status of plants under Cd toxicity.
Many studies have reported that SA treatment maintains the balance of ion (including K,
Ca, Fe, Mn, Mg, and Zn) uptake under Cd stress, as has been reported in ryegrass [111],
rice [122], bluegrass [109], and oilseed rape [116]. Treatment with SA alone may inhibit K
absorption in roots [123], whereas under Cd stress, SA stimulated the K, Fe, and Mg uptake
of the SA-deficient mutant, sid2 [114]. SA is also involved in S assimilation in barley and
sid2 mutants [106,114].

The beneficial role of SA was always observed in which SA treatment was performed in
advance of the Cd stress. Pre-treatment of SA can “set up” the antioxidant system and then
induce the resistance. For instance, pre-treatment of SA initially increased H2O2 accumula-
tion in rice roots. Correspondingly, the level of antioxidant system, including non-protein
thiols (NPT), GSH, and ascorbic acid (AsA), and the activities of antioxidant enzymes
were all elevated compared with the non-SA-exposed roots under Cd stress [119,124]. Pre-
treatment of SA in acid form (SA) mainly increased the activities of antioxidant enzymes,
whereas the salt form (NaSA) mainly influenced the GSH-related redox of Cd-stressed
maize seedlings [125]. SA enhanced the expression levels of StSABP2, StAPX, and StSOD in
potato and decreased Cd-induced oxidative damage [126]. Application of SA upregulated
the expression of OsPCS1 and OsHMA3 while downregulating the OsNRAMP2 gene in
Cd-exposed rice seedlings [127].

It has been reported that SA regulates plant photosynthesis through RuBisCO, redox
homeostasis, light acclimation, and stomatal switch [3]. SA treatment mitigated chlorophyll
destruction in soybean [128] and oilseed rape [116]. In contrast, SA deficiency aggravates
Cd-induced damage on chlorophyll [114]. Under Cd stress, SA exposure significantly
improved the photosynthetic yield in barley [106], increased the Fv/Fm (Fv: variable
fluorescence, Fm maximal fluorescence) of melon [129], and relieved energy transfer from
PSII to PSI [130]. SA application also recovered carotenoid synthesis, strengthened stomatal
closure, and inhibited the activities of chlorophyll-degrading enzymes [112,131,132]. How-
ever, abnormal levels of SA also have a negative effect on photosynthesis. For example,
SA deficiency upregulated the photosynthetic electron transport-related genes (PETM
(phosphatidylethanolamine N-methyltransferase) and PETE1 (plastocyanin 1)) under Cd
stress [133]. Pre-treatment of castor bean leaves with 500 µM SA aggravated Cd injury
during photosynthesis, which might have been associated with an increase in stomatal
limitation [109,134].

Table 4. The collected references of SA on heavy meatal tolerance in plants.

SA Treatment Heavy Meatal Treatment Plant Species Main
Responses ReferenceType Treatment Type Treatment

0.1 mM Pb 0–0.26 mM for 18 d Rice (Oryzu sutivu L.) I, II, III [98]
1 mM Cu 0–0.2 mM for 10 d Bean seedlings I, II, III [99]
0.01 mM Ni 0–150 µM for 7 d Mustard (Brassica juncea L.) I, II, III, VIII, V [100]
100 µM Cr 50 mg kg−1 for 7 d Maize (Zea mays L.) I, II, III, IV [101]

0.1 mM Ni, Pb 2.5 mM Ni, 0.5 mM Pb
for 45 d Bean (Phaseolus vulgaris L.) I, II, III, VIII [102]

0.5 mM As 50 µM Pepper I, II, III, IV, VI [103]
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Table 4. Cont.

SA Treatment Heavy Meatal Treatment Plant Species Main
Responses ReferenceType Treatment Type Treatment

500 µM

Cd

0–2.80 mg L−1 for 14 d Maize (Zea mays L.) I, II, III, IV [105]

500 µM 2.80 mg L−1 for 12 d Barley (Hordeum vulgare) I, II, III, IV, V,
VI, VII [106]

500 µM 0–112 mg kg−1 for 56 d Wheat (Triticum aestivum L.) I, II, III, IV [108]
500 µM 0–5.60 mg L−1 for 7 d Kentucky bluegrass I, II, III, IV, V [109]

500 µM 2.80 mg L−1 for 10 d Barley (Hordeum vulgare) I, II, III, IV, V,
VI, VII [111]

500 µM 0–100 mg kg−1 Hemp (Cannabis sativa L.) I, II, III, IV [112]
300 mg L−1 0–1.0 mM for 40 d Radish (Raphanus sativus) I, IV [115]

50 µM 0–300 mg kg−1 for 14 d
Oilseed rape
(Brassica napus) II, III, V, VI [116]

