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Abstract: Recent developments in our understanding of the interactions between long non-coding
RNAs (lncRNAs) and cellular components have improved treatment approaches for various human
diseases including cancer, vascular diseases, and neurological diseases. Although investigation of
specific lncRNAs revealed their role in the metabolism of cellular RNA, our understanding of their
contribution to post-transcriptional regulation is relatively limited. In this study, we explore the
role of lncRNAs in modulating alternative splicing and their impact on downstream protein–RNA
interaction networks. Analysis of alternative splicing events across 39 lncRNA knockdown and
wildtype RNA-sequencing datasets from three human cell lines—HeLa (cervical cancer), K562
(myeloid leukemia), and U87 (glioblastoma)—resulted in the high-confidence (false discovery rate
(fdr) < 0.01) identification of 11,630 skipped exon events and 5895 retained intron events, implicating
759 genes to be impacted at the post-transcriptional level due to the loss of lncRNAs. We observed
that a majority of the alternatively spliced genes in a lncRNA knockdown were specific to the cell
type. In tandem, the functions annotated to the genes affected by alternative splicing across each
lncRNA knockdown also displayed cell-type specificity. To understand the mechanism behind
this cell-type-specific alternative splicing pattern, we analyzed RNA-binding protein (RBP)–RNA
interaction profiles across the spliced regions in order to observe cell-type-specific alternative splice
event RBP binding preference. Despite limited RBP binding data across cell lines, alternatively spliced
events detected in lncRNA perturbation experiments were associated with RBPs binding in proximal
intron–exon junctions in a cell-type-specific manner. The cellular functions affected by alternative
splicing were also affected in a cell-type-specific manner. Based on the RBP binding profiles in HeLa
and K562 cells, we hypothesize that several lncRNAs are likely to exhibit a sponge effect in disease
contexts, resulting in the functional disruption of RBPs and their downstream functions. We propose
that such lncRNA sponges can extensively rewire post-transcriptional gene regulatory networks by
altering the protein–RNA interaction landscape in a cell-type-specific manner.

Keywords: long non-coding RNA; cell-type-specific; alternative splicing; functional enrichment;
RNA-binding proteins; protein binding lncRNA sponges; secondary RNA structure; cancer

1. Introduction

One of the major challenges in the post-genomic era is to understand fundamental mechanisms
of long non-coding RNAs (lncRNAs) and their role in modulating cellular homeostasis. Despite
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increased awareness of their influence on alternative splicing and alterations in notable cancers, most
lncRNAs are still not known to have a function and thousands of lncRNAs are believed to be a result
of transcriptional noise [1]. Their length and low expression have acted as a barrier for experimental
assays and for building computational models [2,3], resulting in a lack of approaches to confidently
assess the full scope of lncRNA function and structure. However, with the help of novel genome editing
technologies such as “catalytic dead” Cas9 (dCas9) silencing [4], genome-scale probing methods which
study the loss of function phenotypes for lncRNAs are beginning to emerge.

By combining sequential dCas9-KRAB guides predicted via in silico models, effective knockdowns
of whole lncRNA genes have recently been made, providing promise for expanding genome-wide
knockdown protocols [4]. With the help of such improved lncRNA knockdown experiments, one can
begin to confidently analyze and associate the downstream phenotypic changes and resulting interaction
networks of lncRNAs across cell types. CRISPR (Clustered Regularly Interspaced Short Palindromic
Repeats)-guided knockdown assays [5] and large-scale lncRNA functional analysis [6] demonstrate
the translational significance of CRISPR-mediated lncRNA perturbations.

Other studies of lncRNAs have repeatedly shown that lncRNAs perturb or enhance biological
functions in a cell-type- or tissue-specific manner [7,8]. Putative lncRNAs like HOTAIR, NEAT1,
and MALAT1 have been demonstrated to interact with specific RNA-binding proteins (RBPs) like
HUR and ELAVL1 in a tissue-specific fashion [8,9], with increasing evidence for the broader role of
lncRNAs in modulating a variety of post-transcriptional processes [10,11]. However, few databases
have curated useful cross-linking immunoprecipitation (CLIP) [12] data with lncRNAs and annotated
functional effects that match the quality of Seten, [13] CLIPdb’s POSTAR2 [14], and ENCODE [15].
RBPs have been shown to influence alternative splicing and their interaction with pre-mRNAs [16],
thereby impacting cellular functions and phenotypes. Yet, in a post-transcriptional regulatory context,
our understanding of the association between RBPs and the non-coding transcriptome remains unclear.

To understand the influence of lncRNAs on alternative splicing, we integrated dCAS9-mediated
lncRNA knockdown RNA-sequencing data [4] across three cancer cell lines along with protein–RNA
interaction maps from eCLIP [17] experiments performed as part of the ENCODE project. This study
examines the role of lncRNAs in modulating the cell-type-specific alternative splicing outcomes due to
their physical interactions with RBPs.

2. Materials and Methods

To dissect the functional impact of lncRNAs on splicing, we downloaded publicly available
RNA-Seq data from a study (GSE85011) [4] where multiple lncRNAs were knocked down across three
human cancer cell lines (Table 1). As illustrated in the workflow (Figure 1), the RNA-Seq data were
aligned to the human reference genome. The aligned data were further analyzed to identify alternative
splicing events across lncRNA knockdowns and corresponding control samples. RBP binding profiles
were analyzed to understand their binding preference around alternative splice events. The following
sections discuss individual steps involved in our workflow in detail.

