
A New Prognostic Risk Score: Based
on the Analysis of Autophagy-Related
Genes and Renal Cell Carcinoma
Minxin He1,2, Mingrui Li 1,2, Yibing Guan1,2, Ziyan Wan1,2, Juanhua Tian1,2, Fangshi Xu1,2,
Haibin Zhou1,2, Mei Gao1, Hang Bi1,2 and Tie Chong1*

1Department of Urology, The Second Afilliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China, 2School of
Medicine, Xi’an Jiaotong University, Xi’an, China

Introduction: Clear cell renal cell carcinoma (ccRCC) patients suffer from its high
recurrence and metastasis rate, and a new prognostic risk score to predict individuals
with high possibility of recurrence or metastasis is in urgent need. Autophagy has been
found to have a dual influence on tumorigenesis. In this study we aim to analyze autophagy
related genes (ATGs) and ccRCC patients and find a new prognostic risk score. Method:
Analyzing differential expression genes (DEGs) in TCGA-KIRC dataset, and took
intersection with ATGs. Through lasso, univariate, and multivariate cox regression,
DEGs were chosen, and the coefficients and expression levels of them were
components constructing the formula of risk score. We analyzed mRNA expression of
DEGs in tumor and normal tissue in ONCOMINE database and TCGA-KIRC dataset. The
Human Protein Atlas (HPA) was used to analyze protein levels of DEGs. The protein-protein
interaction (PPI) network was examined in STRING and visualized in cytoscape. Functional
enrichment analysis was performed in RStudio. To prove the ability and practicibility of risk
score, we analyzed univariate and multivariate cox regression, Kaplan-Meier curve (K-M
curve), risk factor association diagram, receiver operating characteristic curve (ROC curve)
of survival and nomogram, and the performance of nomogram was evaluated by calibration
curve. Then we further explored functional enrichment related to risk groups through Gene
Set Enrichment Analysis (GSEA), weighted gene co-expression network analysis (WGCNA),
and Metascape database. At last, we investigated immune cell infiltration of DEGs and two
risk groups through TIMER database and “Cibersort” algorithm.

Result:We identified 7 DEGs (BIRC5, CAPS, CLDN7, CLVS1, GMIP, IFI16, and TCIRG1)
as components of construction of risk score. All 7 DEGs were differently expressed in
ccRCC and normal tissue according to ONCOMINE database and TCGA-KIRC dataset.
Functional enrichment analysis indicated DEGs, and their most associated genes were
shown to be abundant in autophagy-related pathways and played roles in tumorigenesis
and progression processes. A serious analysis proved that this risk score is independent
from the risk signature of ccRCC patients.

Conclusion: The risk score constructed by 7 DEGs had the ability of predicting prognosis
of ccRCC patients and was conducive to the identification of novel prognostic molecular
markers. However, further experiment is still needed to verify its ability and practicability.
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INTRODUCTION

Renal cell carcinoma (RCC) is a prevalent tumor of the urinary
system as it was reported by GLOBOCAN in 2020, with an
incidence of 2.2% and mortality of 1.8% annually (Sung et al.,
2021). Clinically, the main treatment of RCC patients is radical or
unitary partial nephrectomy; however, about 30% of
postoperative patients have the potential to be found with
recurrence or metastasis (Capitanio et al., 2019). RCC is
insensitive to chemotherapy or radiation, although in recent
years anti-angiogenesis molecular targeted therapy has become
the standard of care for advanced RCC, and most patients have
developed drug resistance after 5–11 months (Khattak and
Larkin, 2014). Up to now, the diagnosis of recurrence or
metastasis of RCC still relies on imaging, but it is always too
late, and patients who were found recurrence or metastasis by
imaging have a poor prognosis. Thus, it’s of great significance for
early diagnosis and treatment of RCC patients to find new
biomarkers.

Autophagy refers to the process by which lysosomes
decompose cellular materials to provide cells with biosynthetic
components and energy sources (Glick et al., 2010). This process
has been found relevant to many human diseases (Mizushima
and Levine, 2020) such as cardiovascular disease (Gatica et al.,
2021), Parkinson’s disease (Lizama and Chu, 2021), Alzheimer’s
disease (Zhang et al., 2021), and so on. In the process of
tumorigenesis and development, researches found autophagy
had dual roles; in the earlier stage autophagy inhibits tumors
from happening, while in the later stage it facilitates the
progression of tumor (Kimmelman, 2011; Rangel et al., 2021).
Clear cell RCC (ccRCC) accounts for the majority of RCC and
had poorer prognosis; as a result, our study aims to combine
ccRCC and autophagy and investigate how autophagy affects
ccRCC, then build a risk score and provide insight for prognosis
and treatment of ccRCC.