0–0.1 mM 0–6 mg kg−1 for 7 d Soybean (Glycine max L.) I, III, IV, V [118]
10 µM 5.6 mg L−1 for 6 d Rice (Oryza sativa L.) I, II, IV [119]
0.1 mM 0–1500 µM for 15 d Rice (Oryza sativa L.) I, IV, V [122]
10 µM 5.60 mg L−1 for 6 d Rice (Oryza sativa L.) I, II [124]

0–500 mM 5.6 mg L−1 for 5 d Soybean (Glycine max L.) II, III, IV, V,
VI, VII [128]

0–200 µM 44.8 mg kg−1 for10 d Melon (Cucumis melo L.) I, II, III [129]
10 µM 150 µM Rice (Oryza sativa L.) I, II, III [130]
500 µM 40 mg kg−1 for 6 d Soybean (Glycine max L.) I, II, III [131]
200 µM 11.2 mg L−1 for 14 d Ryegrass (Lolium perenne L.) I, II, III, VI [132]
0–500 µM 50 µM for 12 d Bean (Ricinus communis L.) I, III, IV [134]

Endogenous SA Cd

0–16.8 mg L−1 for 7 d
snc1, npr1−1, nahG,
snc1/nahG mutants I, II, III [113]

0.56 mg L−1 for 12 d Sid2 mutants I, II, III, IV, V,
VI, VII [114]

0.5 mM NahG plants II, IV [117]
50 µM for 7d nahG, npr1-1, snc1 mutants I, II, VII [120]
5.6 mg L−1 for 7 d NahG, snc1 mutants I, II, III, IV, VII [133]

I, Growth; II, Antioxidant system; III, Photosynthesis; IV, Heavy meatal uptake; V, Ion uptake; VI, Phytochelatins;
VII, SA- or heavy meatal-induced genes; VIII, Electrolyte leakage.

2.5. Other Stresses
2.5.1. Drought

During drought stress, plants have elevated SA levels, as noted in many plant species,
such as barley [135], Phillyrea angustifolia [136], and Salvia officinalis [137]. The alleviation
of drought injury by SA goes along with the hardening of the antioxidant system, in-
creasing relative water and proline contents and regulating other phytohormones [1,138].
For example, pre-treatment of SA cleared the drought-induced superoxide radical with
enhancement of the expression of redox regulating genes and increased proline content
with its synthesis-related genes [139] (See Table 5).

SA treatments effectively ameliorated the negative effects of drought through not only
improving the photosynthetic performance and membrane permeability but also enhancing
the activity of antioxidant enzymes. For instance, foliar application of SA substantially
decreased the ROS and MDA contents of maize under drought stress [140]. Application
of SA at 100 mM enhanced antioxidant enzymatic activities together with other physio-
biochemical traits, such as membrane stability, chlorophyl content, and photosynthetic
rates in wheat under drought stress [141]. When sprayed with SA at 0.5 mM, wheat
seedlings effectively increased the activities of antioxidant enzymes (SOD, CAT, and PPO) to
alleviate the drought-stress-induced damage effects [142]. Foliar spray of SA in sweet basil
significantly promoted the plant growth and relative water contents under water-deficit
conditions [143]. Spraying 2 mM SA into the leaves of Rosmarinus officinalis L. increased
the production of essential oil under the mild drought stress (60% field capacity) [144].
Treatment with SA protected tomato plants from drought stress, mainly by maintaining
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membrane stability and activities of carbonic anhydrase that directly affect the rate of
photosynthetic CO2 fixation [145,146]. Pre-treatment with SA reduced damage to the cell
membranes and increased ABA content in the leaves of barley and maize, suggesting that
there is cross-talk between SA and ABA during drought stress [135,147].

2.5.2. Ozone

Ozone is a powerful oxidising agent that reacts with lipids and proteins in plant
cells and causes oxidative damage [148,149]. SA deficiency in NahG plants is sensitive
to the ozone, whereas ozone exposure stimulates SA accumulation and promotes virus
resistance in tobacco [150]. Further evidence has shown that enhanced accumulation
of SA by ozone stress is through the ICS pathway [151]. SA controls ET production of
Salvia officinalis during ozone exposure by balancing cell redox and shrinking chlorosis
formation in leaves [152]. However, abnormal levels of SA cause greater ozone injury either
in deficiency or superfluousness. Many deficient genotypes, such as Cvi-0, NahG, npr1,
eds5, and sid2, are sensitive to the ozone stress [153]. Exogenous SA application decreased
the stomatal conductance, chlorophyll content, and Mg assimilation of rice under ozone
stress [154]. Recently, an interesting study was conducted to test whether the O3-induced
cell death is regulated through SA, JA, or ethylene. The global and targeted analysis of
transcriptional changes in single, double, and triple mutants mainly showed that the basal
SA levels are essential for plants to defend against ROS-induced cell death, which is in
conjunction with ethylene and JA signalling [155,156] (See Table 5).

