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Colorectal cancer (CRC) is one of the leading cancers throughout the world. It represents the third most common cancer and the
fourth in mortality. Most of CRC are sporadic, arise with no known high-penetrant genetic variation and with no previous family
history. The etiology of sporadic CRC is considered to be multifactorial and arises from the interaction of genetic variants of low-
penetrant genes and environmental risk factors. The most common well-studied genetic variation is single nucleotide
polymorphisms (SNPs). SNP arises as a point mutation. If the frequency of the sequence variation reaches 1% or more in the
population, it is referred to as polymorphism, but if it is lower than 1%, the allele is typically considered as a mutation. Lots of
SNPs have been associated with CRC development and progression, for example, genes of TGF-β1 and CHI3L1 pathways. TGF-
β1 is a pleiotropic cytokine with a dual role in cancer development and progression. TGF-β1 mediates its actions through
canonical and noncanonical pathways. The most important negative regulatory protein for TGF-β1 activity is termed SMAD7.
The production of TGF-β can be controlled by another protein called YKL-40. YKL-40 is a glycoprotein with an important role
in cancer initiation and metastasis. YKL-40 is encoded by the CHI3L1 gene. The aim of the present review is to give a brief
introduction of CRC, SNP, and examples of some SNPs that have been documented to be associated with CRC. We also discuss
two important signaling pathways TGF-β1 and CHI3L1 that influence the incidence and progression of CRC.

1. Colorectal Cancer

Colorectal cancer (CRC) has attracted significant attention as
it represents the third most common cancer and fourth can-
cer in mortality in the world after lung, stomach, and liver
cancers [1]. Colorectal cancer accounts for approximately
10% of all new cancer cases, affecting one million people
every year throughout the world [2]. The highest incidence
rates are mainly found in developed countries, whereas the
lowest rates are found in developing countries (Figure 1)
[3]. From the genetic standpoint, CRC can be divided into
three types: sporadic, familial, and hereditary CRC [4] as
shown in Table 1.

The etiology of sporadic CRC is considered to be multi-
factorial and arises from the interaction between allelic vari-
ants in low-penetrant genes and environmental risk factors

[5, 6]. Penetrance is the frequency with which the character-
istics transmitted by a gene appear in individuals possessing
it. A highly penetrant gene almost always expresses its phe-
notypes regardless of other environmental influence, while
low-penetrant genes express its phenotype in the presence
of other genetic and/or environmental influence [7]. The
genetic contribution of high- and low-penetrant genes to
CRC is shown in Figure 2. Risk factors for CRC may be non-
modifiable or modifiable [8] as shown in Table 2.

Vogelstein model, also known as the adenoma-
carcinoma sequence, is a multistep model [19] that describes
the progression of CRC carcinogenesis from a benign ade-
noma to a malignant carcinoma through a series of well-
defined histological stages (Figure 3). The main features of
the model include a mutational activation of oncogenes
and/or the inactivation of tumor suppressor genes. At least

Hindawi
Mediators of Inflammation
Volume 2018, Article ID 9853192, 23 pages
https://doi.org/10.1155/2018/9853192

http://orcid.org/0000-0002-3031-3599
http://orcid.org/0000-0002-8036-1185
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/9853192


four or five genetic alterations must take place for the forma-
tion of malignant tumors. The characteristics of the tumor
are dependent upon the accumulation of multiple genetic
mutations rather than a certain sequence of mutations of
these genes.

Dukes’ colorectal cancer staging and Tumors/Nodes/
Metastases (TNM) are the two classification system that are
used for the staging of CRC (Table 3). There has been a grad-
ual move from Dukes’ to the TNM classification system as
TNM was reported to give a more accurate independent
description of the primary tumors and its spread [20].

2. Prevention of Colorectal Cancer

Several approaches have been developed to reduce CRC
incidence and mortality. Prevention includes primary

and secondary strategies. Primary strategy includes die-
tary changes, increasing physical activity, and the use of
nonsteroidal anti-inflammatory drugs (NSAIDs), while the
secondary strategy is based on screening tests (Table 4).

Interestingly, dietary factors are responsible for 70% to
90% of CRC. The relatively low CRC rates in the Mediterra-
nean area compared with most Western countries are mostly
because the traditional Mediterranean diet is characterized
by high consumption of foods of plant origin, relatively
low consumption of red meat, and high consumption of
olive oil [32]. Therefore, diet modification could potentially
help to reduce the incidence of CRC [33, 34]. Examples of
some dietary components that lower CRC risk are shown
in Table 5.

Early diagnosis of CRC is important to improve out-
comes. Fecal occult blood testing (FOBT) or fecal immuno-
chemical test (FIT) is routinely used prior to colonoscopy,
and only patients with a positive test result are referred
to a specialist. Although these assays are useful screening
tools, patient compliance with these stool-based assays
tends to be low. Serum-based assays for the early detection
of CRC are highly attractive, as they could be integrated
into any regular health checkup without the need for addi-
tional stool sampling, thereby increasing acceptance among
patients [29].