MATERIALS AND METHODS

Data Source
We obtained the clinical information, raw counts of RNA-
sequencing data, overall survival (OS), and disease free
survival (DFS) of 537 ccRCC patients and 74 paracancerous
samples in the cancer genome atlas-kidney renal clear cell
carcinoma (TCGA-KIRC) dataset from the TCGA database
(Cancer Genome Atlas Research et al., 2013) (http://portal.gdc.
cancer.gov) through R package “TCGAbiolinks” (Colaprico et al.,
2016). Gene IDs conversion were finished with the assistance of a
GTF file which were downloaded from GENCODE (http://www.
gencodegenes.org/), and 18,569 protein-coding genes were
annotated by gene IDs and were selected for subsequent
analysis. To meet the requirement of data integrality, patients
with the following criteria were excluded from subsequent
analysis: (1) patients with OS less than 1 month, (2) patients
with inadequate clinical information. Finally, a total of 515
ccRCC patients were selected for further analysis. A total of
531 autophagy related genes (ATGs) was gathered from the

human autophagy database (HADb, http://www.autophagy.lu/
index.html) and GO_AUTOPHAGY dataset from TheMolecular
Signatures Database (MsigDB) (http://www.gsea-msigdb.org/
gsea/msigdb/index.jsp) (Wang Y. et al., 2020).

Selecting DEGs
Variation analysis of gene expression in TCGA-KIRC dataset was
accomplished by R package “Deseq2” (Love et al., 2014), genes
with |log2 Fold Change| (|log2 FC|) ≥ 1, and adjusted p value <
0.05 were regarded as differentially expressed genes (DEGs). Take
the intersection of DEGs and ATGs. R package “ezcox” (http://
github.com/ShixiangWang/ezcox/issue/23) was used for
univariate cox regression of the intersection, then genes with
p < 0.05 in univariate cox regression underwent lasso regression
and multivariate cox regression. Finally, genes with p < 0.05 were
selected as DEGs that were selected to construct a new risk score
formula.

Analysis of mRNA and Protein Expression
Levels of DEGs
mRNA expression levels of DEGs were analyzed based on the
data from TCGA-KIRC dataset and visualized by RStudio.
Meanwhile, we explored mRNA expression levels of DEGs in
different datasets through the ONCOMINE database (Rhodes
et al., 2004) (http://www.oncomine.org). The protein levels of
DEGs were tested through The Human Protein Atlas (Uhlen et al.
, 2017) (HPA, http://www.proteinatlas.org).

Protein-Protein Interaction Network and
Enrichment Analysis
Protein-protein interaction (PPI) network analysis was finished
in STRING (Szklarczyk et al., 2019) (http://string-db.org),
selecting the top 50 closest genes with DEGs and visualized by
cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis of DEGs and their
closest genes was finished by R package “Clusterprofiler” (Wu
et al., 2021).

Construction of Risk Score
Performing multivariate cox regression of DEGs and collecting
the expression levels of DEGs and their coefficients to construct
the formula of risk score:

Risk score � ∑
n

i�1
coefipExpi

Correlation analysis of risk score and other clinical
signatures was performed by the method of “Spearman”. We
divided patients from the TCGA-KIRC dataset into two
cohorts, train cohort and validation cohort with R package
“caret.” Depict the receiver operating characteristic curve
(ROC curve), Kaplan-Meier curve (K-M curve), and risk
factor association diagram of risk score and calculate its area
under the curve (AUC) in train cohort. Furthermore, univariate
and multivariate cox regression was performed to prove risk
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score as an independent risk factor of ccRCC patients. Likewise,
we tested results above through data from validation cohort and
total cohort. Nomogram was to predict the probability of 1-, 3-,
and 5-years survival for ccRCC patients according to the results
from multivariate cox regression, and calibration curves were
drawn to evaluate the nomogram. We’ve published a glycolysis-
related risk score signature before, since both of our studies were

metabolism-related, and we then compared their ability of
predicting prognosis of ccRCC patients by depicting ROC
curve and circulating AUC. All analytical methods above
were finished in Rstudio with R packages such as
“timeROC,” “survival,” “survminer,” “rms,” and “ggrisk,” and
p < 0.05 was considered as statistically significant.