2.5.3. Pesticide

Some chemical pesticides, such as herbicide, also directly induced the oxidative damage
in plants, as observed in cucumber, pistachio plants (Pistacia vera L.), and barley [157–160]. The
injury caused by paraquat (a kind of herbicide) continuously generates superoxide in the
chloroplasts of plant cells, motivates redox reaction chains, generates various forms of ROS,
and leads to oxidative damage [158]. Transgenic NahG in rice plants causes SA deficiency,
with lower glutathione (GSH) content showing great sensitivity to paraquat exposure [158].
SA significantly increases enzymatic parameters and photosynthetic pigments of Vigna
radiata when exposed to fungicide (mancozeb), insecticide (chlorpyrifos), and herbicide
(metribuzin) [161]. Pre-treatment with 1 mM SA triggers the activity and expression of
pesticide detoxification enzymes (GSTs: glutathione S-transferases; a carbon-monoxide-
bound enzyme, P450 (absorption band at 450 nm)) in thiram-treated leaves [162]. Treatment
with 1 mM SA promotes the degradation of pesticides and blocks their accumulation in
cucumber [163] (See Table 5).

2.5.4. Ultraviolet Radiation

UV radiation a key environmental signal that influences plant growth and develop-
ment and can reduce disease and pest incidence [164]. However, because it is beyond
the capacity of sunlight utilisation in plants, excessive exposure can directly induce the
ROS production, adversely affects photosynthesis, and damage cell membranes and pro-
teins [161]. It has been shown that SA counteracted the UV-A-, UV-B-, and UV-C-induced
oxidative stress on pepper through activating antioxidant enzymes such as POD, APX, CAT,
and GR [165]. Furthermore, UV radiation activated SA defences and then enhanced the
tomato resistance to pathogen attack in the JA-deficient genotype [166]. Similar to ozone,
UV radiation induces SA accumulation in tobacco, which is accompanied by higher activity
of benzoic acid 2-hydroxylase, a key enzyme in the catalysis of SA biosynthesis [150]. It has
been found that exogenous SA alleviates the damaging effects of UV irradiance in many
plant species such as blue grass, soybean, and maize [167,168]. The possible roles may
include increase in anthocyanin and α-tocopherol content, photochemical efficiency, and
activities of antioxidant enzymes (See Table 5).
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Table 5. The collected references of SA on other stress tolerances in plants.

SA Treatment Stress Treatment Plant Species Main
Responses ReferenceType Treatment Type Treatment

Exogenous
SA

1–50 mg L−1 10 mg L−1 CLO, 20 mg L−1

DFN, 10 mg L−1 DFZ; 10 d
Cucumber (Cucumis
sativus L.) II, III [87]

0.5 mM

Drought

Water deficit for 0–15 d Brassica napus I, II,
Phytohormone [139]

0.2 g kg−1 Water deficit Sweet basil (Ocimum
basilicum) I, II, III [143]

0–3 mM Water deficit for 30 d Rosmarinus officinalis L. I, Oil
compounds [144]

0.01 mM Water deficit for 46 d tomato (Lycopersicon
esculentum L.) II, III, V [146]

1 mM Water deficit for 5 d Maize (Zea mays L.) I, II, III, ABA [147]

100 µM Ozone 100–150 µg L−1, 5 h d−1,
130 d

Rice (Oryza sativa L.) I, II, III, VI [156]

0–2 mM

Pesticide

750 g kg −1 Mancozeb,
2 mL L−1 Termite kill,
350 g L−1 Anchor, for 24 h

Vigna radiata (L.) I, II, III [161]

0–1 mM 6.6 mM thiram for 1–11 d Solanum lycopersicum
Mill.

I, II, III,
Pesticide
detoxification
genes

[167]

1 mg kg−1
1 mg kg−1 THIM,
1 mg kg−1 HMI,
1 mg kg−1 CAP

Cucumber (Cucumis
sativus L.)

VI, Pesticides
metabolism [168]

Endogenous SA

Drought Water deficit for 100 d Phillyrea angustifolia L. II, III [136]
Water deficit for 27 d Salvia officinalis L. III, JA [137]

Ozone

0.20 µL L−1 for 6 h Nicotiana tabacum IV [150]

0.20 µL L−1 for 12 h
etr1, ein2, npr1, eds5, sid2
mutants, NahG plants IV [151]

120 µg L−1, 5 h d−1,0–36 d Salvia officinalis I, II, III, Phyto-
hormones [153]

120 µM.m−2.s−1 NahG plants
I, II, Cell death,
Phytohor-
mones

[154]

Ultravioletradiation 200 µM.m−2.s−1 24 h Nicotiana tabacum L. IV [150]

I, Growth; II, Antioxidant system; III, Photosynthesis; IV, SA-induced genes; V, Electrolyte leakage; VI, Ion uptake.