3. Gene Polymorphism

Polymorphism is the occurrence of two or more clearly dif-
ferent morphs or forms of a species in the population. Poly
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Figure 1: Age-standardized CRC incidence rates by sex and world area, GLOBOCAN 2012.

Table 1: Genetic classification of CRC.

Sporadic CRC Familial CRC Hereditary CRC

Occurs entirely by
chance throughout
life without any
previous family
history

Occurs when there
are two or more
family members
with a history

of CRC

When people
inherit a high
penetrant gene
mutation from
either of their

parents

No specific inherited
gene mutation has
been identified to

explain the cancer yet.

~60%–80% ~15%–30% ~5%
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means many; morphmeans form [48]. The colored flowers of
mustard, butterflies, and human ABO blood group system
are obvious examples of polymorphisms [49, 50].

Genetic polymorphisms are different forms of the DNA
sequence, which may or may not affect biological function
depending on its exact nature. Polymorphism arises as a
result of mutation. If the frequency of a specific sequence
variant reaches 1% or more in the population, it is referred
to as polymorphism, and if it is lower than 1%, the allele is
typically regarded as mutation [51]. Molecular polymor-
phism, first demonstrated in Drosophila pseudoobscura,
stimulated molecular studies of many other organisms and

led to vigorous theoretical debate about the significance of
the observed polymorphisms [52, 53].

Single nucleotide polymorphism (SNP) is a variation in a
single nucleotide that occurs at a specific position in the
genome. Single nucleotide polymorphisms are the most
abundant type of genetic variation in the human genome,
accounting for more than 90% of all differences between
individuals [54]. Single nucleotide may be changed (substitu-
tion), removed (deletion), or added (insertion) to a polynu-
cleotide sequence [54].

Single nucleotide polymorphisms are also thought to be
the keys in realizing the concept of personalized medicine

Low penetrance genes

Familial CRCSporadic CRC

High penetrance genes

TGF�훽R2, AXIN2 alleles in familial CRC 
LKB, SMAD4 alleles in hamartomatous polyposis 
APC alleles in familial adenomatous polyposis

(i)
(ii)

(iii)

TGF�훽R1
HRAS1
BLM ASH
APC⁎1130K

(i)
(ii)

(iii)
(iv)

Figure 2: Genetic contribution to CRC.

Table 2: Risk factors of CRC.

Nonmodifiable

(i) Age: the incidence of CRC diagnosis increases after the age of 40 and rises sharply after age 50, but there is an increase in the
young-onset rate due to the adoption of a Westernized lifestyle and diet [9]

(ii) Family history of CRC (especially a first-degree relative diagnosed at age 49 or younger) [10]
(iii) Hereditary predisposition

(a) Hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome)
(b) Familial adenomatous polyposis (FAP) [4, 9]

(iv) Inflammatory bowel disease (IBD): chronic inflammation is assumed to underlie the cause of colitis-associated cancer, which is
associated with oxidative stress-induced DNA damage resulting in the activation of procarcinogenic genes and silencing of
tumor-suppressor pathways [11]

(v) Adenomatous polyp: polyps are abnormal growths of the large intestine lining that protrude into the intestinal lumen.
Polyps greater than one centimeter in diameter are associated with a greater risk of cancer [12]

Modifiable

(i) Diets: Western diet rich in red meat, refined grains, desserts, and low in fiber was reported to be associated with increased
CRC risk [10, 13, 14]

(ii) Cigarette smoking: carcinogens as aromatic amines, nitrosamines, and polycyclic aromatic hydrocarbons in tobacco smoke
produce metabolites that can react with DNA or other macromolecules to form DNA adducts inducing genetic mutations [15]

(iii) Obesity: obese women have higher risk of CRC than obese men due to higher abdominal visceral adipose tissue volume [16, 17]
(iv) High alcohol consumption (>2 glasses per day): ethanol increases the activation of various procarcinogens present in tobacco

smoke, diets, and industrial chemicals to carcinogens through the induction of CYP2E1 [18]
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as it can affect how humans develop diseases and respond to
pathogens, chemicals, drugs, vaccines, and other agents. Sin-
gle nucleotide polymorphisms underlie the differences in the
susceptibility to a wide range of human diseases, for example,
a single base mutation in the apolipoprotein E gene is associ-
ated with a higher risk for Alzheimer’s disease. The severity
of illness and the way the body responds to treatments are
also manifestations of genetic variations [55, 56].

According to their location in the genome, SNPs are
classified into cSNP in the coding region (exons), rSNP
in the regulatory region, and iSNP located in the intronic
region [54].

Polymorphisms in the coding region are either synony-
mous or nonsynonymous (Figure 4). Synonymous polymor-
phisms do not result in a change of amino acid in the protein
but still can affect its function in other ways. Silent mutation
in the multidrug resistance gene 1, which codes for a cellular
membrane pump that expels drugs from the cell, is an exam-
ple of synonymous polymorphism. It can slow down transla-
tion and allow unusual folding of the peptide chain, causing
the mutant pump to be less functional [57, 58].

