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Abstract
Purpose: Accumulating evidence indicated that triple‐negative breast cancer 
(TNBC) can stimulate stronger immune responses than other subtypes of breast can-
cer. We hypothesized that integrating immune‐related genomic signatures with clin-
icopathologic factors may yield a predictive accuracy exceeding that of the currently 
available system.
Methods: Ten signatures that reflect specific immunogenic or immune microenvi-
ronmental features of TNBC were identified and re‐analyzed using bioinformatic 
methods. Then, clinically annotated TNBC (n = 711) with the corresponding expres-
sion profiles, which predicted a patient's probability of disease‐free survival (DFS) 
and overall survival (OS), was pooled to evaluate their prognostic values and estab-
lish a clinicopathologic‐genomic nomogram. Three and two immune features were, 
respectively, selected out of 10 immune features to construct nomogram for DFS and 
OS prediction based on multivariate backward stepwise Cox regression analyses.
Results: By integrating the above immune expression signatures with prognostic 
clinicopathologic features, clinicopathologic‐genomic nomograms were cautiously 
constructed, which showed reasonable prediction accuracies (DFS: HR, 1.79; 95% 
CI, 1.46‐2.18, P < 0.001; AUC, 0.71; OS: HR, 1.96; 95% CI, 1.54‐2.49; P < 0.001; 
AUC, 0.73). The nomogram showed low‐risk subgroup had higher immune check-
point molecules (PD‐L1, PD‐1, CTLA‐4, LAG‐3) expression and benefited from 
radiotherapy (HR, 0.2, 95% CI, 0.05‐0.89; P = 0.034) rather than chemotherapy 
(HR, 1.26, 95% CI, 0.66‐2.43; P = 0.485).
Conclusions: These findings offer evidence that immune‐related genomic data provide 
independent and complementary prognostic information for TNBC, and the nomogram 
might be a practical predictive tool to identify TNBC patients who would benefit from 
chemotherapy, radiotherapy, and upcoming popularity of immunotherapy.
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1 |  INTRODUCTION

As the most common female cancer, breast cancer is diag-
nosed in more than 266 120 patients in the United States 
each year.1 Although representing only about 10%‐20% of 
patients, triple‐negative breast cancer (TNBC) patients had 
much worse prognosis than other subtypes owing to an inher-
ently aggressive clinical behavior and a lack of recognized 
molecular targets for therapy (ie, estrogen receptor (ER), 
progesterone receptor (PR), human epidermal growth factor 
receptor 2 (HER2)).1,2

Besides generally documented clinicopathologic risk fac-
tors like tumor size, nodal status, and grade, no prognostic 
and predictive biomarkers are suitable for predicting those 
high‐risk patients with TNBC. Accumulating evidence indi-
cated that TNBC can stimulate stronger immune responses 
than other subtypes of breast cancer,3 due to its higher ge-
nomic instability.4 It was well established that the immune 
system can help to reduce the risk of tumor spreading and 
maintain tumor dormancy,2,5,6 and tumor‐infiltrating lym-
phocytes (TILs) are focus of this area. Although subtypes of 
TILs had different impacts on the prognosis of TNBC, some 
TIL subtypes that were known to downregulate the immune 
paradoxically inferred a better prognosis in TNBC.7 Of note, 
the interobserver variance is still deemed too great to fulfill 
the application of TILs evaluation in a clinical setting.8,9 It 
is therefore essential to investigate the specialized functions 
with regard to different subtypes of TILs.

Meanwhile, besides the microenvironment, we should not 
neglect importance of spatial context, those intra‐tumoral 
immune processes also correlated with cancer prognosis.10 
As genomics has developed rapidly with the application 
of next‐generation sequencing technology in recent years, 
several elegant immune‐related signatures were proposed 
to predict the prognosis of cancers, such as macrophages/
monocytes,11 overall lymphocyte infiltration,12 IFN‐g re-
sponse,13 and wound healing signature.14 Moreover, immune 
expression signatures reflecting intra‐tumoral immune states 
were also constructed for TNBC.15-23 Rody et al defined the 
metagene that described a ratio of high B‐cell presence and 
low IL‐8 activity as a powerful new prognostic marker for 
TNBC. Another 95‐genes STAT1‐related immune metagene 
was constructed,17 and only this immune response module 
was associated with prognosis in the ER‐/HER2‐ subgroup. 
Additionally, an 8‐gene follicular T‐helper cells (Tfh) signa-
ture, signifying organized antitumor immunity, robustly pre-
dicted survival or preoperative response to chemotherapy in 

TNBC.18 Actually, those signatures may reflect specific im-
munogenic or immune microenvironmental features of TNBC 
that can determine the tumor phenotype, but these published 
signatures clearly showed low prediction accuracies and lim-
ited clinical application. Screening and integrating those im-
mune‐related genomic signatures maybe rendered the insight 
into the heterogeneous biology of TNBC and may become 
useful for improved selection of patients who need additional 
treatment with new drugs targeting the immune system.