3. Possible Mechanisms of SA in Mitigating Abiotic Stresses

Intensive research has shown that all abiotic stressors increase the level of endogenous
SA, indicating that this simple molecule is involved in stress signalling in plants [16,169,170].
The regulatory roles of SA are mediated by various physiological processes, including
growth development, photosynthesis, ion assimilation, respiration, antioxidant system, and
cross-talk with other hormones [3]. The first report on the SA signalling is that it affects ROS
production and then provokes pathogenesis-related1 (PR1) expression under pathogenic
attack [171]. This discovery sparked the further studies on the complex signalling network
between SA and ROS in plants [172]. Thus, the primary mechanism of SA reviewed here is
its defensive role through redox signalling.

3.1. Redox Signalling

ROS are defined as the inevitable by-products of electron transfer in mitochondria,
chloroplasts, and other energy-generating sites of plant cells [173]. Owing to their strong
oxidisability, they can interfere with most biochemical metabolic processes, such as enzyme
activity, membrane permeability, DNA stability, and protein synthesis. Under normal
conditions, ROS are detoxified and maintained at equilibrium by the antioxidant defence
system [174]. This system has experienced very complex evolutionary processes for 2.7 bil-
lion years. It is estimated that at least 152 genes in plants are involved in this highly
dynamic and redundant network, which develops enzymatic and non-enzymatic com-
pounds and encodes ROS-producing and -scavenging proteins [175] (See Figure 1). In
many cases, the capacity to cease production of ROS is an important indicator of plant
tolerance. Furthermore, low concentrations of ROS are successfully utilised by plants as a
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leading signalling pathway in physiological metabolic processes, such as growth develop-
ment, hormone signalling, programmed cell death, cell cycle, and biotic and abiotic stress
responses under normal and stress conditions [176].

Figure 1. Brief pathways for reactive oxygen species scavenging in plants.

Many studies have uncovered the relationship between SA and ROS in plant signal
transduction. Upon pathogen attack, tobacco immediately launches the synthesis of SA,
which inhibits catalase activity and leads to H2O2 burst. Then, the SA-induced H2O2 acts
as a second messenger to induce defending proteins and initiate SAR [177]. Since H2O2
is an essential signal in plants against abiotic stresses, the SA-induced H2O2 may enable
plants to resist subsequent abiotic stresses. This phenomenon has been especially noted
in heavy metal experiments either by the modes of pre-soaking, spraying, or hydroponic
exposure prior to metal stress [14]. For example, pre-treatment with SA initially induced
H2O2 accumulation in rice roots, which was accompanied by an increase in the levels
of antioxidant molecules and the activities of antioxidant enzymes. The strengthened
antioxidant system led to a decrease in oxidative injury caused by the Cd stress [124].

During the long-term evolutionary process, plants have evolved many types of ROS-
scavenging enzymes, including catalases (CATs) [175]. CATs are the most efficient H2O2-
scavenging enzymes that can rapidly dismutate H2O2 into H2O in plant cells. Under
biotic stresses, cross-talk between SA and ROS suggests that SA inhibits CAT, thus creat-
ing a self-amplifying loop of ROS production, triggering PR1 expression, and inducing
SAR [171]. Detailed analyses of tobacco showed that SA acted as an electron donor for
the peroxidative cycle of CAT. The self-amplifying loop of the SA-H2O2 cycle leads to
the continual accumulation of SA induced by ROS in plants [15]. When SA increased
to a high level (100 mM), it siphoned CAT down to the slow peroxidative reaction and
then induced the damaging levels of H2O2 [9]. In mitochondria, the SA-triggered H2O2
burst occurs due to the blockage of the electron flow from substrate dehydrogenated to
the ubiquinone pool [178]. Under Cd toxicity, the SA-enhanced H2O2 in rice leaves was
visualised using DAB staining [179]. SA pre-treatment at an acceptable level decreased CAT
activity in salt-stressed tomatoes, freezing-stressed wheat [72], and Cd-stressed rice [124].
However, this effect is not always obvious and depends on the species used, the application
mode, and environmental conditions. CAT inhibition was recovered in Bermuda grass
after SA exposure on day 12 under freezing stress [180]. It has also been found that SA
enhances CAT activity in soybean [181] and maize [182]. Treatment with 0.5 mM SA in
maize significantly inhibited the activity of the CAT1 but failed to affect CAT2 activity
under chilling stress [183].

Ascorbate peroxidase (APX) is another important H2O2-scavenging enzyme that
participates in the ascorbate–glutathione cycle and has a higher affinity for H2O2 than CAT.
Supplementation with SA enhances the activity of APX in wheat and soybean under Cd and
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waterlogging stress, respectively [184]. Pre-treatment with SA did not affect APX activity of
bentgrass plants after heating for the first 24 h, but after that, APX activity was maintained
at a significantly higher level than that in controls [185]. It has been reported that the
inhibition of APX activity is SA dependent when plants suffer a pathogen attack [186].
However, a previous study on tobacco found that SA acted on a slow-reducing substrate
and did not inhibit ascorbate oxidation by APX [57].