Nonsynonymous polymorphisms, on the other hand,
can change the amino acid sequence of the protein and

subclassified into missense and nonsense. Missense polymor-
phism results in different amino acids such as single base
change G>T in LMNA gene that results in the replacement
of the arginine by the leucine at the protein level, which man-
ifests progeria syndrome [59]. Nonsense polymorphism
results in a premature stop codon and usually nonfunctional
protein product such as that manifested in cystic fibrosis
caused by mutation in the cystic fibrosis transmembrane
conductance regulator gene [60].

Promoter polymorphism can cause variations in gene
expression as it affects the DNA binding site and alters the
affinity of the regulatory protein while intronic region poly-
morphism may affect gene splicing and messenger RNA deg-
radation [61, 62].

Genotyping technologies typically involve the genera-
tion of allele-specific products for SNPs of interest followed
by their detection for genotype determination. All current
genotyping technologies with only a few exceptions require
the polymerase chain reaction (PCR) amplification step. In
most technologies, PCR amplification of a desired SNP-
containing region is performed initially to introduce speci-
ficity and increase the number of molecules for detection
following allelic discrimination [63]. Enzymatic cleavage,
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Figure 3: The colorectal adenoma-carcinoma sequence (Vogelstein model). Progression from normal epithelium through adenoma to CRC is
characterized by accumulated abnormalities of multiple genes.

Table 3: Staging and survival of CRC.

Dukes’ staging TNM staging Description Survival (%)

Stage 0 Carcinoma in situ

A Stage I
No nodal involvement, no metastasis, tumor invades submucosa

(T1, N0, M0), tumor invades muscularis (T2, N0, M0)
90–100%

B Stage II
No nodal involvement, no metastasis, tumor invades subserosa

(T3, N0, M0), invade other organ (T4, N0, M0)
75–85%

C Stage III Regional lymph nodes involved (any T, N1, M0) 30–40%

D Stage IV Distant metastasis (any T, any N, M1) <5%
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primer extension, hybridization, and ligation are four pop-
ular methods used for allelic discrimination (Table 6).

4. Genome-Wide Association Study and
Colorectal Cancer

Genome-wide association study (GWAS), also known as
whole genome association study, is defined as an examina-
tion of many common SNPs in different individuals to see
if any SNP is associated with a disease. Genome-wide associ-
ation study compares the DNA of participants having a dis-
ease with similar people without the disease. The ultimate
goal is to determine genetic risk factors that can be used to
make predictions about who is at risk for a disease and to
identify their role in disease development for developing
new prevention and treatment strategies [68].

The availability of chip-based microarray technology
that assay hundreds and thousands of SNPs made genome-
wide association studies easy to be performed (Table 7).
Genome-wide association study identifies a specific location,
not complete genes. Many SNPs identified in GWAS are
near a protein-coding gene or are within genes that were
not previously believed to associate with the disease. So,
researchers use data from this type of study to pinpoint
genes that may contribute to a person’s risk of developing
a certain disease [69].

Genome-wide association study is built on the expanding
knowledge of the relationships among SNPs generated by the
international HapMap project. The HapMap project is an
international scientific effort to identify common SNPs
among people from different ethnic populations. When sev-
eral SNPs cluster together on a chromosome, they are inher-
ited as a block known as a haplotype. The HapMap describes
haplotypes, including their locations in the genome, and how
common they are present in different populations through-
out the world [70].

Genome-wide association study is an important tool for
discovering genetic variants influencing a disease, but it has
important limitations, including their potential for false-
positive and false-negative results and for biases related to

Table 4: Primary and secondary prevention strategies of CRC.

Primary

(i) Diet. A diet high in vegetables, fruits, dairy products,
olive oil, fish, and whole grains and low in red and processed
meats has been shown to lower CRC risk [21–23].

(ii) Physical Activity. Physically active individuals have 24%
lower risk of CRC development than those who have a
sedentary lifestyle.
Physical activity promotes the production of interleukin-6
(IL-6) and decreases the expression of inducible nitric oxide
synthase (iNOS) and tumor necrosis factor-alpha (TNF-α)
in plasma and colon, leading to enhanced immunity [24, 25].

(iii) NSAIDs. They reduce the risk of CRC by blocking
cyclooxygenase (COX) enzymes, so inhibit prostaglandin
production, which are known to promote tumor
angiogenesis and cell proliferation [26].

Secondary

(i) Fecal Tests. Fecal occult blood test (FOBT) and fecal
immunochemical test (FIT) detect hidden blood in the stool,
while fecal DNA test detects DNA in the stool [27–29].

(ii) Flexible Sigmoidoscopy. It is performed using an endoscope
that allows the examination of the surface up to 60 cm from the
anal verge (rectum, sigmoid colon, and part of the descending
colon). It is done after colon lavage using enema or
administering laxatives without the need of sedation [30].