Cytotoxic chemotherapy is the mainstay of treatment op-
tion for patients with early or those with advanced TNBC, and 
TNBC is highly sensitive to chemotherapy with pathological 
complete remission (pCR) rating (30%‐40%) compared with 
luminal breast cancers (10%‐25%), respectively, after neo-
adjuvant chemotherapy.5,24 Previous studies indicated that 
immune microenvironment collaborated with the action of 
chemotherapy in TNBC.25,26 A large amount of studies has 
proved that high number of TILs was a significant predictor 
of survival outcomes, and increased in TILs was associated 
with a reduction in recurrence and death and increment in 
pCR rate to neoadjuvant chemotherapy.6-9 Nevertheless, the 
triple‐negative paradox20 indicated that TNBC had high risk 
of recurrence without any treatment but also higher likeli-
hood of benefit from treatment, likely due to inappropriate 
regimens or candidates for chemotherapy. Additionally, 
breast cancer patients with stage T3 or T4 disease or posi-
tive nodes would routinely receive radiotherapy to the chest 
wall or axillary bed.27 Interestingly, recent studies revealed 
that radiotherapy of the bulk tumor can also activate antitu-
mor immune responses by re‐educating the immune system 
to recognize and reject cancer, converting the tumor into an 
in situ vaccine and exposing a wealth of previously hidden 
tumor‐associated antigens.28-31 Of note is that TIL infiltration 
of tumor tissues could also predict the outcome of prostate 
cancer patients undergone salvage radiotherapy.32 Combining 
radiotherapy and immunotherapy can be quite potent, includ-
ing against very large tumors,33 and further investigations are 
also ongoing in several cancers.31,34-36

Integrating multiple biomarkers into a single model 
could substantially improve the prognostic value compared 
with that of a single model.37,38 In this study, we applied 
the CIBERSORT39 to screen 22 TILs phenotypes and iden-
tify the most relevant prognostic immune cells in TNBC. 
Meanwhile, a systematic approach was conducted to evaluate 
the clinical usefulness of immune‐related genomic signatures 
in TNBC and then construct a composite nomograms (mod-
els) integrating immune‐related genomic signatures with 
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clinicopathologic features in a training set. Furthermore, 
using another independent set, the capacity of the nomogram 
to stratify TNBC patients most likely to benefit from adjuvant 
regimens was further validated. We hypothesized that final 
composite nomograms would yield predictive accuracies ex-
ceeding that of the currently available prognostic system, and 
identification of patients stratified by nomograms may help 
the search for individualized regimens.

2 |  METHODS

2.1 | Gene expression datasets
We identified gene expression data arrayed using Affymetrix 
Human Genome U133A or U133A plus 2.0 with clinically anno-
tated data, Gene Expression Omnibus (GEO), ArrayExpress, The 
Cancer Genome Atlas (TCGA, 2016) and Molecular Taxonomy 
of Breast Cancer International Consortium (METABRIC, 2016) 
were systematically searched. All samples with gene expression 
data and survival data from breast carcinomas were eligible. 
Exclusion criteria included male breast cancer, primary metas-
tasis breast cancer, normal tissue of breast cancer patients, and 
replicated cases. All of those studies previously were approved 
by their respective institutional review boards.

2.2 | Data processing
Eleven gene expression datasets were available from public 
databases. For GEO datasets, the raw CEL files were normal-
ized through a MAS5 algorithm and were mapped to Entrez 
GeneID using RefSeq and Entrez.40 When multiple probes 
mapped to the same GeneID, we used probes with the largest 
interquartile range across the samples. To convert count data 
to values more similar to those resulting from microarrays, 
the RNA sequencing data (TCGA and METABRC datasets) 
had been transformed using “voom” R package41 (variance 
modeling at the observational level). Batch effects were also 
recognized by fitting each gene to a linear model with 11 
fixed effects for each dataset,42 including nine microarray 
datasets (GEO databases) and two RNA‐Seq datasets (TCGA 
and METABRAC databases).

2.3 | Identification of triple‐negative 
breast cancer
The Affymetrix probes 205225_at, 208305_at, and 216836_s_
at were chosen to represent ER, PR, and HER2 expression, 
respectively.43 We inferred receptor status using a 2‐com-
ponent Gaussian mixture distribution model and parameters 
were estimated by maximum‐likelihood optimization as pre-
viously described.44 We calculated the posterior probability 
of negative expression status for ER, PR, and HER2, and then 
classified each sample as negative expression if its posterior 

probability was less than 0.5, which were carried out sepa-
rately on a per‐dataset (GEO, TCGA and METABRIC) basis.