GSH is one of the most powerful molecules in plants and plays a role in the reduction
of oxidative stress and detoxification of heavy metals by chelation. Many genetic studies
have reported that GSH biosynthesis is linked to endogenous SA signalling. High levels
of SA were found in catalase-deficient mutants (cat2) together with the upregulation of
GSH [187]. Compared to cat2, the cat2 atrbohF mutant with low SA content attenuated the
synthesis of GSH [188]. Similar results were also found in other SA-deficient mutants, such
as sid2, npr1−1, and mpk4-1 [189,190]. Serine acetyltransferase is an important precursor
enzyme that catalyses cysteine formation by GSH. A few studies with Arabidopsis thaliana
mutants have shown that both genetics and exogenous SA increased the specific activity of
SAT and GSH contents [191]. The enzymes related to GSH metabolism include glutathione
synthetase (GSHS), GR [192], glutathione S-transferases (GST), and glutathione peroxidase
(GPX). Endogenous SA regulates the LcGSHS transcript and leads to a higher GSH content
and Cd tolerance in Cd-stressed Arabidopsis thaliana [193]. The synthesis of GR in Arabidopsis
thaliana is mediated through the SA signalling pathway, and SA deficiency decreases the GR
transcription of sid2 and lowers GSH levels [194]. Photooxidative stress in the chloroplasts
of Arabidopsis thaliana was alleviated by SA along with the depletion of GPX [195]. The
expression of the promoter regions of GST genes, such as osgstu4, osgstu3, as-1, and Gnt35,
was simulated by SA, suggesting that SA has class-specific functions for this enzyme [196].

Although the benefits of SA signalling have been thoroughly studied, few studies
have reported ambiguous results. SA treatment mitigated Cd toxicity in barley but failed
to affect the activity of antioxidant enzymes [84]. High levels of SA promote the generation
of H2O2 in leaves [15]. The results of studies on SA mutants are still contradictory. High
SA levels in snc1 mutants generated a large amount of ROS, whereas SA deficiency in
NahG lowered Cd-induced oxidative stress [91]. However, this finding is in contrast to the
case of sid2 mutants, in which Cd-induced oxidative damage was aggravated by the SA
deficiency [197].

3.2. Cross-Talk with Other Plant Hormones

Besides of ROS, other plant hormones are involved in the SA signal transduction
pathway of plants [198]. Most studies have observed a relationship between ABA and
SA levels under stress. Treatment with SA induces ABA concentrations in barley and
tomato [199]. Exposure of Arabidopsis thaliana leaves to ABA inhibits SA transduction both
upstream and downstream through the SAR signalling pathway, and this suppressive
effect is not related to jasmonate (JA)/ET-mediated signalling [200]. Similarly, salt stress
increases the content of JA and ABA but decreases the levels of IAA, gibberellic acid (GA),
and SA in Iris hexagona and soybean [76,78]. Insect feeding caused a strong accumulation
of JA-specific mRNA transcripts, such as GmBPI1, GmKTI1, and GmAAT, but did not
influence the free SA or SA-marker gene transcripts accumulation [201]. Drought stress
increases the levels of SA and ABA in Brassica napus, and the effect on ABA is more
pronounced [194]. However, the signalling role of SA might be stronger than that of ABA
because the inhibition of SA biosynthesis leads to serious heating damage compared to the
inhibition of ABA biosynthesis [202]. It seems that the biosynthesis of ABA is a downstream
signalling event associated with SA sensing. Treatment with SA in salt-stressed tomato
resulted in ABA accumulation in both root and leaf tissues together with upregulation of
some ABA biosynthesis genes, such as SlZEP1, SlNCED1, SlAO1, and SlAO2 [203]. In pea
plants, the activity of SA glucosyl transferase may be inhibited by ABA, thus enhancing the
concentrations of free SA [204].
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Calcium (Ca2+) is a key messenger in plants that can induce various defence responses
against stress. SA-induced stomatal closure is associated with ABA signalling, and this
process is mediated by Ca2+/Ca2+-dependent protein kinases (CPK) in cpk3-2 and cpk6-1
mutants but not in the Ca2+-independent protein kinase Open Stomata1 (OST1) ost1-3 mu-
tant [205]. It was also observed that SA triggered the Ca2+-sensing receptor in chloroplast
thylakoid membranes of Arabidopsis thaliana [135]. Calmodulin, a Ca2+-binding messenger
protein, transduces Ca2+ signals by binding Ca2+ and then modifying the target proteins.
The biosynthesis of SA is regulated by calmodulin-binding-protein (CBP60g) via the ac-
tivation of isochorismate synthase 1 (ICS1) [206]. Recent studies in Arabidopsis thaliana
have shown that the SA-signalled plant immunity is associated with calmodulin-binding
transcription activators (CAMTA) [207].