To further explore pathways related with risk score we
then performed in Gene Set Enrichment Analysis (GSEA)
(Subramanian et al., 2005) in high and low risk groups; |
Normalized Enrichment Score| (|NES|) ≥ 1.5, p < 0.05 and
false discovery rate (FDR) < 0.25 were set as threshold.
Additionally, to find out the genes that were connected
with risk score and their function, weighted gene co-
expression network analysis (WGCNA) (Langfelder and
Horvath, 2008) was performed, and genes with top 5,000
median absolute deviation were analyzed and soft threshold
was selected when scale free R2 = 0.9. Genes in the most
significant co-expression module were then analyzed in
Metascape (Zhou et al., 2019) (http://metascape.org). The

TABLE 1 | Multivariate cox regression of DEGs.

Gene symbol Coefficient p Value HR (95%CI)

BIRC5 0.000355 0.010 1.00036 (1.00009, 1.00062)
CAPS 0.000382 0.014 1.00038 (1.00008, 1.00069)
CLDN7 −0.000131 0.010 0.99987 (0.99977, 0.99997)
CLVS1 0.001747 <0.001 1.00175 (1.00105, 1.00245)
GMIP −0.00033 0.048 0.99967 (0.99934, 1.00000)
IFI16 0.000082 0.007 1.00008 (1.00002, 1.00014)
TCIRG1 0.000118 0.021 1.00012 (1.00002, 1.00022)

HR, hazard ratio.

FIGURE 1 | Selection of DEGs. (A) Enhanced volcano plot of DEGs when comparing ccRCC with normal tissue. Red nodes represented genes with |log2FC| ≥ 1 and
adjusted p < 0.05, blue nodes represented genes with adjusted p < 0.05 only, and grey nodes represented genes that were neither eligible in conditions of adjusted p value
nor |log2FC|. (B)Heatmap of DEGs in ccRCC. (C) Lasso coefficients profiles of 95 genes significant in univariate cox regression. (D) Lasso regression obtained 21 prognostic
genes usingminimum lambda value. (E)Selecting procedure ofDEGs, venn gramshowed95genes in the intersection of 5,768DEGs and 531ATGs. These genes then
underwent univariate cox regression, lasso cox regression, multivariate cox regression, and finally 7 DEGs were selected to construct the risk score formula.
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FIGURE 2 |mRNA expression levels of DEGs. (A)mRNA expression levels of DEGs fromONCOMINE database. The threshold (p < 0.05, |log2FC| ≥ 1.5, gene rank:
Top 10% datatype: mRNA) was indicated in the colored cells. The red cells indicated the target gene was overexpressed in ccRCC while blue cells represented
downregulated in ccRCC. Gene rank was depicted in the color depth in the cells. (B)mRNA expression levels of DEGs in ccRCC and normal tissue from TCGA database.
p value was replaced by “*,” nsp > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. (C) Different mRNA expression levels of DEGs in different stages.
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threshold of min overlap = 3, p value cutoff = 0.01, and min
enrichment = 1.5 was set to select enriched pathways in the
module. MCODE was selected with physical score >0.132,
min network size = 3, max network size = 500, and databases
as physical core.

Immune Cell Infiltration
We explored immune infiltration of DEGs from TIMER 2.0 (Li
et al., 2020) (https:// timer.cistrome.org/). As for the analysis of
immune infiltration in ccRCC patients, “Cibersort” algorithm
(Newman et al., 2015) was performed in RStudio. Also, the
difference of immune infiltration in different groups of risk
score was analyzed.

RESULTS

Acquisition of DEGs
The raw counts data was downloaded through R package
“TCGAbiolinks” from TCGA-KIRC with setting data category
as “Transcriptome Profiling” and data type as “Gene expression
Quantigication.” Up to 56,612 genes were downloaded, and after
gene ID conversion we obtained 18,569 mRNA. They were then
estimated with differential analysis between ccRCC patients and
paracancerous patients by R package “Deseq2.” With the

threshold of |logFC| ≥ 1, adjusted p value < 0.05, we obtained
5,768 DEGs among which 471 were up-regulated, 388 were
down-regulated, and volcano plot and heatmap were drawn
for better understanding (Figures 1A,B).