2.4 | Identification of immune‐related 
genomic signatures with potential to 
predict prognosis
We searched literature database with the terms “triple‐nega-
tive breast cancer,” “TNBC,” “immune microenvironment,” 
“tumor‐infiltrating lymphocyte,” “TIL,” “survival,” “relapse,” 
“recurrence,” “prognostic,” and “prognosis” to identify gene 
expression studies on the predictive value of immune‐related 
functions in TNBC. The probesets or genes of those signa-
tures were re‐annotated using SOURCE web tool (https://
source-search.princeton.edu) to find the retired gene sym-
bols or different names in each platform. The re‐annotated 
genes were then subjected to biological function enrichment 
analysis, and the online analytical tool DAVID (Database 
for Annotation, Visualization and Integrated Discovery45) 
was used to enrich gene ontology (GO) functions and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways. GO 
terms and KEGG pathways with significant enrichment false 
discovery rate (FDR) values less than 0.05 were selected for 
further analysis.

2.5 | Statistical analysis

2.5.1 | Subclass prediction of TNBC patients
To characterize intra‐tumoral immune states, the preproc-
essed microarray (RNA‐seq) datasets along with templets 
that are prognostic immune‐related genomic signatures were 
used to classify each sample using the nearest template pre-
diction (NTP) method46 as implemented in Gene Pattern 
software (Broad Institute of Harvard and MIT, Boston, MA). 
The (NTP) method provides a convenient way to make class 
prediction with assessment of prediction confidence com-
puted in each single patient’s gene expression data using 
only a list of signature genes and a test dataset. The signifi-
cance of this classification was determined by a nominal p‐
value estimated based on a null distribution for the distance 
generated through bootstrapping 1000 times, and generated 
FDR was used to correct the prior P‐values. The samples 
with FDR ≥ 0.05 were defined as uncertain gene signature 
presence (uncertainty), and in the contrast, residual samples 
(FDR < 0.05) were divided into the presence (good) or ab-
sence (poor) of gene signature where depended. The proce-
dure started separately for each dataset and signature. After 
constructing prediction of presence, absence, uncertainty of 
signature as characteristics of each samples, we also investi-
gated the concordance among these signature‐related char-
acteristics according to Cramer’s V coefficient of the paired 
prediction overlap.47

https://source-search.princeton.edu
https://source-search.princeton.edu
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We inferred the relative proportions of 22 types of TILs 
using the Cell type Identification By Estimating Relative 
Subsets Of known RNA Transcripts (CIBERSORT) algo-
rithm (https://cibersort.stanford.edu/),39 including B cells, 
T cells, natural killer cells, macrophages, dendritic cells, 
eosinophils, and neutrophils. Briefly, CIBERSORT was a 
deconvolution algorithm that used a signature matrix of 
547 genes considered a minimal representation for each cell 
type and, based on those values, infers cell type proportions 
in data from bulk tumor samples. CIBERSORT generated a 
P‐value for the deconvolution for each sample after Monte 
Carlo sampling, which provided a measure of confidence 
in the results.

2.5.2 | Development, comparison, and 
validation of prognostic models

We divided all of samples into training and validation co-
hort according to dataset for assessing the predictors and 
outcomes. The distribution of clinicopathological variables 
between training and validation group was evaluated using 
the Pearson chi‐square test for categorical variables and 
Mann‐Whitney U test for continuous variables. Overall sur-
vival (OS) was calculated from the date of diagnosis or sur-
gery to the date of death or last follow‐up, and disease‐free 
survival (DFS) was defined as the date of the diagnosis to the 
locoregional or distant recurrence or death from breast can-
cer, other cancer or other disease, whichever came first. OS 
as well as DFS were considered as censored status if patients 
were alive until date of last contact.

First, we assessed associations between inferred status 
of immune‐related genomic signature as well as propor-
tions of immune cell types and survival outcomes using 
univariable Cox proportion hazard regression in training 
cohort, respectively. Then, the predictive effect of signa-
tures‐related characteristics identified before was further 
analyzed based on multivariate backward stepwise Cox re-
gression analyses, and final variables with obviously sta-
tistical significance (P < 0.05) would enter into our model 
(nomogram). After that, an individualized nomogram was 
constructed based on those known prognostic clinicopath-
ological variables (age, stage) combined with genomic 
factors. Histologically, since majority of TNBC is grade 
III or poorly differentiated,48,49 we excluded nuclear grade 
in the final model. Multiple imputation was used to im-
pute those missing clinical data. To validate this model 
internally through 1000 bootstrap resamples, concordance 
index (C‐index) was calculated for the evaluation of the 
performance of predicting and discrimination ability by 
testing concordance between predicted probability and ac-
tual outcome. The samples were divided into three risk 
groups (high, intermediate, and low) according to the 
tertiles of the total scores calculated by the established 

nomogram in the training set. Last, external validation 
was conducted by assessing survival difference in three 
groups (high, intermediate, and low) defined by training 
nomogram. Kaplan‐Meier method was employed to visu-
alize the survival distribution and conducted log‐rank tests 
to assess the differences between different risk groups and 
subgroups.

Analyses complied with STROBE criteria.50 All P values 
reported are two‐sided, which less than 0.05 were considered 
statistically significant. All analyses were conducted using R 
software (version 3.4.1).