Similar to the function of SA, nitric oxide plays a crucial role in controlling redox
homeostasis in plant responses to abiotic stresses [208]. The application of SA and SNP (NO
donor) significantly improved the heat-stress tolerance of hyacinth bean and Ni tolerance of
finger millet [209]. Under As toxicity, the increase in NO concentration in rice is induced by
SA through the enhancement of nitrate reductase activity [210]. SA increased As tolerance
in maize by activating the antioxidant defence system, but this effect was completely
negated when NO synthesis was blocked [211]. Furthermore, NO may act as a downstream
signalling molecule that participates in SA-signalled cell wall construction, which could
impede Cd influx in Cd-stressed rice seedlings [212]. Both NO and SA are involved in
the signal transduction of stomatal closure, and the increase in NO levels is dependent on
SA-induced NO synthase-like enzymes [213].

3.3. Mitogen-Activated Protein Kinase

Mitogen-activated protein kinase (MAPK) is a type of protein kinase that is specific
to the threonine and amino acids serine, which is involved in cell functions and cellular
responses to a diverse array of stimuli [214]. MPK3, MPK4, and MPK6 kinases are the main
mediators of plant responses to biotic and abiotic stresses. Studies on Arabidopsis thaliana
have shown that SA is involved in transmitting MAPKs cascade signalling [215]. Compared
with the wild-type, approximately 50% of the basal expression level of AtMPK3 was noted
in the SA-deficient mutants with low activity of AtMPK3 [216]. A 48-kD MAPKs in tobacco
was identified by SA activation since it preferentially phosphorylates myelin basic protein
(MBP) [217]. Conversely, MAPK regulated the levels of SA in stressed plants [218]. It was
reported that SA treatment increased the TaMAPK4 transcripts in wheat under an avirulent
race of pathogen attack, whereas knockdown the TaMAPK4 gene downregulated the SA
accumulation [219]. Meanwhile, StMKK1 protein negatively regulated SA-related signalling
pathways in defence against pathogens in potato [220]. Mpk4 mutant accumulated excessive
levels of SA, but this was not the reason for its extreme dwarf phenotype, as knocking down
the ICS1 gene (SA synthesis) did not revert mpk4-impaired growth [221]. Furthermore, the
accumulation of MPK4 might also be related to SA-regulated redox homeostasis, but this
mechanism is still unknown and further study [222].

4. Conclusions and Prospects

Increasing evidence has shown that SA acts as the primary signalling hormone in the
defence against various abiotic stresses in plants. Different application modes of SA, includ-
ing soaking seeds, hydroponic cultivation, and spraying on leaves, have demonstrated the
protective roles. SA contributes to stress alleviation through the regulation of photosynthe-
sis and physiological processes during growth development, and the possible mechanisms
might be as follows: (1) SA indirectly regulates the antioxidant system by generating H2O2,
which acts as the second messenger to induce various responses to face the abiotic stresses;
(2) SA directly protects the cytomembrane and maintains the integrity of organelles by
scavenging the free radicals; (3) SA takes part in the complex signal transduction network
in coordination with other phytohormones, such as ABA, Ca2+, MAPK, and NO; and (4)
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under conditions of metal toxicity, SA might strengthen the cell wall and decrease the influx
of heavy metals into the aerial parts (Figure 2).

Figure 2. Modulation of SA signalling in plant tolerance under abiotic stress.