Selection of DEGs
A total of 95 genes were in the intersection between DEGs and
ATGs, and they were analyzed with univariate cox regression.
Among 95 genes there were 46 genes with p < 0.05. We then
performed lasso regression analysis and got 21 genes (Figures
1C,D). These 21 genes were analyzed by multivariate cox
regression, among which 7 genes were found significant (p <
0.05). Thus, we obtained 7 genes (BIRC5, CAPS, CLDN7, CLVS1,
GMIP, IFI16, and TCIRG1) as DEGs to construct the formula of
new risk score (Figure 1E; Table1).

Analysis of mRNA and Protein Expression
Levels of DEGs
Comparing the mRNA expression levels of BIRC5, CAPS,
CLDN7, CLVS1, GMIP, IFI16, and TCIRG1 in ccRCC
patients and normal people, we found that BIRC5, CLVS1,
GMIP, IFI16, and TCIRG1 were significantly overexpressed in
ccRCC patients from TCGA-KIRC dataset and CAPS and
CLDN7 had lower expression level in ccRCC patients than

FIGURE 3 | Protein expression levels of DEGs from HPA, antibody, and patient information were listed as well.
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in normal people. Apart from BIRC5, GMIP, IFI16, and
TCIRG1, other genes didn’t show significant differences in
individual cancer stages (Figures 2A–C). Results from
ONCOMINE database partly coordinated with what we
found before, that BIRC5 was found overexpressed in Gumz
Renal (FC = 2.753, p value < 0.001), IFI16 was highly expressed
in ccRCC patients from Gumz Renal (FC = 4.454, p < 0.001),
Yusenko Renal (FC = 5.099, p < 0.001), Lenburg Renal (FC =
2.160, p < 0.001) and Jones Renal (FC = 3.863, p < 0.001). GMIP
was overexpressed in Yusenko Renal (FC = 4.020, p < 0.001).
TCIRG1 was overexpressed in Yusenko Renal (FC = 2.516, p =
0.001), Jones Renal (FC = 2.153. p < 0.001), and Lenburg Renal
(FC = 1.860, p = 0.001) (Supplementary Material S1).

Moreover, we explored protein expression levels of DEGs in
the HPA website, compared with normal kidney tissue, IFI16 and
TCIRG1 were highly expressed in ccRCC kidney tissue. CLDN7
were found lower expressed in ccRCC tissue than in normal
tissue. BIRC5, CLVS1, and GMIP were found the same level in
ccRCC tissue as in normal tissue. Unfortunately, CAPS was not

detected in ccRCC kidney tissue nor normal kidney tissue
(Figure 3).

PPI Network and Functional Enrichment
Analysis
We performed PPI network in STRING and selected the top 50
closest genes with DEGs (Supplementary Material S2,
Figure 4A). After GO function enrichment analysis and
KEGG pathway analysis, we found the top 10 significant items
of 57 genes in cellular component (CC) were spindle, protein-
transporting two-secor ATPase complex, chromosomal region,
proton-transporting V-type ATPase complex, chromosome,
centromeric region, condensed chromosome, kinetochore,
condensed chromosome, centromeric region, vacuolar protein-
transporting V-type ATPase complex, proton-transporting two-
sector ATPase complex, and catalytic domain (Figure 4B). The
top 10 significant items of biological process (BP) included
nuclear division, organelle fission, mitotic nuclear division,

FIGURE 4 | PPI network and functional enrichment analysis from “Clusterprofiler.” The deeper the color is, the more significant the enrichment is. The bigger the
bubble is, the more genes are participated in the term. (A) PPI network from STRING visualized by cytoscape. (B) Bubble map of top 10 enriched GO terms in CC. (C)
Bubble map of top 10 enriched GO terms in BP. (D) Bubble map of top 10 enriched GO terms in MF. (E) Bubble map of top 10 KEGG enriched pathways.
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sister chromatid segregation, intracellular pH reduction, pH
reduction, regulation of intracellular pH, phagosome
acidification, transferrin transport, and phagosome maturation
(Figure 4C). Top molecular functions (MFs) were mainly
associated with energy metabolism including proton
transmembrane transporter activity, ATPase activity, coupled
to transmembrane movement of ions, rotational mechanism,
ATPase-coupled cation transmembrane transporter activity,
ATPase-coupled ion transmembrane transporter activity,
tubulin binding, microtubule binding, microtubule motor

binding, protein serine/threonine/tyrosine kinase activity, and
histone kinase activity (Figure 4D). In KEGG pathway analysis,
several pathways were found related with autophagy, such as
rheumatoid arthritis, phagosome, cell cycle, and oxidative
phosphorylation (Figure 4E).