3 |  RESULTS

3.1 | Identification of eligible samples and 
immune‐related genomic signatures

We included 711 eligible samples from 11 independent cohorts 
including 4593 breast cancer patients with follow‐up data, and 
3882 samples were excluded due to male breast cancer, stage 
IV breast cancer, normal breast samples, and subtypes other 
than TNBC (Figure 1A and Table S1). Then, we randomly 
divided the included samples into training set and validation 
set, and no significant differences in clinicopathologic char-
acteristics between two cohorts were observed (all P > 0.05) 
(Table 1). Last, we addressed the possibility of selection bias 
due to missing data in multivariable models by deriving esti-
mates based on multiply imputed datasets (10 cycles).

To ascertain the clinically useful immune‐related genomic 
signature for TNBC, we comprehensively retrieved all of the 
published immune‐related genomic signatures of TNBC. As 
a result, nine immune‐related signatures15-23 of TNBC were 
published as valid prediction tools, four of which15,16,18,23 did 
not report the prognostic value of containing gene were ex-
cluded (Table S2).

3.2 | Prognostic performance of the 
published immune‐related signatures
To identify the correlations of immune expression signatures 
and TNBC patients’ outcomes, the prognostic performances 
of the five signatures were evaluated in the training set using 
a modified NTP method as previously described. Five signa-
tures were able to confidently stratify patients (FDR < 0.05) 
into good (presence) and poor (absence) subgroups, which 
were shown as Table 2 and Figure 1B. The signature “28‐ki-
nase metagenes associated with immune response” was the 
most prevalent prediction in the whole set (77.0%), whereas 
signature “HER2‐derived prognostic predictor enriched in 
immune genes” was securely identified in only 6.0% TNBC 
patients. We sought to evaluate the concordance of these five 
signatures using Cramer’s V coefficient, but no substantial 
association among the five signatures was found (Figure 1C).

https://cibersort.stanford.edu/
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Figure 1D showed that the empirical CIBERSORT P‐
value among 11 cohorts was generally consistent, with over 
half of the samples (n = 596) with a CIBERSORT P < 0.05 at 
84% representation but none at 16% representation. Relative 
proportion of 22 TILs subsets showed relatively small dif-
ferences across independent cohorts (Figure 1D). The most 
common immune cells were macrophages M0, macrophages 
M2, and T cells follicular helper with mean fraction of 18.7%, 
13.0%, 9.3%, respectively. Patient samples were divided into 
three groups (low, medium, and high) according to the tertiles 

values of 22 immune cells fractions inferred in the training 
set, which were then applied to the validation set.

3.3 | Independent prognostic factors for 
survival in the training set
Among 428 patients in the training set, 288 and 428 patients 
had survival data of OS and DFS, respectively. We sought to 
examine which factors were statistically significant for OS 
and DFS of patients with TNBC, respectively. Univariate 

F I G U R E  1  Immune‐related genomic landscape of TNBC based on gene expression profiling. A, Flowchart of the study design. B, 
Concordance of signature‐based prediction results. Each column represents the prediction of each individual sample. The blue, pink, and white bars 
indicate presence (good), absence (poor), and uncertain (uncertainty) prognoses of the corresponding signature, respectively. C, Heatmap of Cramer 
V coefficients showing correlation between these immune‐related genomic signatures. D, Bar charts summarizing immune cell subset proportions 
and CIBERSORT P‐value by study
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Cox regressions of immune‐related signatures and OS or 
DFS were conducted firstly in training set, and we selected 
those statistically significant variables (P < 0.05) entering 
the stepwise multivariate Cox regression shown as Figures 
2A and 3A.

We obtained different models integrating the immune‐re-
lated signatures identified before with clinicopathologic fea-
tures according to OS and DFS, respectively. For endpoint 
of OS, older age (per year increase: hazard ratio (HR), 1.02; 
95% confidence interval (CI), 1.00 to 1.03; P = 0.019), ad-
vanced stage (stage III vs I: HR, 2.72; 95% CI, 1.33 to 5.54, 
P = 0.006), poor prediction of B‐cell/IL‐8 metagenes (good 
vs. poor: HR, 0.19; 95% CI, 0.06 to 0.62, P = 0.006), and 
lower ratio of B cell naive (high vs low: HR, 0.40; 95% CI, 
0.22 to 0.73, P = 0.003) were independently associated with 
inferior OS (Table S3). Likewise, the multivariate Cox re-
gression for DFS indicated that TNM stage (stage III vs I: 
HR, 2.28; 95% CI, 1.34 to 3.88), prediction of 28‐kinase 
metagenes (good vs poor: HR, 0.64; 95% CI, 0.41 to 0.98, 
P = 0.041), proportion of activated NK cells (high vs low: 
HR, 0.55; 95% CI, 0.36 to 0.83, P = 0.005), and mast cells 
(high vs low: HR, 1.86; 95% CI, 1.22 to 2.81, P = 0.004) 
were independent prognostic variables (Table S3).