Considering the complex defending roles and integration of the signalling web, dis-
secting the genetic network of SA in plants is a major challenge for the future studies.
The transcriptome analyses coupled with metabolomic and proteomic analyses of SA in
plants are essential for future studies. A few gaps exist in the signalling roles of SA under
abiotic stress and understanding them requires more detailed works. For instance, how
is exogenous SA absorbed by plants, and how does it affect the level of endogenous SA?
How does the partial exposure of SA “set up” the whole defence system of plants? Besides
SABP and NPRs, are there any other hormone receptors or gene expressions involved in the
network of SA signalling pathways? How do plants accurately control the balance between
endogenous levels of SA and ROS? Integration of research on SA with the development of
bioinformatics tools will provide a system-level understanding of the defence roles of SA
in plants under abiotic stress.
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AOX Alternative oxidase
AsA Acetylsalicylic acid
APX Ascorbate peroxidase
ABA Abscisic acid
BA2H Benzoic acid-2-hydroxylase
CATs Catalases
Cd Cadmium
DHAR Dehydroascorbate reductase
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DREB Dehydration-responsive element-binding protein
ET Ethylene
GA Gibberellic acid
GPX Glutathione peroxidase
GR Glutathione reductase
GS Glutathione synthetase
GSH Glutathione
GORK Guard cell outward rectifying K+ channel
GSHS Glutathione synthetase
GSSH Glutathione persulfide
GST Glutathione S-transferases
HSPs Heat shock proteins
ICS Isochorismate synthases
CPK Ca2+/Ca2+-dependent protein kinases
JA Jasmonate
MDA Malondialdehyde
MDHAR Monodehydroascorbate reductase
MAPK Mitogen-activated protein kinase
MBP Myelin basic protein
NADPH Nicotinamide adenine dinucleotide phosphate
NPR Nonexpresser of pathogenesis-related
NINV2 Neutral invertase 2
POD Peroxidase
PAL Phenylalanine ammonia-lyase
PR1 Pathogenesis-related protein 1
PETM Phosphatidylethanolamine N-methyltransferase
PETE1 Plastocyanin 1
SOD Superoxide dismutase
SOS Salt overly sensitive
ROS Reactive oxygen species
SAR Systemic acquired resistance
SuSy Sucrose synthase
SPS Sucrose phosphate synthase
SUT Sucrose transporter
SlZEP Zeaxanthin epoxidase1
SlNCED 9-cis-epoxycarotenoid dioxygenase
SlAO Aldehyde oxidases
SA Salicylic acid
SABP Salicylic acid binding protein
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25. Čajánek, M.; Štroch, M.; Lachetova, I.; Kalina, J.; Spunda, V. Characterization of the photosystem II inactivation of heat-stressed
barley leaves as monitored by the various parameters of chlorophyll a fluorescence and delayed fluorescence. J. Photochem.
Photobiol. B Biol. 1998, 47, 39–45. [CrossRef]

26. Shi, Q.; Bao, Z.; Zhu, Z.; Ying, Q.; Qian, Q. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll
fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul. 2006, 48, 127–135. [CrossRef]

27. Wang, L.-J.; Fan, L.; Loescher, W.; Duan, W.; Liu, G.-J.; Cheng, J.-S.; Luo, H.-B.; Li, S.-H. Salicylic acid alleviates decreases in
photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol. 2010, 10, 34. [CrossRef]

28. Afzal, I.; Akram, M.; Rehman, H.; Rashid, S.; Basra, S. Moringa leaf and sorghum water extracts and salicylic acid to alleviate
impacts of heat stress in wheat. S. Afr. J. Bot. 2020, 129, 169–174. [CrossRef]

29. Jahan, M.S.; Wang, Y.; Shu, S.; Zhong, M.; Chen, Z.; Wu, J.; Sun, J.; Guo, S. Exogenous salicylic acid increases the heat tolerance in
Tomato (Solanum lycopersicum L.) by enhancing photosynthesis efficiency and improving antioxidant defense system through
scavenging of reactive oxygen species. Sci. Hortic. 2019, 247, 421–429. [CrossRef]

30. Khan, M.I.R.; Iqbal, N.; Masood, A.; Per, T.S.; Khan, N.A. Salicylic acid alleviates adverse effects of heat stress on photosynthesis
through changes in proline production and ethylene formation. Plant Signal. Behav. 2013, 8, e26374. [CrossRef]

31. Liu, Y.; Zhang, J.; Liu, H.; Huang, W. Salicylic acid or heat acclimation pre-treatment enhances the plasma membrane-associated
ATPase activities in young grape plants under heat shock. Sci. Hortic. 2008, 119, 21–27. [CrossRef]

32. Larkindale, J.; Knight, M.R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic
acid, ethylene, and salicylic acid. Plant Physiol. 2002, 128, 682–695. [CrossRef] [PubMed]

33. Clarke, S.M.; Mur, L.A.; Wood, J.E.; Scott, I.M. Salicylic acid dependent signaling promotes basal thermotolerance but is not
essential for acquired thermotolerance in Arabidopsis thaliana. Plant J. 2004, 38, 432–447. [CrossRef] [PubMed]

34. Cronjé, M.J.; Bornman, L. Salicylic acid influences Hsp70/Hsc70 expression in Lycopersicon esculentum: Dose-and time-dependent
induction or potentiation. Biochem. Biophys. Res. Commun. 1999, 265, 422–427. [CrossRef]