2.1. Sequence Alignment of RNA-Seq Reads Using HISAT

Data from the study GSE85011 were generated by creating a guide RNA library to facilitate CRISPRi
(CRISPR interference) lncRNA knockdowns via precise heterochromatization [4]. Single-end RNA-Seq
data of lncRNA knockdowns and controls in the HeLa (cervical cancer), U87 (glioblastoma), and K562
(leukemia) cell lines were downloaded from GEO [18] in the “fastq” format using NCBI’s sratoolkit
(version 2.8.2) [19]. We used a highly efficient short-read RNA-Seq alignment tool, HISAT2 [20], to align
the downloaded data to the human reference genome. Default parameters of HISAT2 were used
to align the reads against the hg38 reference genome. By utilizing SAMtools (version 1.3.1) [21] for
data processing, the SAM (Sequence Alignment/Map) files from HISAT2 alignment were converted
to the BAM (Binary Alignment/Map) format. Concurrently, the BAM files were transformed into the
sorted-BAM format. The average alignment rate across the samples was 91%. The corresponding
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SRA (Sequence Read Archive) sample run IDs (SRR IDs) and their respective alignment statistics are
reported in Table 1.

Table 1. Ensembl annotations of the list of long non-coding RNAs (lncRNAs) and corresponding cell
lines in which wildtype and knockout RNA-sequencing data were employed in this study.

lncRNA Symbol ENSG ID Cell line/s
Perturbed In Length (bp) Strand Gene Type

AC016831.7 ENSG00000285106.2 U87 318,897 + LncRNA

CCAT1 ENSG00000247844.1 HeLa 11,222 - LincRNA

CTC-428G20.6 ENSG00000271797.1 U87, HeLa 943 + Antisense

EPB41L4A-AS1 ENSG00000224032.7 K562 4292 + LncRNA

GAL4 ENSG00000282992.2 HeLa 11,263 - Protein_coding

KB-1471A8.1 ENSG00000245330.1 HeLa 7069 - LincRNA

LAMTOR5-AS1 ENSG00000224699.9 HeLa 96,701 + LncRNA

LINC00263 ENSG00000235823.3 K562, U87, HeLa 80,944 + LncRNA

LINC00680 ENSG00000215190.9 K562, U87, HeLa 15,427 - Transcribed_unprocessed_pseudogene

LINC00909 ENSG00000264247.2 K562, U87, HeLa 8568 - LncRNA

LINC00910 ENSG00000188825.14 K562 50,458 - LncRNA

MIR142 ENSG00000284353.1 K562 86 - miRNA

MIR17HG ENSG00000215417.13 HeLa 6759 + LncRNA

MIR210HG ENSG00000247095.3 U87 2797 - LncRNA

MIR29A ENSG00000284032.1 U87 63 - miRNA

PVT1 ENSG00000249859.11 U87, HeLa 392,575 + LncRNA

RP11-1094M14.11 ENSG00000267321.3 U87, HeLa 6824 + LncRNA

RP11-126L15.4 ENSG00000236305.1 U87 15,302 - LncRNA

RP11-347C12.10 ENSG00000260219.1 K562 1086 + LincRNA

RP11-392P7.6 ENSG00000247498.10 K562 56,919 + LncRNA

RP11-734K2.4 ENSG00000270344.3 U87 23,411 + LncRNA

RP11-96L14.7 ENSG00000236782.1 U87 1874 - Antisense

RP11-973D8.4 ENSG00000258554.1 U87 636 - Antisense

RP5-1148A21.3 ENSG00000266680.1 HeLa 1403 - Antisense

SNHG1 ENSG00000255717.7 U87 3969 - LncRNA

SNHG12 ENSG00000197989.14 U87 4594 - LncRNA

TRAM2-AS1 ENSG00000225791.7 U87 66,271 + LncRNA

XLOC_010347 ENSG00000254430.1 U87 699 - Unprocessed pseudogene

XLOC_014806 ENSG00000211813.2 U87 607 + TR V gene

XLOC_015111 ENSG00000258687.1 U87 17,537 - Antisense

XLOC_017263 ENSG00000259656.1 HeLa 1473 + LincRNA

XLOC_018520 ENSG00000243007.1 K562 495 - Processed pseudogene

XLOC_026118 ENSG00000272396.1 U87 8285 - Antisense

XLOC_029037 ENSG00000200718.1 U87 319 + LncRNA

XLOC_038702 ENSG00000261519.2 K562 1909 + LincRNA

XLOC_040566 ENSG00000109686.18 U87 222,881 - Protein_coding

XLOC_042889 ENSG00000271862.1 K562 1588 - LincRNA

XLOC_051509 ENSG00000253372.5 U87 8771 + LncRNA

XLOC_054068 ENSG00000268674.1 U87 509 + Protein_coding
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Figure 1. Depiction of the workflow and analysis conducted in this study. Automated scripts were
developed to download data, align reads to the corresponding reference, and predict the alternative
splicing (AS) events across samples. From further processing of the predicted events, both alternative
splicing event information and proximal RNA-binding protein (RBP) binding locations were extracted.
Alternative splicing events were then analyzed by generating heatmaps and by performing functional
enrichment analysis of the alternatively spliced genes. The overlapping proximal RBP binding locations
were extracted by analyzing RBP binding profiles obtained from ENCODE.