(iii) Colonoscopy. It is performed using an endoscope, which allows
an examination of the entire colon surface. It must be done
under intravenous sedation and requires being on a low-
residue diet, colon lavage using laxatives, and drinking plenty
of water the day before the test [31].

Table 5: Examples of some dietary components that decrease risk of
CRC.

Fiber

(i) A high-fiber diet has a protective effect from CRC as
it decreases transit time through the gastrointestinal
tract, dilutes colonic contents, and enhances bacterial
fermentation. This can increase the production of
short-chain fatty acids that interfere with numerous
regulators of the cell cycle, proliferation, and
apoptosis such as β-catenin, p53, and caspase
3 genes [35, 36]

(ii) Corn, beans, avocado, brown rice, lentils, pear,
artichoke, carrots, oatmeal, broccoli, and apples
are examples of diet rich in fiber [37]

Fish oil

(i) Fish oil rich in omega-3 fatty acids may inhibit the
promotion and progression of cancer through
suppression of arachidonic acid-derived eicosanoid
biosynthesis, which results in altered immune
response to cancer and modulation of inflammation,
cell proliferation, apoptosis, metastasis, and
angiogenesis [38]

(ii) It also influences transcription factor activity, gene
expression, and signal transduction, which leads to
changes in metabolism, cell growth, and
differentiation [38–40]

Olive oil

(i) Olive oil reduces deoxycholic acid in the human
colon and rectum

(ii) Deoxycholic acid was found to reduce diamine
oxidase, a main enzyme for the metabolism of
ingested histamine and control of mucosal
proliferation in the ileal and the colonic mucosa [41]

Folate

(i) Folate acts as donors of methyl groups in the
biosynthesis of nucleotide precursors used for
DNA synthesis and methylation of DNA, RNA,
and protein and participates in the maintenance
of genomic stability [42, 43]

(ii) Spinach, broccoli, strawberries, raspberries, beans,
peas, lettuce, lentils, and celery are examples of diet
rich in folate [37]

Calcium

(i) Calcium can suppress epithelial cell proliferation
in the colon by binding to bile acids and ionized
fatty acids [44]

(ii) Calcium can act directly by reducing proliferation,
stimulating differentiation, and inducing apoptosis
via upregulation of p21 and Bcl-2 in the colonic
mucosa [44–47]
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selection of study participants and genotyping errors [71]. The
gold standard for validation of any GWAS is replication in an
additional independent sample. Replication studies are per-
formed in an independent set of data drawn from the same

population as the GWAS, in an attempt to confirm the effect
in the GWAS target population. Once an effect is confirmed
in the target population, other populations may be sampled
to determine if the SNP has an ethnic-specific effect [72].

A A TA A C GA T G C A

U U UU UU C C GGA A

Phe Tyr Ala Arg

Normal DNA

A A TG A C GA T G C A

U U UU UC C C GGA A

Phe Tyr Ala Arg

Silent mutation

A A TA A C CA T G C A

U U UU UU G C GGA A

Phe Tyr Gly Arg

Missense mutation

A A TA A C GT T G C A

U U AU UU C C GGA A

Nonsense mutation

Phe Stop
codon

A A

T
T

A A C GA T G C A

U U UU UU C C GG A

Phe Lue His Val

Frameshift deletion

A A TA A C GA T G C A

U U UU UU C C GGA A

Insertion

Frameshift insertion

Phe IIE Cys Thy

T

A

Figure 4: Genetic polymorphism in the coding region (http://academic.pgcc.edu/).

Table 6: Methods of allelic discrimination used in SNP genotyping [63].

Enzymatic cleavage

Enzymatic cleavage is based on the ability of certain classes of enzymes to cleave DNA by recognition of
specific sequences and structures. Such enzymes can be used for discrimination between alleles when SNP sites
are located in an enzyme recognition sequence and allelic differences affect recognition. For example, restriction
fragment length polymorphism (RFLP) is based on genotyping a SNP located in a restriction enzyme site using
PCR product containing the SNP that is incubated with corresponding restriction enzyme. The reaction product

is run on a gel, and SNP genotype is easily determined from the product sizes [64].

Primer extension

In a typical primer extension reaction, a primer is designed to anneal with its 3\ end adjacent to a SNP site and
extended with nucleotides by polymerase enzyme. The identity of the extended base is determined either by
fluorescence or mass to reveal SNP genotype, for example, the PinPoint assay, MassEXTEND tm, SPC-SBE,
and GOODassay primer extension-based methods, where SNP-specific primers are simultaneously extended

with various nucleotides using PCR products as a template [65].