3.4 | Construction, comparison, and 
validation of the composite nomogram
Above results were integrated and visualized as quantita-
tive and user‐friendly nomograms (Figures 2B and 3B). 
Obviously, TNM stage and age at diagnosis had the largest 
contribution to DFS and OS, followed by immune‐related sig-
natures and ratio of immune cells. Each category within these 
variables was assigned a point on the top scale based on the 
coefficients from multivariate Cox regression, and summed 
points of each patients as well as corresponding vertical line 
were obtained to predict the survival probability. The risk 
score cutoff values for OS (≤10.5, 10.5‐21, and ≥21) and 
DFS (≤11, 11‐22, and ≥22) were, respectively, selected on 
the basis of total points to divide patients into roughly equal 
tertiles in the training set, which accurately stratified patients 
into the low‐, intermediate‐, high‐risk subgroups (Figure 3). 
The patients in validation set were also divided into three 
subgroups in terms of the same cutoff values.

To assess additional value of immune‐related genomic 
information, we sought to compare the performance of the 
proposed nomograms with clinicopathological model and ge-
nomic model by applying time‐dependent receiver operating 
characteristic (ROC) analysis and C‐index to the training set 
and validation set. Expectedly, the composite nomogram had 
the greatest area under the ROC curve (AUC) and C‐index 
compared with clinical model and genomic model or single 
prognostic variables in both the training and validation sets 
(Figures 2 and 3). It is noteworthy that the nomogram for 

T A B L E  1  Characteristics of patients and tumors included in this 
study (n = 711)

Characteristic

Training set (%) Validation set (%)

P*N = 428 N = 283

Age at diagnosis (y)† 55.6 ± 13.5 53.4 ± 12.7 0.01a

<40 50 (11.7) 35 (12.4)

40‐50 88 (20.6) 78 (27.6)

50‐60 101 (23.6) 64 (22.6)

60‐70 83 (19.4) 53 (18.7)

70+ 62 (14.5) 25 (8.8)

NA 44 (10.3) 28 (9.9)

Grade

I/II 47 (11.0) 29 (10.2) 0.94

III 209 (48.8) 141 (49.8)

NA 172 (40.2) 113 (39.9)

Lymph node metastasis

No 214 (50.0) 135 (47.7) 0.77

Yes 71 (16.6) 46 (16.3)

NA 143 (33.4) 102 (36.0)

Tumor size (cm)

<2 157 (36.7) 91 (32.2) 0.65

2‐5 190 (44.4) 133 (47.0)

>5 22 (5.1) 15 (5.3)

NA 59 (13.8) 44 (15.5)

Stage

I 51 (11.9) 29 (10.2) 0.77

II 144 (336.6) 89 (31.4)

III 31 (7.2) 22 (7.8)

NA 202 (47.2) 143 (50.5)

Chemotherapy

No 192 (44.9) 127 (44.9) 0.42

Yes 213 (49.8) 134 (47.3)

NA 23 (5.4) 22 (7.8)

Radiotherapy

No 125 (29.2) 75 (26.5) 0.43

Yes 51 (11.9) 28 (9.9)

NA 252 (58.9) 180 (63.6)

Disease recurrence/metastasis

No 283 (66.1) 187 (66.1) 0.22

Yes 145 (33.9) 94 (33.2)

NA 0 (0.0) 2 (0.7)

Overall death

No 187 (43.7) 124 (43.8) 0.96

Yes 101 (23.6) 69 (24.4)

NA 140 (32.7) 90 (31.8)

NA, not available. †Values are mean (SD).  *Pearson chi‐square test, except 
aMann‐Whitney U test. 
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OS failed to be validated by validation set (AUC for nomo-
gram, 0.69; AUC for clinical factors, 0.65; P = 0.96), due to 
limited sample size and overall deaths in validation set. The 
results indicated that the proposed nomograms had superior 
prognostic performance than either clinicopathological or 
immune‐related genomic information alone.

3.5 | Associated biological pathways and 
immune checkpoint molecules
To reveal the potential biological meaning among final in-
cluded immune‐related signatures, enrichment (GO) analyses 
were conducted. Figure S1 showed that specific GO catego-
ries closely related to TNBC prognosis, such as response to 
virus, nuclear nucleosome, regulation of lymphocyte acti-
vation, cytokine binding, focal adhesion, adaptive immune 
response (all FDR <0.0001), were significantly enriched. 
Additionally, we found that expression of several immune 
checkpoint molecules (ICMs), that is, programmed death‐1 
(PD‐1), programmed death‐ligand 1 (PD‐L1), cytotoxic T‐
lymphocyte‐associated protein 4 (CTLA4), an indoleamine 
2,3‐dioxygenase 1 (IDO1), was significantly higher in the 
low‐risk group in whole cohort compared with intermediate‐ 
or high‐risk groups (Figure 4A‐E).