2.2. Identifying Differentially Spliced Events Using Replicate Multivariate Analysis of Transcript
Splicing (rMATS)

RNA-Seq data enable us to observe alternative splicing events across two given conditions. In this
study we deployed rMATS (version 3.2.5) [22] on samples corresponding to 39 lncRNA knockdowns
and their respective controls to identify the differential alternative splice (AS) events. rMATS takes
sorted-BAM files as input and identifies a variety of splicing events that are differential across two
conditions. We used sorted-BAM files of lncRNA knockdowns, control reads, and corresponding
replicates as input for rMATS. Additionally, human transcript annotation was provided with a GTF
(Gene transfer format, version 84) file from Ensembl [23]. By implementing our inputs into the pipeline
with default thresholds, we could compare AS patterns in the presence and absence of a lncRNA.
Thereby, rMATS enabled us to analyze the inclusion/exclusion of target exons/introns pertaining to
different types of AS events: skipped exon (SE), alternative 5′ splice site (A5SS), alternative 3′ splice
site (A3SS), mutually exclusive exons (MXE), and retained intron (RI) across lncRNA knockdown
experiments. We ran rMATS on 54 comparisons of samples pertaining to 39 lncRNA knockdowns in
three cell lines; however, not all the lncRNAs had knocked down RNA-Seq data available across the
three cell lines.

Custom Python scripts were developed to parse through rMATS output files across all comparisons
to generate AS event frequency matrices. A filter of false discovery rate (fdr) <10 and p-value < 0.05 was
employed over these tables, thereby enabling us to extract only the significant AS events (Supplementary
Table S3).

2.3. Visualizing Incidence of Differentially Spliced Genes in lncRNA Knocked Down Cell Lines

The frequency matrices generated from the rMATS output were further analyzed to gauge how
often each gene was alternatively spliced when a specific lncRNA was knocked down in a given
cell line. To optimize data processing and visualization, the matrix was further filtered to remove
instances which were not populated with data. The genome-wide influence of lncRNAs on splicing
was visualized by generating a heatmap depicting the incidence of a gene being alternatively spliced in
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a lncRNA knockdown using Morpheus [24], a heatmap generation tool from Broad Institute. Both rows
and columns were clustered hierarchically based on the “one minus Spearman rank correlation”
distance option. The Spearman distance option was the most relevant method to discriminate the
genes’ cell-type specificity, as it is a non-parametric test and gave the most consistent groupings after
trials of similar distance metrics. We used Venny (v2.1) [25] to generate Venn diagrams to depict the
differentially spliced gene overlaps across cell lines.

2.4. Functional Enrichment Analysis of Alternatively Spliced Genes

To understand the functional impact of lncRNAs on cellular functions, we performed functional
enrichment analysis using ClueGO (v2.50) [26] over alternatively spliced gene sets from each lncRNA
knockdown. ClueGO is a Cytoscape [27] plug-in which enables users to perform comprehensive
functional interpretation of gene sets. ClueGO can analyze gene sets and visualize the respective
functionally grouped annotations based on pathway enrichments recognized in the corresponding
gene sets. We extracted the gene sets that were exclusively alternatively spliced in a given cell line
and plugged them into ClueGO, thereby extracting functional contributions of lncRNAs. We used
all the Gene Ontology (GO) terms irrespective of their level in the GO hierarchy for identifying
enrichment terms after searching for term annotations from databases like KEGG [28], GO Cellular
Components [29,30], GO Biological Process [29,30], and REACTOME Pathways [31]. Only significantly
enriched terms (p-value < 0.05) were used for the downstream analysis. The functional enrichment
of the smaller gene sets affected by alternative splicing across cell types revealed no significant
(p-value > 0.05) pathways or functional annotations.

2.5. Extraction of RBP Binding Profiles across AS Events

Experimental strategies like CLIP [12], iCLIP [32], and eCLIP [17] have significantly improved
our understanding of the RNA bound proteome. By observing variations of RBP binding preferences
around AS events in the presence and absence of a given lncRNA, we gained a new perspective on
the functional dynamics and crosstalk between lncRNAs and RNA-binding proteins (RBPs). Publicly
available eCLIP experimental data in the HeLa and K562 cell lines were obtained from the ENCODE
project [15]. The eCLIP data were then processed to extract the genome-level RBP binding profiles in
both cell lines.

Additionally, we extracted the genomic loci where the AS events occurred from the rMATS output
data. Potential genomic loci involved in AS can be captured by examining adjacent upstream and
downstream regions in the exon start and end loci. A total of six types of proximal coordinates were
extracted: upstream exon start and end, AS event-specific exon start and end, and the downstream
exon start and end. Each of the six coordinates were given a distance allowance of 500 base pairs on
either side of the sites to confirm locations which overlapped with the binding sites of RBPs. Both RBP
binding profiles and AS event sites were processed and converted into the BED (Browser Extensible
Data) format. Bedtools (version 2.18.1) [33] is one of the most efficient tools to analyze genomic
loci-based information. We used the Bedtools-intersect option to extract the overlaps across RBP
binding sites and AS events and proximal loci in order to understand which RBPs are potentially
associated with a specific AS event [see Supplementary Materials 11]. However, the eCLIP data on
ENCODE did not host high-confidence U87 cell line experiments, therefore no RBP binding profiles
from U87 were extracted.