Hybridization

Hybridization approaches use differences in the thermal stability of double-stranded DNA to distinguish
between perfectly matched and mismatched target-probe. For example, the TaqMan® genotyping assay combines

hybridization and 5\ nuclease activity of polymerase coupled with fluorescence detection. The allele-specific
probes carry a fluorescent dye at one end (reporter) and a nonfluorescent dye at the other end (quencher). The

intact probes show no fluorescence owing to the close proximity between the reporter and quencher dyes. During
PCR primer extension, the enzyme only cleaves the hybridized probe that is perfectly matched, freeing the reporter
dye from the quencher. The reporter dye generates a fluorescent signal, whereas the mismatched probe remains

intact and shows no fluorescence [66].

Ligation

Ligation approach employs specificity of ligase enzymes. When two oligonucleotides hybridize to single-stranded
template DNA with perfect complementarity, adjacent to each other, ligase enzymes join them to form a single
oligonucleotide. Three oligonucleotide probes are used in traditional ligation assays, 2 of which are allele-specific
and bind to the template at the SNP site. The third probe is common and binds to the template adjacent to the
SNP immediately next to the allele-specific probe. For example, combinatorial fluorescence energy transfer tags
are composed of fluorescent dyes that can transfer energy when they are in close proximity. Tags with different
fluorescence signatures can be created using a limited number of dyes by varying the number of dyes used and

spacing between the dyes [67].
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It has been recognized that SNPs play an important role
in conferring risk of CRC. Genome-wide association studies
have reported multiple risk loci associated with risk CRC,
some of which are involved in the transforming growth fac-
tor-β (TGF-β) signaling pathway [73]. For example, SMAD7
rs4939827 was found to be associated with CRC in two
GWASs [74, 75]. The association of SMAD7 rs4939827 with
CRC was confirmed by other replication studies [76, 77]. A
summary of other SNPs studied as risk factors for CRC is
shown in Table 8.

5. Transforming Growth Factor-β Signaling and
Its Regulatory Smad7

Mothers against decapentaplegic homolog 7 (Smad7) is a
key inhibitor of TGF-β [94, 95]. Smad7 was named after
mothers against decapentaplegic (mad), an intermediate of
the decapentaplegic signaling pathway in Drosophila mela-
nogaster and sma-gene in Caenorhabditis elegans that has
mutant phenotype similar to that observed for the TGF-β-
like receptor gene [96]. Regulation of TGF-β by Smad7 is
crucial to maintain gastrointestinal homeostasis [97]. Smad7
overexpression is commonly found in patients with chronic
inflammatory conditions of the colon [98] and may be
associated with prognosis in patients with CRC [99]. Loss
of Smad/TGF-β signaling interrupts the principal role of
TGF-β as a growth inhibitor, allowing unchecked cellular
proliferation [100].

In the early 1980s, Roberts and his colleagues isolated
two fractions that could induce growth of normal fibroblasts
from murine sarcoma cell extracts and were named TGFα
and TGF-β [101, 102]. Transforming growth factor-β is a
prototype of a large family of cytokines that includes the

TGF-βs, activins, inhibins, and bone morphogenetic proteins
(BMPs) [103].

In mammals, TGF-β has 3 isoforms (TGF-β1, TGF-
β2, and TGF-β3), with similar biological properties. The
TGF-β isoforms are encoded from genes located on different
chromosomes. The TGF-β1 gene is located in chromosome
19q13.1, while TGF-β2 and TGF-β3 genes are located in
chromosomes 1q4.1 and 14q24.3, respectively [104].

The isoforms of TGF-β1, TGF-β2, and TGF-β3 are
encoded as large precursor, which undergo proteolytic diges-
tion by the endopeptidase furin, yielding two products that
assemble into dimers. One is latency-associated peptide
(LAP), a dimer from the N-terminal region. The other is
mature TGF-β, a dimer from the C-terminal portion. A com-
mon feature of TGF-β is that its N-terminal portion (LAP)
remains noncovalently associated with the mature TGF-β
forming a small latent complex [105, 106]. The small latent
complex is associated with a large protein termed latent
TGF-β binding protein (LTBP) via disulfide bonds forming
large latent complex for targeted export to the extracellular
matrix (ECM) [107, 108]. For TGF-β to bind its receptors,
the latent complex must be removed so that the receptor-
binding site in TGF-β is not masked by LAP. Latent TGF-β
is cleaved by several factors, including proteases, throm-
bospondin, reactive oxygen species (ROS), and integrins
(Figure 5) [109, 110].

Transforming growth factor-β is a pleiotropic cytokine
that has a dual function in cancer development, where it acts
as a tumor suppressor in the early stages and a tumor pro-
moter in the late stages [111]. The main actions of TGF-β
are summarized in Table 9.

The active TGF-β binds to transforming growth factor-β
receptor 2 (TGF-βR2), a serine/threonine kinase receptor,
leading to the recruitment and phosphorylation of the

Table 7: Some of the published GWASs on CRC (100).