Additionally, we examined possible benefits from chemo-
therapy and radiotherapy in each subset defined by nomo-
gram (Figure 4G‐M). Only low‐risk TNBC patients receiving 
radiotherapy were associated better DFS compared with 
those who did not receive radiotherapy (HR, 0.2, P = 0.03). 
Enslaved to sample size and missing chemotherapy data, this 
study just found decreased trend of nonsignificantly HRs 

comparing DFS between chemotherapy and non‐chemother-
apy group from high‐risk (HR, 1.26, P = 0.48), intermedi-
ate‐risk (HR, 0.81, P = 0.29) to low‐risk group (HR, 0.56, 
P = 0.14).

4 |  DISCUSSION

There were challenges to predicting prognosis of patients 
with TNBC likely due to genetic heterogeneity both be-
tween and within tumors. Although an updated bioscore 
had been proposed within the context of the 8th edition 
American Joint Committee on Cancer (AJCC) staging sys-
tem for breast cancer,6,51 which substantially increased 
prognostic prediction of strength for breast cancer, TNBC 
patients could have remarkably different survival outcome 
even with the identical TNM stage.44 Herein, we integrated 
the large clinically annotated TNBC gene expression pro-
filing datasets and separated it into training/validation sets 
to develop and validate a composite clinicopathologic im-
mune‐related genomic nomogram for estimation of the risk 
of relapse/death in patients with TNBC. We found higher 
proportion of activated NK cells and naive B cell was as-
sociated with low risk of disease relapse and overall death 
in TNBC patients, respectively, whereas activated mast 
cells stood for worse prognostic indicators. The marginal 
trends were observed that low‐risk patients were likely to 
benefit from radiotherapy, whereas high‐risk individuals 
would have better survival due to adjuvant chemother-
apy. Meanwhile, low‐risk subjects had higher expression 
of several ICMs, and immune checkpoint inhibitor might 

T A B L E  2  Immune‐related genomic signatures included in the study

Signature/author/year Outcome

Number of genes in 
signature Patients with the signature classified asa

ReferenceOriginal Available (%) Poor (%) Uncertainty (%) Good (%)

95‐gene STAT1‐related immune 
metagenes; Desmedt et al; 
2008.

NA 95 69 (72.6) 48 (6.8) 411 (57.8) 252 (35.4) 17

B‐cell/IL‐8 metagenes; Rody et 
al; 2011.

DFS 216 186 (86.1) 205 (28.8) 409 (57.5) 97 (13.7) 20

Immune cells metagenes; 
Nagalla et al; 2013.

DMFS 70 52 (74.3) 61 (8.6) 393 (55.3) 257 (36.1) 19

HER2‐derived prognostic 
predictor enriched in immune 
genes; Staaf et al; 2010

OS DMFS 14 13 (92.9) 15 (2.1) 668 (94.0) 28 (3.9) 22

28‐kinase metagenes associated 
with immune response; 
Sabatier et al; 2011.

DFS 368 275 (74.7) 286 (40.2) 163 (22.9) 262 (36.8) 21

DFS, disease‐free survival; DMFS, distant metastasis‐free survival; OS: overall survival.
aSamples were classified as presence, absence, or uncertainty by respective published genomic signatures based on prediction result (false discover rate [FDR] < 0.05) 
of nearest template prediction (NTP). 
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work well in this subgroup. This nomogram might also be 
used as a predictor of radiotherapy, chemotherapy, and up-
coming popularity of immunotherapy.

Large amount of studies had revealed the association 
between TILs and cancer progression and patient survival, 
such melanoma and ovarian, breast, bladder, cervical, colon, 
prostate, rectum, and lung cancers.52-56 It was well known 
that TILs enclose cytotoxic CD8+ T cells, CD4+ T‐helper 
cells (Th), CD4+/FOXP3+ regulatory T cells (Treg), B cells 
and NK cell, and T lymphocytes are the most predominant 
type of lymphocytes in the microenvironment.57 Rich CD8+ 
T lymphocytes in TNBC were associated with a better prog-
nosis,58 whereas the similar phenomenon could not be ob-
served for ER‐positive breast cancer.59 CD4+ T lymphocytes 
are stratified into T‐helper cells (TH1), Tfh, and regulator T 
lymphocytes. Both TH1 and Tfh were associated with better 
prognosis in ER‐positive cancer, but not in TNBC.57 Iglesia 
et al showed that B‐cell gene expression signature was as-
sociated with better DFS for basal‐like and HER‐2 enriched 
cancers,60 which was comparable with our results that B 
cell naive was a good indicator for DFS. Similarly, previ-
ous studies showed that breast tumor progression involves 
natural killer cells dysfunction and that breast tumors model 
their environment to evade NK cell antitumor immunity.61,62 
Studies of breast cancer have shown natural killer cells to be 
associated with a better prognosis, still little is known about 
interaction effect between natural killer cells and breast 
cancer subtypes.63,64 Interestingly, another research65 also 
used CIBERSORT to estimate the fraction of 22 immune 
cell types to study their relations with pCR, DFS, and OS 
of breast cancer patients finds that in the TNBC subtype, a 
higher fraction of resting NK cells was associated with worse 
DFS and OS, and a higher fraction of plasma cells was as-
sociated with improved DFS. Although this study had larger 
sample size than us, they employed the multivariable Cox re-
gression to assess the associations of fraction of 22 immune 
cell types and survival outcomes at one time, neglecting the 
potential effects of collinearity. In the contrast, we conducted 
univariable Cox regression to select the significantly prog-
nostic immune cells, which were further analyzed using mul-
tivariate backward stepwise Cox regression, where effects of 
collinearity were measured with variance inflation factor.