2.6. Enrichment of RBP Binding over Alternative Splicing Events

Although we identified RBP and AS event interactions based on eCLIP data, we wanted to identify
only the most likely interactions for further analysis. A hypergeometric statistical test was performed to
observe the enrichment of an RBP’s binding preference with respect to each lncRNA that was knocked
down, thereby determining significant relative RBP binding preference.
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The relationship between RBP binding frequencies was highly influenced by many missing values,
which might not be representative of the whole relationship of binding. The importance of a reported
binding had no numerical value attached, so a hypergeometric probability was needed. A majority of
the lncRNAs had a higher proportion of binding rather than non-binding, and Fisher’s exact odds
ratio test evaluated the representation of binding. A Fisher’s exact test was run for each of the bound
and unbound genes to a motif created by a lncRNA knockdown and all the genes from each lncRNA.
The p-values from each Fisher’s test were then adjusted in reference to all the other Fisher’s exact tests.

Table 2 shows the contingency table of bound and unbound protein frequencies used to conduct
the Fisher’s exact test. Each square in the heatmaps shown in Figure 4A,B demonstrate the significance
(-log(corrected p-value)) from each of these tests. The maps were clustered hierarchically to see if there
was a relationship between RBP and lncRNAs.

Table 2. Representation of Fisher’s exact test input contingency table for each iteration of RBP binding
data. Conservative hypergeometric tests were performed in order to evaluate the importance of
reported proximal RBP binding activity to alternatively spliced genes due to lncRNA knock downs.
Each iteration of Fisher’s exact test required this input space, which evaluates if a proximal binding
with RBP is occurring in significant frequencies or by chance.

Genetic Regions Bound Unbound

Regions where an RBP may bind across genes in a cell line X Y
All proximal splicing regions generated from a lncRNA

knockdown in a cell A B

2.7. Correlation Analysis of lncRNA Specific RBP Binding Activity and AS Events

A correlation analysis was performed across the number of skipped events with the amount of
RBPs relative and each lncRNA specifically to determine a relationship between RBP binding frequency
and alternative splicing events. However, a significant correlation was not observed given the small
amount of data points. Supplementary Table S4 depicts the attempts and tables used to show the
connection between the lncRNAs and RBP.

3. Results

3.1. Framework for Studying Alternative Splicing Outcomes in lncRNA Knockdown
RNA-Sequencing Experiments

In this study, we investigated alternative splicing events, functions of alternatively spliced gene
sets, and RBP-lncRNA binding patterns across 39 lncRNA knockdowns in HeLa (cervical cancer),
K562 (myeloid leukemia), and U87 (glioblastoma) cell lines. An overview of the three-step analysis is
illustrated in Figure 1 (see Materials and Methods). First, we collected and processed the raw RNA-Seq
data for multiple lncRNA knockdown samples in human cancer cell lines and identified splicing
events using the replicate multivariate analysis of transcript splicing (rMATS) [22] pipeline. Secondly,
alternative splicing summaries were analyzed, and functional enrichment analysis of the effected gene
sets was performed. Third, we analyzed the binding profiles of RNA-binding proteins (RBPs) with
respect to the skipped exon (SE) and retained intron (RI) events across 39 lncRNA knockdowns, finding
that the RBPs’ binding profiles around SE and RI events were also unique to each cell line. Additionally,
we observed RBPs’ substantial binding preference for knocked down lncRNAs and proposed that
certain lncRNAs demonstrate a sponge-like RBP binding activity.

3.2. Skipped Exon Events Followed by Retained Intron Events Are the Most Prominent Alternative Splicing
Events Occurring Due to the Loss of lncRNAs across Multiple Human Cell Lines

We collected the RNA sequencing data from dCAS9-based lncRNA knockdown study [4] which
contained 39 lncRNA knockdowns in U87, HeLa, and K562 cell lines (see Materials and Methods).
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LncRNA knockdown sequence replicates and control samples were aligned onto the human reference
genome (hg38) using HISAT2 [20]. The overall percentage of alignment is highlighted in Supplementary
Table S1, demonstrating a high fraction of read alignment to the reference genome (average alignment
rate ≥ 91%). The alternative splicing (AS) event identification analysis was performed by deploying the
rMATS pipeline over the three cell lines. A filter of fdr < 0.1 and p-value < 0.05 was employed to extract
the most likely alternative splicing events (see Materials and Methods). A total of 26,167 high-confidence
AS events were extracted from the rMATS analysis output across three cell lines. Skipped exon (SE)
events were the most predominant events, constituting 44.4% of the total events, followed by retained
intron (RI) events at 22.5%. Sample-wise distributions of splice events are provided as Supplementary
Table S2. The output from the rMATS analysis was parsed and summarized into a total of 17,525 unique,
statistically significant splice events (11,630 SE and 5895 RI) and their AS event frequency across
39 lncRNA knockdowns in the three cell lines is available as Supplementary Table S3.