Reference
SNP (rs)

Gene or region Population
Sample size
for stage

Sample size for
subsequent stages

Genotyping platform
(Nb. of SNPs)

Study
reference

rs4939827 18q21 SMAD7
First stage: UK 940 cases/965

controls
7473 cases/5984

controls
Affymetrix (550,163) (101)

Second stage: UK

rs6983267 8q24
First stage: UK 930 cases/960

controls
7334 cases/5246

controls
Illumina (547,647) (102)

Second stage: UK

rs10505477 8q24 First stage: Canada
1257 cases/1336

controls
4024 cases/4042

controls
Illumina and

Affymetrix (99,632)
(103)

rs719725 9p24
Other stages: Canada,
US, and Scotland

rs4779584 15q13 CRAC1
First stage: UK 730 cases/960

controls
4500 cases/3860

controls
Illumina (547,647) (104)

Second stage: UK

rs4939827 18q21 SMAD7 First stage: Scotland

98 cases/1002
controls

16476 cases/15351
controls

Illumina (541,628) (105)
rs7014346 8q24 Second stage and

replication: Canada,
UK, Israel, Japan,

and EU
rs3802842 11q23

rs4444235 14q22.2 BMP4 First stage: UK

6780 cases/6843
controls

13406 cases/14012
controls

Multiple (38,710) (106)
rs9929218 16q22.1 CDH1

Replication: EU, Canadars10411210 19q13 RHPN2

rs961253 20p12.3
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Table 8: Gene polymorphisms associated with CRC.

Gene Reference SNP (rs) Effect on CRC Reference

Matrix metalloproteinases-9
(MMP 9)

rs34016235

A promoter polymorphism due to a C to T substitution results in the loss
of the binding site of a nuclear protein to this region of the MMP 9 gene
promoter. The polymorphism is associated with lymph node metastasis

of CRC.

[78]

COX-2 rs20417
The C allele has lower promoter activity than the G allele, and GG
genotype in smokers is associated with a significant increase in the

risk of CRC compared to nonsmokers.
[79]

Vitamin D receptor rs1544410
Polymorphism of the vitamin D receptor gene to be associated with an

increased risk of colon cancer.
[80]

Bone morphogenetic
protein 4 (BMP 4)

rs4444235
The rs4444235 increases risk of CRC development through its cis-acting

regulatory influence on BMP4 expression.
[81]

Phospholipase A2 rs9657930
Polymorphisms in the phospholipase A2 gene is associated with the risk

of the rectal cancer.
[82]

Colorectal adenoma
and carcinoma 1

rs4779584
The rs4779584 polymorphism is associated with increased risk of

CRC among Caucasian not Asian populations.
[83]

Eukaryotic translation
initiation factor 3

rs16892766
The rs16892766 polymorphism is associated with increased risk of

CRC but not adenoma among Caucasian.
[84]

Cadherin-1 rs9929218
The minor allele of rs9929218 has reduced E-cadherin expression

and resulted in worsening the survival of CRC patients.
[85]

FAS rs2234767
The rs2234767 contributes to an increased risk of CRC by altering

recruitment of SP1/STAT1 complex to the FAS promoter for
transcriptional activation.

[86]

Maternally expressed gene 3 rs7158663
The rs7158663 changes the folding structures of maternally expressed

gene 3; therefore, it contributes to genetic susceptibility of CRC.
[87]

Fc-g receptor gene rs1801274
The rs1801274 changes the amino acid from histidine (H) to arginine.
CRC patients with Fc-g receptor H/H genotype have better survival.

[88]

SPSB2 gene rs11064437
The rs11064437 contributes to an increased risk of CRC by disrupting

the splicing and introduction of a transcriptional isoform with a
shortened untranslated region of SPSB2 gene.

[89]

TPP1 rs149418249
Prevents TPP1-TIN2 interaction, shortening the telomere length,

and as a consequence, enhances cell proliferation
[90]

SLC22A5 rs27437
The G allele decreases the expression of SLC22A5 via influencing the

TF-binding upstream of the gene, leading to higher CRC risk.
[91]

KBTBD11 rs11777210
C allele allows binding of MYC, a potent oncogene, preventing the

expression of KBTBD11, a potent tumor suppressor.
[92]

miR-17-92 cluster rs9588884
The G allele lowers the CRC risk by decreasing transcriptional

activity and consequently lowering levels of miR-20a.
[93]

Pre-proTGF-�훽 

Small latent
complex

Large latent
complex

Cell

Extracellular matrix

Large latent
complex 

Protease

Active TGF-�훽 
TGF-�훽 receptor
complex 

Figure 5: The sequential steps in the synthesis and secretion of active TGF-β.
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TGF-βR1 (Figure 6). The activated TGF-βR1 interacts with
and phosphorylates a number of proteins, thereby activating
multiple downstream signaling pathways in either a Smad-
dependent (canonical) or Smad-independent (noncanonical)
signaling pathway (Figure 6) [96].