Construction of Risk Score
According to expression levels of 7 DEGs and their coefficients,
we constructed the formula of risk score (Table 1):

FIGURE 5 | Correlation analysis of risk score and clinical signatures. **p < 0.01, ***p < 0.001, coefficients> 0 represented positive correlation while coefficients <0
represented negative correlation. The bigger the |coefficient| is, the more relevant the terms were.
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Risk score � ∑
7

i�1
coefipExpi

By analyzing correlation between risk score and other clinical
signatures, we found that risk score was positively associated with
stage and OS status while negatively related with OS months
(Figure 5). Analyzing clinical characteristics and risk score of
patients from TCGA-KIRC in train cohort, validation cohort, and
total cohort, we found age of diagnosis, stage, and risk score were
independent risk factors of prognosis of ccRCC patients
(Figure 6). Dividing all patients from train cohort into two
groups (high risk and low risk) according to median of risk
score, K-M curve, and Log-rank test of OS demonstrated
significant difference, and the high risk group had shorter OS
than patients in low risk group (Figure 7A). Time-dependent
ROC curve showed the AUC of the first year, the third year, and
the fifth year was 0.75, 0.68, and 0.70, respectively, which
indicated risk score had a good predictive ability (Figure 7B).
Depicting risk factor association diagram, it was clear to see that
as risk score rose, mortality grew, and survival time was reduced
(Figure 7C). Combining with all the clinical signatures that
mattered, we constructed a nomogram to predict the survival
rate of ccRCC patients. Calibration curve verified the accuracy of
its ability to predict prognosis (Figures 7D,E). Similar analyses
were performed in the validation cohort which provided stronger
evidence of our risk score having significant value in predicting
prognosis of ccRCC patients with AUC of the first year, the third
year, and the fifth year of 0.73, 0.71, and 0.78, respectively.
Nomogram and calibration in validation cohort also validated
the practicability of the model (Figures 8A–E). In the total

cohort, time-dependent ROC curve showed the ability of risk
score predicting prognosis with AUC of the first year, the third
year, and the fifth year at 0.74, 0.70, and 0.74, respectively
(Figure 9A). Comparing with other clinical signatures we
found the AUC of stage was 0.75, AUC of risk score was 0.72,
AUC of age was 0.63, and AUC of sex was 0.50.We’ve published a
glycolysis-related risk score before, and since they were both
metabolic-related signatures we compared their ability of
predicting prognosis of ccRCC patients by AUC. It turned out
that as the AUC of glycolysis-related risk score was 0.66, the
autophagy-related risk score had better ability of prediction
(Figure 9B). Risk factor association diagram showed as risk
score rose, mortality grew, and survival time reduced
(Figure 9C). Calibration of nomogram of total cohort
perfectly consisted with results in train cohort and validation
cohort (Figures 9D,E). Moreover, K-M curves indicated patients
in the low risk group had longer OS and DFS than in the high risk
group. In addition, to eliminate influences from clinical
characteristics, we grouped all the patients by age, gender, and
stage and proved significant difference in survival time for
patients with different levels of risk score (Figure 10). Thus,
although not as efficient as stage, risk score could still be a reliable
index to predict prognosis of ccRCC patients without concern
about clinical characteristics.