3.3. Hierarchically Clustered Heatmaps of AS Event Frequency in lncRNA Knockdowns Reveal
Cell-Type-Specific Alternative Splicing Signatures

Annotated splicing summaries were compiled to generate matrices depicting the frequency of
alternative splicing events occurring in lncRNA knockdowns across three different cell lines. In order
to visualize the AS events from the matrix, heatmaps were generated for SE and RI events. A legible
resolution of the SE and RI heatmaps was obtained after missing data were filtered out. Across RI and
SE events, we observed that the alternatively spliced gene clusters were predominantly unique across
each cell line (Supplementary Figures S4 and S5). Consequently, even though the same lncRNA was
knocked out across two cell lines, the genes that were alternatively spliced were cell-type specific. SE
events had the most pronounced cell-type specificity, in comparison to other AS events. In tandem, we
also observed that the cellular and phenotypic functions affected by genes alternatively spliced across
SE and RI events were specific to each cell line.

Among the lncRNA knockdown dataset described in the Materials and Methods, we found only
12 lncRNAs to be common across three cell lines. Amongst all the AS events in the three different cell
lines, no single genes were affected in the same way by a knockdown. The resulting alternatively
spliced genes from the 12 lncRNA knockdowns which were present in at least two cell types were
observed to be cell-type specific. Figure 2 illustrates how the cell lines which had a lncRNA knocked
down affected the frequency of SE events in specific genes. The genes affected by RI events were also
altered in a cell-type-specific manner. However, the intensity of the signal was relatively lower in RI
events when compared to SE events.

In the AS event frequency heatmap, the SE events had very defined clusters and continued to be
clustered in a distinct cell-type-specific manner [see Supplementary Figure S5]. The genes which were
annotated with SE events were rarely shared across two cell lines. Out of the total 759 alternatively
spliced genes, only 7.3% (37 genes) were alternatively spliced across at least two cell lines. When
enrichment analysis was performed over the few SE affected genes which were shared across different
cell lines, there was too little information for a statistically significant functional annotation to emerge.
The number of SE-event-affected genes shared across cell lines can be seen in the Venn diagram in
Figure 2. Similarly, a heatmap of RI event frequencies was generated. Akin to the observations from
SE event analysis, the gene sets with RI events were mostly cell-type specific [see Supplementary
Figure S5].

The gene sets affected by RI events were cell-type specific, but these gene sets overlapped slightly
more among the cell lines, relative to SE distributions. Given the small number of genes alternatively
spliced and RI events shared (maximum of 30 shared events), the scope for significant functional
annotation was low. The 162 genes affected by RI events in the K562 cell line had a distinct signal from
the other cell lines, further emphasizing their cell-type specificity.
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Figure 2. Summary of cell-type-specific skipped exon (SE) events. A hierarchically clustered heatmap
demonstrates that the genes spliced via skipping exon isolate themselves in a mostly cell-type-specific
manner. The numbers in the Venn diagram show how many alternatively spliced genes are shared
across cell lines. Across all the alternatively spliced events in the three different cell lines, no single
genes displayed the same pattern.

3.4. lncRNA Knockdowns Not only Enriched for Cell-Type-Specific Functions but Occasionally Favor Similar
Functions via Varied Alternatively Spliced Gene Sets

In an attempt to understand the downstream functions being influenced by lncRNAs, functional
enrichment analysis was performed over 759 alternatively spliced genes corresponding to 39 lncRNA
knockdowns in three cell lines (see Materials and Methods). Only 28 genes were shared between the
SE and RI events, while 481 genes were unique to SE events and 250 genes were unique to RI events.
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Figure 3 illustrates the significant (p < 0.05) potential functions associated to genes alternatively spliced
in each cell line resulting from a lncRNA knockdown. As expected, the functions affected within
each cell line were also unique to each cell line. On the rare occasion of a common enriched function
between cell lines, gene set composition leading to that function varied drastically.

Figure 3. Summary of cell-type-specific GO functional annotation in skipped exon events. Functional
annotation of cell-type-specific gene sets that were affected by SE events. The lines connect the
corresponding gene sets across each cell type to respective functional annotation. The functions
enriched in each cell type are exclusive.

3.4.1. Genes Alternatively Spliced via SE Events in U87, HeLa, and K562 Reveal Cell-Type-Specific
Functional Enrichment

SE events affected a total of 509 genes, and the respective functional annotation terms were
enriched from four different pathway databases (see Materials and Methods). A unique gene set of
138 genes corresponding to 14 terms were enriched in the U87 cell line. The highest number of genes
that were alternatively spliced in samples were induced by the knockdown of lncRNA families XLOC
and RP11. The U87 cell-type-specific gene cluster had areas of higher magnitude of splicing events
and shared only 25 genes with the K562 cell line. Of the 25 shared genes no significant pathways were
annotated. The top functions affected by the alternative splicing induced by the lncRNA knockdowns
in the U87 cell line correspond with DNA endonuclease repair (37% of genes) and ribosomal complex
formation (16% of genes) [see Supplementary Figure S6]. These functional observations are in coherence
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with the literature, as it is known that endonuclease repair activity is a function targeted by cancerous
U87 [34].

The 141 genes affected in the K562 cell line were enriched for a total of 17 functional terms.
The top functions affected by SE events in the K652 cell line were cell microfiber construction (45%
of genes), phosphotransferase activity (23% of genes), and p53 signaling pathway (12% of genes)
[see Supplementary Figure S7]. Functional annotations like cell growth and cell death have been
identified as key checkpoints in various cancers, including leukemia (K562) [35]. However, this study
appears to provide a novel functional annotation of “cell microfiber construction” being affected in
leukemia (K562). Thereby, our genome-wide functional analysis is not only able to predict novel
functions based on genes affected by AS events, but also support functions previously annotated to
these cell lines.