Recent studies further documented that the spatial context 
and the nature of cellular heterogeneity of the tumor micro-
environment also had effect on prognosis.39,66,67 Different 
mechanisms between the intra‐ and peri‐tumoral processes 
in the immune system had been identified. The intra‐tumoral 
process often referred the concept of “immunoediting,” 
which can well present the tumor‐sculpting and host‐pro-
tecting action of the immune system, including three phases: 
elimination, equilibrium, and escape.68 The representative 
example in peri‐tumoral process is TILs, high densities of 
which correlated with favorable survival outcomes in multi-
ple cancer types.69 When we stratified patients with TNBC 
from TCGA into four “spatial subtype” (brisk diffuse; band‐
like; nonbrisk, multifocal; and nonbrisk, focal) according to 
TIL maps constructed before67 (Figure 4F), intermediate‐ 
and high‐risk individuals, who tended to have poor progno-
ses, had greater proportion of “nonbrisk” types, which was 
consistent with expectations that the relatively low degree 
of lymphocytic infiltrates predicted poor clinical outcomes. 
Interestingly, mirrored results were also seen in distribution 
of immune subtypes defined in the TCGA pan‐immune anal-
ysis,66 C1 and C2 having a substantial immune component 
are main immune phenotypes in TNBC (Figure 4F), which 
were associated with improved outcomes when higher lym-
phocyte signatures existed.66 Additionally, the C4 subtype 
that is relatively richer in cells of the monocyte/macrophage 
lineage is consistently remained in the low‐ and intermediate‐
risk group rather than high‐risk individuals.

In light of TNBC‐specific immunogenic and actively 
engagement by the immune system, immunotherapies 
are testing among a population of TNBC. A phase I trial 
(KEYNOTE‐012) enrolled patients with advanced stage 
TNBC and positive PD‐L1 expression, and a response rate of 
18.5% was observed after treated with the anti‐PD‐1 monoclo-
nal antibody pembrolizumab.70 In another ongoing phase III 
trial NeoTRIPaPDL1 (NCT02620280), patients with locally 
advanced TNBC will be randomly assigned to receive nab‐
paclitaxel and carboplatin with or without a PD‐L1‐inhibitor 
(atezolizumab), and the endpoint of this trial was event‐free 
survival. Pending confirmation through randomized, con-
trolled clinical trials in other cancers,71-73 some of these 
studies indicated that chemotherapy and immunotherapy can 

F I G U R E  2  Development and validation of the composite clinicopathologic‐genomic nomogram for overall survival prediction. A, Analysis 
of prognostic performance using Cox regression; left: univariate analysis; right: multivariate backward stepwise Cox regression analyses in the 
training set. B, Composite nomogram to predict overall survival for TNBC. C, Performance of models and individual variables as assessed by 
5‐year concordance index (C‐index) and area under the time‐dependent receiver operating characteristic (ROC) curve (AUC) in the training set 
and validation set for predicting overall survival for patients TNBC, whose 95% CIs were calculated from 1000 bootstraps of the survival data. D 
and G, Kaplan‐Meier survival curves of overall survival among risk stratification groups using the proposed nomogram in the training set (D) and 
the validation set (G). E and H, Time‐dependent ROC curves comparing the prognostic accuracies of 5‐year overall survival among the immune‐
related genomic signatures combined with clinicopathologic features and the nomogram in the training set (E) and validation set (F). F and I, The 
calibration curves of the proposed nomogram for predicting overall survival (OS) at 3, 5, and 10 years in the training set (F) and in the validation set 
(I). Abbreviation: VIF, variance inflation factor
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create a synergy. Indeed, we found TNBC patients with high 
ICMs expression in our low‐risk subgroup would not bene-
fit from chemotherapy and immunotherapy at the same time, 
suggesting mechanisms of this phenomenon should be further 
studied in TNBC. Interestingly, although those related trials 
enrolled patients into experimental group based on PD‐L1 
expression, some solid malignancies patients with PD‐L1‐
negative received PD‐1‐targeting antibody nivolumab also 
yielded substantial survival advantages.74 Thus, next‐gener-
ation immunotherapy beyond checkpoints was establishing, 
and various combinations of checkpoint targeting agents are 
also being investigated in preclinical and clinical trials.75-78 
Additionally, radiotherapy can increase the production of cy-
tokines and activate antitumor immune response, inhibiting 
the proliferation of tumor cells.79,80 A wealth of pre‐clinical 
data demonstrates that radiotherapy potentiates the activity 
of a diverse range of immunotherapies.81 In our study, we 
found that low‐risk TNBC patients defined by nomogram 
were associated with higher ICMs expression and had better 
survival after radiotherapy, indicating immune checkpoint in-
hibitor combined with radiotherapy might work well in this 
subgroup.