In order to figure out different signatures underlying two
risk groups, we further performed GSEA and WGCNA
analysis, respectively. Dividing patients into high and low
risk groups, a total of 18,569 genes were analyzed through
GSEA. We regarded KEGG pathways with |NES| ≥ 1.5, FDR <
0.25 as significant, and the results indicated the high risk group

FIGURE 6 | Forrest plots of univariate and multivariate cox regression of ccRCC patients in train cohort, validation cohort, and total cohort. The green nodes
represented HR and the line extending from the nodes indicated 95% CI.
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was connected with cytokine-cytokine receptor interaction,
cytosolic DNA sensing pathway, glycosaminoglycan
biosynthesis chondroitin sulfate, JAK-STAT signaling
pathway, NOD-like receptor signaling pathway, RIG-I like
receptor signaling pathway, RNA degradation, spliceosome,
and viral myocarditis (Figure 11A). Meanwhile, butanoate
metabolism, citrate cycle tca cycle, fatty acid metabolism,
glycine serine and threonine metabolism, glycolysis
gluconeogenesis, peroxisome, propanoate metabolism,
proximal tubule bicarbonate reclamation, pyruvate
metabolism and valine leucine, and isoleucine degradation

were found enriched in the low risk group (Figure 11B).
Genes with top 5,000 median absolute deviation were
analyzed in WGCNA, and soft threshold was set as 9
(Figure 12A). Correlation between risk score and modules
was calculated, as the figure shows that a black module was
related with high risk score closely (Figures 12B,C). As a result,
we analyzed the relation among genes in black module and high
risk score and found they were positively related (cor = 0.52, p <
0.001) (Figure 12D). Finally, we performed functional
enrichment analysis in Metascape, with the threshold of min
overlap = 3, p value cutoff = 0.01, and min enrichment = 1.5,

FIGURE 7 | Verification of risk score as predicting factor of ccRCC patients in train cohort. (A) Survival curve of different groups. Red line represented patients in
high risk group, blue line represented patients in low risk group. (B) Time-dependent ROC curve of 1-, 3-, 5-years. (C) Risk factor association diagram. Red nodes in the
upper and middle graph represented patients with high risk score, green nodes represented patients with low risk score. Cells in the gram below represented each
patients and color of cells indicated up- or down-regulation of genes. (D) Nomogram included age, stage, and 7 gene-based risk score. (E) Calibration curve was
depicted for verification accurancy of nomogram predicting 1-, 3-, 5-years OS rate.
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and 20 pathways were found enriched in black module
(Figure 12E). MCODE was selected with physical score >
0.132, min network size = 3, max network size = 500, and
databases as physical core (Figure 12F).

Immune Cell Infiltration
Concerning the significance of immunity on tumorigenesis and
progression, we analyzed immune cell infiltration of these seven
DEGs on TIMER (Figure 13). We found expression of BIRC5
was positively associated with B Cell, CD8+ T Cell, Marcophage,

Neutrophill and Dendritic Cell. CAPS was negatively associated
with B Cell, CD8+ T Cell, Marcophage and Dendritic Cell and
positively associated with CD4+ T Cell. CLDN7 was found
positively related with B Cell, and CLVS1 was found
negatively related with B Cell, Macrophage and Dendritic Cell.
High expression levels of GMIP and IFI16 were highly related
with B Cell, CD8+ T Cell, CD4+ T Cell, Marcophage, Neutrophill
and Dendritic Cell. Similarly, TCIRG1 was found positively
related with B Cell, CD8+ T Cell, CD4+ T Cell, Neutrophill
and Dendritic Cell.

FIGURE 8 | Verification of risk score as predicting factor of ccRCC patients in validation cohort. (A) Survival curve of different groups. Red line represented patients
in high risk group, blue line represented patients in low risk group. (B) Time-dependent ROC curve of 1-, 3-, 5-years. (C) Risk factor association diagram. Red nodes in
the upper and middle graph represented patients with high risk score, green nodes represented patients with low risk score. Cells in the gram below represented each
patient, and color of cells indicated up- or down-regulation of genes. (D) Nomogram included age, stage, and 7 gene-based risk score. (E) Calibration curve was
depicted for verification accurancy of nomogram predicting 1-, 3-, 5-years OS rate.
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We performed “Cibersort” on R studio to assess immune
cell infiltration level in ccRCC patients and normal patients,
macrophages M2, T cells CD8, macrophages M1, T cells
gamma delta, T Cells regulatory, macrophages M0, NK
cells resting, T cells CD4 activated and T cells follicular are
significantly higher infiltrated in ccRCC patients than in
normal patients (Figure 14A). Meanwhile, comparing
immune cell infiltration level between high risk group and

low risk group, we found macrophages M2, monocytes, mast
cells resting, and neutrophils were significantly lower
infiltrated in high risk group, NK cell resting, T cells CD4
memory activated, and T cells regulatory and T cells follicular
helper were infiltrated significantly high in high risk group
(Figure 14B). It seemed that immune cells highly enriched in
high risk group and ccRCC patients were not typical immune
cells that promoted tumorigenesis and progression. As a