The HeLa clusters affected genes in a large gene cluster, with 193 unique genes over-represented
with 28 functional terms. The top functions affected by SE events in the HeLa cell line were
deoxyribonucleoside monophosphate metabolic processes (29% of genes) and vesicle formation and
vesicle movement (15% of genes) [see Supplementary Figure S8]. Vesicle formation and movement
were observed to be attenuated in the HeLa cell line in a gene (SPIN90) dependent manner, which our
analysis was able to capture [36]. No significant pathways were annotated for the 12 genes the HeLa
cell line shared with the K562 cell line.

3.4.2. Genes Alternatively Spliced via RI Events in HeLa and K562 Reveal Cell-Type-Specific
Functional Enrichment

RI events affected a total of 278 genes across the three cell lines. The respective functional annotation
terms were enriched from four different pathway databases (see Materials and Methods). While the
clustered gene set in the HeLa cell line yielded no significant (p < 0.05) pathways, the knockdown of
RP5-1148A21.3 in the HeLa cell line was able to alternatively splice all 278 genes [see Supplementary
Figure S5]. Thus, the 278 genes affected in the HeLa cell line by RP5-1148A21.3 enriched 53 functional
terms: responses to endoplasmic reticulum stress (19% of genes), holiday junction resolvase complex
(9% of genes), and RNA splicing (8% of genes). The few genes affected within the U87 cell line did not
enrich any significant pathways.

The 162 genes affected in the K562 cell line were enriched for 18 functional terms composed
of concepts such as “ribosomal construction” and “negative regulation of autophagy”. “Cytosolic
large ribosomal subunit” constituted 50% of the genes alternatively spliced in the K562 gene set
[see Supplementary Figure S9]. Other prominent functions associated with K562 were ribosomal
RNA processing in the nucleus and cytosol (7% of genes), and negative regulation of autophagy.
The functional annotation of the term “targeted rRNA processing” onto K562 is in coherence with the
literature, as “targeted rRNA processing” has been identified to play a key role in K562 cells [37].

3.5. Analysis of lncRNA AS Events Proximal to RBP Binding Sites Reveals Cell-Type-Specific Interactions and
Supports a lncRNA–RBP Sponge Model

As a conduit to understand lncRNAs’ role in alternative splicing, lncRNAs’ interactions with
RBPs were extracted. RBP binding profiles for 22 lncRNAs were obtained from documented eCLIP
experiments from the ENCODE database. Supplementary Material 11 highlights the binding profiles
which overlapped with proximal (±500 bp) alternative splice site locations, revealing 4,261,897 RBP
binding locations for 148 RBPs on 22 lncRNAs. The significance of relative frequencies of bound
and unbound RBP sites was gauged by deploying Fisher’s exact test on each lncRNA’s RBP binding
preferences. Figure 4 showcases the intensity of each RBP’s interactions to their respective 11 lncRNAs
in the K562 cell line (Figure 4A) and 14 lncRNAs in the HeLa cell line (Figure 4B). Additionally,
we observed lncRNAs which acted as RBP sequestering sponges, which is illustrated in Figure 4C,
based on their extensive interactions with RBPs. Figure 4D demonstrates how sponging lncRNAs like
LINC00909 have many interactions with a variety of RBPs.
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Figure 4. RNA-binding protein eCLIP-based binding profile analyses revealed possible lncRNAs acting
as RBP sponges. The intensities are log-scaled false discovery rats (FDRs) of RBP protein interactions
with genes alternatively spliced in corresponding lncRNA knockdowns. (A) and (B) showcase the
lncRNAs knocked down in respective cell lines (A) K562 and (B) HeLa and the resulting proximal RBP
interaction intensity. The grey values represent null values within the heatmaps. (C) An illustration of
the proposed RBP sponge model, portraying lncRNA–RBP proposed behavior, in the presence and
absence of a lncRNA. C(I) demonstrates when the lncRNA is present, and C(II) demonstrates the
proliferated RBP interactions with mRNAs when the corresponding lncRNA is absent or less abundant.
(D) Shows the extent of RBPs interacting with lncRNA LINC00909 (data from ENCODE), and supports
the lncRNA–RBP sponge model.

The lncRNA–RBP binding-profile-based clustering analysis across both cell lines was not very
informative. However, an interesting behavior was revealed where certain lncRNAs (e.g., LINC00909,
LINC00263, and LINC00910) had many binding events across many RBPs. Therefore, the downstream
alternative splicing caused by the loss of a lncRNA is induced by the absence of an RBP binding
sponge. As highlighted in the model shown in Figure 4C, in cancer cells a lncRNA might bind to many



Genes 2019, 10, 593 12 of 16

RBPs, where its expression level could facilitate extensive RBP interactions. However, in the event of a
lncRNA knockdown or due to the loss of function of a lncRNA, an abundance of RBPs interact with
pre-mRNA targets illustrated in Figure 4C, thereby inducing alternative splicing.