In the canonical pathway, TGF-βR1 propagates the
signal through a family of intracellular signal mediators
known as Smads. To date, eight mammalian Smad proteins
have been characterized and are grouped into three func-
tional classes: receptor-activated Smads (R-Smads) includ-
ing Smad1, Smad2, Smad3, Smad5, and Smad8, common

mediator Smad (Smad4), and inhibitory Smads (I-Smads)
including Smad6 and Smad7. Receptor-activated Smads are
retained in the cytoplasm by binding to SARA (Smad
anchor for receptor activation). Receptor-activated Smads
are released from SARA when they are phosphorylated
by the activated TGF-βR1 [130, 131].

Once R-Smads (Smad2/3) are activated through phos-
phorylation by TGF-βR1, they form an oligomeric complex
with Smad4 and translocate into the nucleus, where it modu-
lates the transcription of specific genes. Ability of Smads to
target a particular gene and the decision to activate or repress

Table 9: The role of TGF-β in various cell processes.

Cytostasis

(i) TGF-β can activate cytostatic gene responses at any point in the cell cycle phases G1, S, or G2 [112]
(ii) TGF-β induces activation of the cyclin-dependent kinase (CDK) inhibitors [113–115] and

repression of the growth-promoting transcription factors c-MYC and inhibitors of differentiation
(ID1, ID2, and ID3) [116].

Apoptosis

TGF-β induces apoptosis through
(i) upregulation of SH2-domain-containing inositol-5-phosphatase expression, which inhibits signaling

via the survival protein kinase AKT [117]
(ii) induction of TGF-β-inducible early-response gene, which induces the generation of ROS and the

loss of the mitochondrial membrane potential preceding the apoptotic death [118, 119]
(iii) induction of death-associated protein kinase [117]

Immunity

For immune suppression, TGF-β plays a critical role through
(i) blocking antigen-presenting cells such as dendritic cells, which acquire the ability to effectively

stimulate T cells during an immune response [120]
(ii) decreasing the activity of natural killer cells and neutrophils [121]

Angiogenesis

(i) TGF-β induces the expression of matrix metalloproteinases (MMPs) on both endothelial cells
and tumor cells, allowing the release of the endothelial cells from the basement membrane [122]

(ii) TGF-β can also induce the expression of angiogenic factors such as vascular endothelial growth
factor (VEGF) and connective-tissue growth factor (CTGF) in epithelial cells and fibroblasts [123, 124]

Epithelial-mesenchymal
transition (EMT)

The migratory ability of epithelial cells relies on loss of cell–cell contacts, a process that is commonly
referred to as the EMT. It is marked by the loss of E-cadherin and the expression of mesenchymal
proteins such as vimentin and N-cadherin [125].
(i) TGF-β was reported to destabilize the E-cadherin adhesion complex resulting in its loss in

pancreatic cancer [126]. Alternatively, in epithelial cell lines, TGF-β can deacetylate the E-cadherin
promoter, thus repressing its transcription [127]

(ii) TGF-β was found to upregulate vimentin in prostate cancer [128]
(iii) TGF-β upregulates MMPs to promote invasion through proteolytic degradation and remodeling

of the ECM [129]

TGF-�훽

Canonical
pathway Non-canonical

pathway

TGF-�훽R1TGF-�훽R2

SMAD2/3
SMAD4

RhoA

GSK3B Snail

P38

Figure 6: Canonical and noncanonical pathways of TGF-β.
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gene transcription are determined by many cofactors that
affect the Smad complex [130].

In the noncanonical pathway, TGF-β activates other
non-Smad signaling pathways (Table 10). Some of these
pathways can regulate Smad activation, but others might
induce responses unrelated to Smad [132].

Transforming growth factor-β is strongly implicated in
cancer as genetic alterations of some common components
of TGF-β pathway (Table 11) that have been identified in
human tumors [141].

6. Inhibitory Smad (I-Smad, Smad7)

Mothers against decapentaplegic homolog 7 (Smad7)
belongs to the third type of Smads, the I-Smads that also
include Smad6. The structure of the Smads is characterized
by two conserved regions known as the amino terminal (N-
terminal) Mad homology domain-1 (MH1) and C-terminal
Mad homology domain-2 (MH2), which are joined by a
short poorly conserved linker region. The MH1 domain is
highly conserved among the R-Smads and the Co-Smad,
whereas the I-Smads lack a MH1. The MH2 domain is con-
served among all of the Smad proteins but I-Smads lack SXSS

motif, which is needed for phosphorylation following TGF-
βR1 activation (Figure 7). Thus, I-Smads are not phosphory-
lated upon binding of TGF-β to its receptors. The L3 loop in
the MH2 domain of the R-Smads is a specific binding site for
the TGF-βR1 [95, 156].