FIGURE 9 | Verification of risk score as predicting factor of ccRCC patients in total cohort. (A) Time-dependent ROC curve of 1-, 3-, 5-year. (B) ROC curve of
clinical signatures of ccRCC patints. (C) Risk factor association diagram. Red nodes in the upper and middle graph represented patients with high risk score, green
nodes represented patients with low risk score. Cells in the gram below represented each patients and color of cells indicated up- or down-regulation of genes. (D)
Nomogram included age, stage, and 7 gene-based risk score. (E) Calibration curve was depicted for verification accurancy of nomogram predicting 1-, 3-,5-years
OS rate.
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result, to find out immune cells that had significant effects on
ccRCC, we performed univariate and multivariate cox
regression on immune cell infiltration and the results
revealed that in TCGA-KIRC, mast cells resting suppressed
tumor progression while macrophages M0, T cells CD4
memory activated, and T cells regulation were risk factors
of tumor progression (Supplementary Material S3).

DISCUSSION

Autophagy is an indispensable biological process which enables
cells to self-degrade and recycle intracellular components. It is
well-recognized that in the early stage of tumorigenesis,
autophagy represses tumorigenesis by its function of stability
and inhibiting genome destruction from metabolic stress and
immunoreaction (Karantza-Wadsworth et al., 2007; White,
2012). On the other hand, in the late stage autophagy
protects tumor cells from stress to improve tumor
progression. Studies indicated basic function of autophagy
provides cellular metabolites for tumor cells and regulates
mitochondrial metabolism to meet the high metabolic
requirements of rapid proliferation of tumor cells (White,
2012; Katheder et al., 2017). In addition, autophagy not only
modulates transfer-related biological phenotypes such as
resistance to anoikis (Coates et al., 2010), but also stimulates
TGF-β and EMT process (Li et al., 2013; Papageorgis, 2015; Yeo
et al., 2016). Thus it can be seen that autophagy affects on
tumorigenesis and tumor progression through multiple
approaches. In our study we aim to explore how autophagy
affects progression of ccRCC and seek ATGs that can predict the
progression of ccRCC.

Through lasso regression analysis and cox regression
analysis, we finally identified 7ATGs (BIRC5, CAPS, CLDN7,
CLVS1, GMIP, IFI16, and TCIRG1) associated closely with

ccRCC prognosis. BIRC5 is a EMT related gene which
prevents cell apoptotic through different approaches and
participates in cell cycle regulation, and also in cancer cells it
regulates autophagy directly (Lin et al., 2020). High expression
of BIRC5 was found to indicate poor prognosis in hepatocellular
carcinoma (Xu et al., 2021). Also BIRC5 was found related with
prognosis of ccRCC and gastric cancer (Yao et al., 2020; Li et al.,
2021). CAPS encodes a calcium-binding protein, which may
play a role in the regulation of ion transport; research showed
that CAPS might indicate tamoxifen resistance in ER positive
breast cancer (Johansson et al., 2015). CLDN7 encodes a
member of claudin family and were found expressed in
several malignancies such as prostate cancer, lung cancer,
urinary tumors, and so on. Overexpression of CLDN7 is
closely related to lymph node metastasis (Wu et al., 2018). In
addition, CLDN7 was found upregulated in mouse pancreas
exposed to caerylein for 12 h and its function concerned tight
junction formation, while destruction of tight might be closely
related with autophagy’s detrimental effects (Nakada et al.,
2010; Wang S. et al., 2020). So far CLVS1 wasn’t found
significant in tumorigenesis and progression, but research
found it is involved in lysosome maturation and associated
with psychiatric and steroid-sensitive nephrotic syndrome
(Corponi et al., 2019; Lane et al., 2021). GMIP is a protein
coding gene that encodes ARHGAP family of Rho/Rac/
Cdc42-like GTPase activating proteins. In lung cancer,
overexpression of GMIP was associated with longer
survival; in the null mice model with a xenografted tumor
of A549 cells, GMIP treatment has once been proved to
induce autophagy and reduce tumor growth (Hsin et al.,
2011; Amaar and Reeves, 2020). IFI16 modulates p53
function and inhibits cell growth in the Ras/Raf signaling
pathway. It can be induced by AMPK/p53 pathway and the
induced levels of IFI16 were associated with the induction of
autophagy (Duan et al., 2011). TCIRG1 is involved in

FIGURE 10 | Survival curve of high and low risk groups in different cohorts sorted by clinical signatures. Red line represented patients in high risk group, blue line
represented patients in low risk group.
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autophagosome assembly, and it is usually found relevant
with osteopetrosis (Belaid et al., 2013; Chavez-Guitron et al.,
2018).