As highlighted in Figure 4A, most lncRNAs in the K562 cell line bound generally to RBPs
like KHSRP, CSTF2T, YBX3, ZNF622, SAFB2, SRSF1, and QKI. LncRNAs LINC00910, LINC00680,
RP11-392P7.6, and LINC00909 showed a very high number of RBP interactions in the K562 cell line
(see Supplementary Figure S4, Figure 4D) and exemplify the proposed RBP sponge binding model.
Other interesting patterns of lncRNA–RBP binding included distinct RBP binding preferences for
lncRNAs from the same family, namely XLOC_042889 and XLOC_038702.

Despite only having 10 RBPs binding within the HeLa cell line proximal AS events, lncRNA
LINC00909′s RBP interactions further reinforced our proposed lncRNA–RBP sponge model.
As illustrated in Figure 4B, RBPs ELAVL1 and HNRNPU were observed to have many null values across
lncRNA knockdown samples and one RBP (HNRNPC) had many significant binding associations
across all lncRNA knockdowns. The parameters of Fisher’s exact test require bound and unbound
frequencies of the genes, which can be observed in the contingency table (Table 1), and thus any
RBP which is not reported to be unbound will yield a null result. Both ELAVL1 and HNRNPU were
manually checked across all lncRNAs in the HeLa cell line, and they only had values for binding across
lncRNAs. Thus, the binding preferences of ELAV1 and HNRNPU were very indifferent and were not
considered as contributors to the RNA-binding protein sponge model; however, the binding specificity
of these RBPs could be revealed as more interaction data are collected across other lncRNAs.

4. Discussion

In this study, we investigated the splicing alterations in lncRNA knockdown experiments,
and depicted a molecular mechanism of RBPs’ influence on alternative splicing. The analysis
of the alternative splicing heat maps showed that transcriptional networks were perturbed in a
cell-type-specific pattern. The observed cell-type-specific pattern of perturbation is in line with
previous profiling of expression in lncRNA knockdowns [4]. Unique to this experiment, alternative
splicing displayed characteristics of being cell-type specific over many lncRNAs, with extreme examples
depicted in the SE experiments.

Based on our RBP binding analysis, lncRNAs display RBP sponge-like behavior and hint at
other methods of inducing alternative splicing. This study also attempted to implicate that lncRNAs
like LINC00909 and LINC00910 act as sponges; however, there could be other means of inducing
splicing. For instance, lncRNAs like RP5-1148A21.3 seem to participate in a different way, which is
depicted in its high involvement in RI events, with only 18 RBPs reported to be bound. Other studies
implicate lncRNAs’ potential interaction with themselves to make silencing structures, crystalline
structures, or molecular machinery [9,38]. Additionally, subnuclear bodies have shown promise in
understanding lncRNAs’ potential in creating other cellular machinery [39], and lncRNAs which bind
to many RBPs could be recruiting those proteins to form a subnuclear body. Groups invested in
mechanisms of post-transcriptional regulation may begin to examine RBP binding data and multiple
sequence alignment of lncRNAs in order to understand intramolecular interactions in subnuclear
bodies and secondary lncRNA structure [40,41]. Hence, further attempts to understand non-coding
RNA structure should account for interactions of lncRNAs and RBPs inside of the nucleus and in the
cytoplasm in order to reveal other means of lncRNAs’ involvement in splicing.

While it is known that lncRNAs bind to microRNAs through a binding sponge mechanism [42],
lncRNA–RBP binding activity is not often described as a sponge titration. By sponging microRNAs,
lncRNAs revealed many significant instances of their influence on post-transcriptional regulation in
a variety of cancers [43,44]. Their influence is controlled through mechanisms like the competitive
endogenous model (ceRNA) [45], which will ultimately affect gene expression based on the binding
activity of microRNAs. Despite established investigations of miRNA and lncRNA interactions,
lncRNA–RBP binding activity is not well explored in the context of post-transcriptional regulation.
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Other non-coding RNAs like circular RNAs have been reported to act as protein-binding sponges [46],
and lncRNAs have been reported to act as binding sponges for the Hur protein [47]. However,
this study identified many RBPs binding to a handful of lncRNAs which acted as binding sponges.
Thereby, a direct relationship between all the alternative splicing and RBP sponge activity is not clear,
but further analysis of RBP and lncRNA binding activity could evaluate the strength of the proposed
sponge model.

5. Conclusions

Alternative splicing induced by lncRNA knockdowns was shown to be cell-type specific within
the human cancer cell lines HeLa, K562, and U87. The downstream cellular functions of 759 genes were
significantly affected by 11,630 skipped exon events and 5895 retained intron events, specifically within
each cell line. LncRNA and RBP interactions were also shown to be cell-type specific. We hypothesize
that several lncRNAs like LINC00909, LINC00910, and LINC00263 are likely to titrate RBPs in cancer,
resulting in the functional disruption of RBPs and their downstream functions. We propose that such
lncRNA sponges can extensively rewire the post-transcriptional gene regulatory networks by altering
the protein–RNA interaction landscape in a cell-type-specific manner. Our study is one of the first to
implicate lncRNAs as an RBP sponge, and it reveals more diverse RBP sponge activity than previously
observed [41].

However, the sponge model was not able to represent all lncRNAs which played a significant role in
splicing. LncRNAs like RP5-1148A21.3, which affected splicing very significantly and had few reported
RBPs bound, could have their structure researched. Investigations of lncRNA secondary structure
and tertiary structure have revealed methods of epigenetic and post-transcriptomic regulation [40,48],
and may further implicate lncRNAs’ influence over alternative splicing. Thereby, we propose
that lncRNAs like RP5-1148A21.3 may interact intramolecularly and alter post-transcriptional gene
regulatory networks.