http://doi.org/10.1126/science.250.4983.1002
http://doi.org/10.1007/s11738-019-2872-3
http://doi.org/10.3390/plants10102066
http://www.ncbi.nlm.nih.gov/pubmed/34685876
http://doi.org/10.1016/j.ecoenv.2020.110206
http://www.ncbi.nlm.nih.gov/pubmed/31954923
http://doi.org/10.1016/j.sjbs.2022.01.028
http://www.ncbi.nlm.nih.gov/pubmed/35280588
http://doi.org/10.3390/ijms20122960
http://www.ncbi.nlm.nih.gov/pubmed/31216620
http://doi.org/10.1104/pp.115.1.137
http://doi.org/10.3389/fpls.2015.00462
http://doi.org/10.1007/s00344-007-9017-4
http://doi.org/10.3389/fpls.2013.00273
http://doi.org/10.1007/s00344-021-10399-y
http://doi.org/10.1016/j.plantsci.2006.03.012
http://doi.org/10.1104/pp.118.4.1455
http://www.ncbi.nlm.nih.gov/pubmed/9847121
http://doi.org/10.1104/pp.105.062257
http://www.ncbi.nlm.nih.gov/pubmed/15923322
http://doi.org/10.1007/s10725-005-6146-2
http://doi.org/10.1016/j.pmpp.2013.01.003
http://doi.org/10.1016/S1011-1344(98)00197-3
http://doi.org/10.1007/s10725-005-5482-6
http://doi.org/10.1186/1471-2229-10-34
http://doi.org/10.1016/j.sajb.2019.04.009
http://doi.org/10.1016/j.scienta.2018.12.047
http://doi.org/10.4161/psb.26374
http://doi.org/10.1016/j.scienta.2008.06.027
http://doi.org/10.1104/pp.010320
http://www.ncbi.nlm.nih.gov/pubmed/11842171
http://doi.org/10.1111/j.1365-313X.2004.02054.x
http://www.ncbi.nlm.nih.gov/pubmed/15086804
http://doi.org/10.1006/bbrc.1999.1692


Life 2022, 12, 886 18 of 25

35. Snyman, M.; Cronjé, M. Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato
seedlings. J. Exp. Bot. 2008, 59, 2125–2132. [CrossRef]

36. Chang, P.-F.L.; Jinn, T.-L.; Huang, W.-K.; Chen, Y.; Chang, H.-M.; Wang, C.-W. Induction of a cDNA clone from rice encoding a
class II small heat shock protein by heat stress, mechanical injury, and salicylic acid. Plant Sci. 2007, 172, 64–75. [CrossRef]

37. Liu, H.-T.; Huang, W.-D.; Pan, Q.-H.; Weng, F.-H.; Zhan, J.-C.; Liu, Y.; Wan, S.-B.; Liu, Y.-Y. Contributions of PIP2-specific-
phospholipase C and free salicylic acid to heat acclimation-induced thermotolerance in pea leaves. J. Plant Physiol. 2006, 163,
405–416. [CrossRef]

38. Li, Z.-G.; Xie, L.-R.; Li, X.-J. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in
maize (Zea mays L.) seedlings. J. Plant Physiol. 2015, 177, 121–127. [CrossRef]

39. Dinler, B.; Demir, E.; Kompe, Y. Regulation of auxin, abscisic acid and salicylic acid levels by ascorbate application under heat
stress in sensitive and tolerant maize leaves. Acta Biol. Hung. 2014, 65, 469–480. [CrossRef]

40. Wang, L.-J.; Li, S.-H. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in
young grape plants. Plant Sci. 2006, 170, 685–694. [CrossRef]

41. Janda, T.; Szalai, G.; Tari, I.; Paldi, E. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea
mays L.) plants. Planta 1999, 208, 175–180. [CrossRef]

42. Ansari, O.; Sharif-Zadeh, F. Does Gibberelic acid (GA), Salicylic acid (SA) and Ascorbic acid (ASc) improve Mountain Rye (Secale
montanum) seeds germination and seedlings growth under cold stress. Int. Res. J. Appl. Basic Sci. 2012, 3, 1651–1657.

43. Cheng, F.; Lu, J.; Gao, M.; Shi, K.; Kong, Q.; Huang, Y.; Bie, Z. Redox signaling and CBF-responsive pathway are involved in
salicylic acid-improved photosynthesis and growth under chilling stress in watermelon. Front. Plant Sci. 2016, 7, 1519. [CrossRef]
[PubMed]

44. Gharib, F.; Hegazi, A. Salicylic acid ameliorates germination, seedling growth, phytohormone and enzymes activity in bean
(Phaseolus vulgaris L.) under cold stress. J. Am. Sci. 2010, 6, 675–683.

45. Kosová, K.; Prášil, I.T.; Vítámvás, P.; Dobrev, P.; Motyka, V.; Floková, K.; Novák, O.; Turečková, V.; Rolčik, J.; Pešek, B. Complex
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95. Torun, H.; Novák, O.; Mikulík, J.; Pěnčík, A.; Strnad, M.; Ayaz, F.A. Timing-dependent effects of salicylic acid treatment on
phytohormonal changes, ROS regulation, and antioxidant defense in salinized barley (Hordeum vulgare L.). Sci. Rep. 2020,
10, 13886. [CrossRef] [PubMed]
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