We first analyzed expression levels in ccRCC of these seven
genes, and in mRNA level, results from ONCOMINE showed
except GMIP, IFI16, and TCIRG1 were overexpressed in
ccRCC patients, while analysis based on TCGA indicated
expression levels of CAPS and CLDN7 were significantly
low in ccRCC patients, and BIRC5, CLVS1, GMIP, IFI16,
and TCIRG1 were highly expressed in ccRCC patients. In
protein level, we found, IFI16, and TCIRG1 were highly
expressed in ccRCC kidney tissue, and others were lower in
ccRCC kidney tissue or not detected. Through STRING we
found the top 50 related genes of these 7 genes and performed
functional enrichment and pathway analysis, and results
revealed they were closely related with autophagy process,

tumorigenesis, and involved in biological processes of tumor
progression. Results from GSEA analyzing functional
enrichment of high and low risk group indicated that JAK-
STAT signaling pathway, NOD-like receptor signaling
pathway, and RIG-I-like receptor signaling pathway might
be the cause of poorer prognosis of ccRCC patients (Smith
et al., 2018; Mey et al., 2019; Zhou et al., 2020). Actually, these
pathways were found directly or indirectly related with
autophagy (Chan and Gack, 2015; Velloso et al., 2019;
Billah et al., 2020). Further, we explored a module co-
expressed with high risk in WGCNA, and genes from the
most significant module were found quite closely connected
with high risk, too. Functional enrichment analysis was
performed in Metascape then.

According to the formula we construct a new ATGs-
related risk score in train cohort, and we found the high

FIGURE 11 | GSEA associated with risk score [Gene matrix: c2.cp.kehh.v7.symbols.gmt (Curated), Number of permutations: 1,000, Permutation type:
phenotype]. (A) KEGG pathways enriched in high risk group. (B) KEGG pathways enriched in low risk group.
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risk score was related to poor prognosis of ccRCC patients.
Cox regression analysis indicated together with age of
diagnosis and stage, risk score was an independent risk
factor of prognosis of ccRCC. All the results above were
verified by similar analysis in validation cohort and total
cohort. Concerned about the importance of immune response

in tumorigenesis and progression, we further explored
immune infiltration of 7 genes, and all of them were
related with immune cells in varying degrees. The high
risk group was highly infiltrated with NK cell resting,
T cells CD4 memory activated, T cells regulatory, and
T cells follicular helper.

FIGURE 12 | WGCNA in TCGA-KIRC dataset and enrichment analysis of genes in black module from Metascape. (A) Soft thresholding filtering. (B) Module
screening, 14 modules have been identified. (C) The relationship between 14 module and different risk groups, the red cells indicated the module was positively related
with high/low risk group while blue cells represented negative relationship. (D) Correlation plot between genes in black module and high risk score. (E) Top 20 pathways
enriched in black module. (F) MCODEs of black module.
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Although all results above demonstrated that the risk score
signatures constructed by 7 DEGs contribute to the
progression of ccRCC patients and functional enrichment

related with risk score demonstrated risk score had an
association with autophagy, whether autophagy itself in our
study took the responsibility of tumor progression remained

FIGURE 13 | Immune cell infiltration of 7 DEGs in TCGA-KIRC from TIMER.
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unknown. Further experiments in vivo and in vitro are still
needed to prove practicality and feasibility of the new
risk score.

CONCLUSION

A serious of analysis based on autophagy and DEGs was
performed, and it turned out that a new risk score constructed
by 7 ATGs (BIRC5, CAPS, CLDN7, CLVS1, GMIP, IFI16, and
TCIRG1) could be a potential predictive signature of ccRCC
patients. The relevant findings in this study still need mechanism
and molecular verification in the future.
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