Although it was reported that previous immune‐related 
genomic signatures associated with survival prognosis in 
their respective publications (Table S2), only B‐cell/IL‐8 
metagenes20 and 28‐kinase metagenes21 were included in the 
final model. This may partially explain wide nonoverlapping 
among the immune‐related signatures identified in TNBC 
microarray studies, and no association between them was 
found. This is noteworthy, as these signatures might reflect 
different biological behavior, and varied result was also due 
to interpatient heterogeneity. Of note, 95‐gene STAT1‐related 
immune signature was enriched for genes reflecting response 
and defense response to virus.17 Accordingly, during proce-
dure of chronic virus infections (eg, HIV, hepatitis B), T cells 
progressively lose responsiveness, amounts of T cells are 
eliminated by apoptosis, and the living T cells are limited in 
a functionally impaired, causing the inhibition of antitumor 
immunity.82 Moreover, a recent clinical trial with anti‐PD‐1, 
PD‐L1, and CTLA‐4 showed the concept that immunity to 
chronic virus can be improved by interfering with inhibitory 
pathways.83 Likewise, the association between HER2‐derived 

signature22 and cytokine binding was also found. Over the 
past decades, using the possibility of recombinant cytokines 
as a trigger or boost in anticancer immunity has been inter-
ested.84-86 Nevertheless, only three agents have been proved: 
recombinant interleukin (IL)‐2 and two variants of recombi-
nant alpha 2 (IFN‐α2), namely IFN‐α2a and IFN‐α2b,87 and 
they exhibit a relatively restricted cell specificity,88 immune 
checkpoint blocker might induce these cytokine binding to 
magnify the anticancer effect. In the view of these, immune‐
related genomic signatures for TNBC should be constructed 
in a comprehensive approach in the future.

Despite the promising results, several limitations should 
be addressed in this study. First, the NTP method uses only a 
list of signature genes to make class predictions in each pa-
tient's expression data, which allowed the method to be less 
sensitive to differences in experimental and analytical condi-
tions and applicable to every patient without optimization of 
the analysis parameters.39 Also, we evaluated several immune 
cells from CIBERSORT instead of evaluating them all, some 
important immune phenotypes like myeloid‐derived suppres-
sor cells would be missed.89 As the average follow‐up was 
30 months for TNBC patients, another limitation is the rela-
tively short average follow‐up for each patient. Of note, since 
the OS data were unavailable in 30% cases, it was not reliable 
for OS analysis. Indeed, patients with ER‐negative disease 
often experience relapse within the first 5 years,90 and limited 
disease‐related events lead to inadequate comparison for each 
variable. Finally, the nomograms reported here are little com-
plex, and better screening method could be used to integrate 
those important immune signatures and fulfill the immuno-
type classification.

In conclusion, this is the first study evaluating and in-
tegrating the immune‐related genomic signatures of TNBC 
with clinicopathologic features, and the improved perfor-
mance of this combinatorial scheme accentuated the im-
portance of integrating all aspects of the immunogenic and 
immune microenvironmental features into prognostic strat-
ification. Moreover, this nomogram could be a useful prog-
nostic and predictive tool to identify patients with TNBC 
who might benefit from adjuvant chemotherapy, radio-
therapy, and upcoming immunotherapy, which might have 
crucial implications for the postoperative personalized 

F I G U R E  3  Development and validation of the composite clinicopathologic‐genomic nomogram for disease‐free survival prediction. A, 
Analysis of prognostic performance using Cox regression; left: univariate analysis; right: multivariate backward stepwise Cox regression analyses in 
the training set. B, Composite nomogram to predict disease‐free survival for TNBC. C, Performance of models and individual variables as assessed 
by 5‐year concordance index (C‐index) and area under the time‐dependent receiver operating characteristic (ROC) curve (AUC) in the training set 
and validation set for predicting disease‐free survival for patients TNBC, whose 95% CIs were calculated from 1000 bootstraps of the survival data. 
D and G, Kaplan‐Meier survival curves of disease‐free survival among risk stratification groups using the proposed nomogram in the training set 
(D) and the validation set (G). E and H, Time‐dependent ROC curves comparing the prognostic accuracies of 5‐year disease‐free survival among 
the immune‐related genomic signatures combined with clinicopathologic features and the nomogram in the training set (E) and validation set (F). 
F and I, The calibration curves of the proposed nomogram for predicting disease‐free survival (OS) at 1, 3, and 5 years in the training set (F) and in 
the validation set (I). VIF, variance inflation factor
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follow‐up and decision‐making regarding individualized 
adjuvant treatment.
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