Reports on the interactions between lncRNAs in unique human cell lines are becoming more
prevalent, and curated databases are emerging to improve the quality of lncRNA annotation [6,49].
As more lncRNA knockdown procedures and RBP binding data are released to the public, pipelines
like the one conducted in this study can be utilized to investigate the mechanisms of lncRNAs in
alternative splicing.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/8/593/s1.
Supplementary Table S1: Table of alignment percentages of control reads to appropriate experimental reads.
“Supplementary materials 1.xlsx”. The table contains the SRR read id from and its respective HISAT2 RNA-Seq
alignment percentages with control sequences and human genome: hg38. The overall alignment had a median of
77%, and a mean of 91%. These initial percentages indicated a good quality of alignment so that the next step
of analysis could continue. Supplementary Table S2: RMATs event summaries for each lncRNA combination.
“Supplementary materials 2.xlsx”. A table that neatly summarizes the alternative splicing predictions from
RMATs. After looking at the quantity of different splicing events and the difficulty of predicting different methods
of splicing, the relative frequencies of alternative splicing events indicated that skipped exon and retained
intron events would be the most statistically sound events to investigate. Supplementary Table S3: Annotated
alternative splicing summaries and correlation analysis of RBP binding activity with frequency of splicing events.
“Supplementary materials 3.xlsx”. The first two tables contain the annotated skipped exon and retained intron
splicing events from each lncRNA respectively. Attempts to correlate the amount of RBP binding to number of
splicing events are contained in the third table, with respective graphs. The plots within the correlation analysis
reveal that there is no linear correlation between bound RBP frequencies and alternative splicing event frequencies.
Supplementary Figure S4: Heatmap of skipped exon events induced by the respective knockdowns of lncRNAs
in three cell lines. “Supplementary materials 4.pdf”. The entire heatmap of skipped exon splicing alternative
splicing across the 39 lncRNAs in their own respective cell line. The columns of the heatmap are lncRNAs which
have been knocked down, and are annotated with the name of their originating cell line. The rows represent the
genes which have been alternatively spliced via skipped exon events. The hierarchical clustering of both rows and
columns reveals cell-type-specific influences of splicing. Supplementary Figure S5: Heatmap of retained intron
events induced by the respective knockdowns of lncRNAs in three cell lines. “Supplementary materials 5.pdf”.
The entire heatmap of retained intron splicing alternative splicing across the 39 lncRNAs in their own respective
cell line. The columns of the heatmap are lncRNAs which have been knocked down, and are annotated with
the name of their originating cell line. The rows represent the genes which have been alternatively spliced via
retained intron events. The hierarchical clustering of both rows and columns reveals cell-type-specific influences
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of splicing. Supplementary Figure S6: Functional enrichment of genes affected by skipped exon splicing in U87.
“Supplementary materials 6.png”. A pie chart of functionally enriched terms affected by skipped exon splicing
due to the knockdown of the lncRNAs within the U87 cell line. The terms annotated to the many genes which
were affected related to tRNA processing formation, formation of the 43S ternary complex, and protein localization
to ciliary transition zone. Supplementary Figure S7: Functional enrichment of genes affected by skipped exon
splicing in K562. “Supplementary materials 7.png”. A pie chart of functionally enriched terms affected by
skipped exon splicing due to the knockdown of the lncRNAs within the K562 cell line. The affected terms
were annotated to many genes relating to microtubular organization, phosphotransferase activity, and the p53
signaling pathway. The found terms are indicative of cancer proliferation. Supplementary Figure S8: Functional
enrichment of genes affected by skipped exon splicing in HeLa. “Supplementary materials 8.png”. A pie chart
of functionally enriched terms affected by skipped exon splicing due to the knockdown of the lncRNAs within
the HeLa cell line. The top terms were annotated to many genes relating to vacuole organization, interstrand
cross-link repair, and monophosphate metabolic processes. Supplementary Figure S9: Functional enrichment of
genes affected by retained intron splicing in K562. “Supplementary materials 9.png”. A pie chart of functionally
enriched terms affected by retained intron splicing due to the knockdown of the lncRNAs within the K562 cell line.
The top terms were annotated to many genes relating to cytosolic large ribosomal subunits and large ribosomal
subunit biogenesis. Other functions include negative regulation of autophagy and nucleic sugar biosynthesis.
Supplementary Figure S10: Functional enrichment of genes affected by retained intron splicing in HeLa from the
knockdown of RP5-1148A21.4. “Supplementary materials 10.png”. A pie chart of functionally enriched terms
affected by retained intron splicing due to the knockdown of RP5-1148A21.4. The top terms annotated to the many
genes which the lncRNA affected were translation, response to endoplasmic reticulum stress, holiday junction
resolvase complex, and RNA splicing. Supplementary Materials 11: Zip file which contains the bedfiles of the
proximal RBP splicing locations which overlapped with RBP binding locations noted in ENCODE “Supplementary
materials 11.zip”. Inside each bedfile, there will be columns from the lncRNA which was overlapped “lncRNA
name|cell line|ENSG id|location relative to splice site” and from RBP locations “RBP name|cell line”. Take note
that there are regions in one cell line that have reported RBP data in other cell lines.
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