Smad7 antagonizes TGF-β signaling through multiple
mechanisms, both in the cytoplasm and the nucleus
(Figure 8). Smad7 antagonizes TGF-β in the cytoplasm
through the formation of a stable complex with TGF-βR1,

Table 10: TGF-β-induced non-Smad signaling pathways.

c-Jun N-terminal
kinases (JNK)/p38
activation

(i) TGF-β can rapidly activate JNK and
p38 through MAPK kinases (MKK4,
MKK 3/6) in various cell lines [133, 134].
Activation of JNK/P38 plays a role in
TGF-β-induced apoptosis and in TGF-β-
induced EMT [135].

Extracellular
signal-regulated
kinase (ERK)
activation

(i) TGF-β was found to activate the
mitogen-
activated protein kinase (MAPK)/
extracellular signal-regulated kinase
(ERK) pathway which are important for
TGF-β mediated EMT [125, 136].

Phosphoinositide
3-kinase
(PI3-K)/AKT
activation

(i) TGF-β was reported to rapidly activate
phosphoinositide 3-kinase (PI3-K) as
indicated by the phosphorylation of its
downstream effector Akt [137]

(ii) Although the PI3-K/Akt pathway is a
non-Smad pathway contributing to
TGF-β-induced EMT, it can antagonize
Smad-induced apoptosis and growth
inhibition [138]

Rho-like
GTPases

(i) The Rho-like GTPases, such as Ras
homolog gene family, member A (RhoA)
plays an important role in controlling
dynamic cytoskeletal organization, cell
motility, and gene expression and is a key
player in TGF-β-induced EMT [139]

(ii) TGF-β regulates RhoA activity in two
different modes as it induces a rapid
activation of RhoA during the early
phase of stimulation and then
downregulates the level of RhoA protein
at later stages, both of these modes of
regulation appear to be essential for
TGF-β-induced EMT [140]

Table 11: Alterations of some components of TGF-β pathway in
human tumors.

TGF-βR2

(i) The TGF-βR2 gene has been mapped to
chromosome 3p, a chromosome in which
mutation was observed in
small cell lung carcinoma (SCLC), non-
small-cell lung carcinoma (NSCLC),
CRCs, and ovarian and breast
cancers [142–144]

(ii) Besides mutations in the coding region of
TGF-βR2, loss of expression of TGF-βR2
in NSCLCs, bladder cancer, and breast
cancer were reported [145–147]

TGF-βR1

(i) The TGF-βR1 gene has been mapped to
chromosome 9q

(ii) Mutation in TGF-β gene was reported in
ovarian cancer, head and neck squamous
cell carcinomas (HNSCC),
and breast cancer [148–150]

(iii) Homozygous deletion of TGF-βR1 was
also identified in pancreatic and biliary
adenocarcinomas [151]

SMAD3

(i) The gene for SMAD3 is located in
chromosome 15q21-q22

(ii) The rate of mutation in the SMAD3 gene is
rare, and there are only few examples of
such defects in Smad3 expression that was
found in some gastric cancer and leukemia
[152, 153]

SMAD2/SMAD4
and SMAD7

(i) Chromosome 18q has genes encodes for
SMAD2, SMAD4, and SMAD7

(ii) Mutation in chromosome 18q was found
in about 30% of neuroblastoma, breast,
prostate, and cervical cancers
and even more frequently in HNSCC
(40%), NSCLC (56%), colon cancer (60%),
gastric cancer (61%), and 90%
of pancreatic tumors [154, 155]

MH1 Linker MH2 L3 SSXS

MH1 Linker MH2

Linker MH2

R-SMAD

Co-SMAD

I-SMAD

Figure 7: Gene constructions of SMADs.
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leading to inhibition of R-Smad phosphorylation. Smad7 can
recruit E3 ubiquitin ligases that induce the degradation of
activated TGF-βR1 complexes [156, 157]. Also, Smad7 forms
a heteromeric complex with R-Smads through the MH2
domain and hence interferes with R-Smad (Smad2/3)-Smad4
oligomerization in a competitive manner. Additionally,
Smad7 can bind to DNA disrupting the formation of func-
tional Smad-DNA complexes [158, 159].

Inhibitory Smads can mediate the cross talking of TGF-β
with other signaling pathways. Various extracellular stimuli
such as interferon-γ (IFN-γ) can induce Smad7 expression
to exert opposite effects on diverse cellular functions modu-
lated by TGF-β [161]. In addition, Smad7 was found to be
a key regulator of Wnt/β-catenin pathway that is responsible
for the TGF-β-induced apoptosis and survival in various cell
types [162].

There is a controversy regarding the role of Smad7 in
tumor development depending on the type of the tumor.

TGF-�훽
TGF-�훽 RII TGF-�훽 R1

P

P

P

Smad7

R-Smad
Smad4
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Nucleus

⁎

⁎⁎

1

2 3
4

5
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7

⁎

Blockade of R-Smad phosphorylation 
Induction of TGF-�훽 R1 degradation 

(i)
(ii)

Disruption of the formation of
functional R-Smad/Smad4 complexes
Inhibition of the binding of R-Smad/Smad4
complexes to DNA

⁎⁎

(i)

(ii)

Figure 8: Smad7 antagonizes TGF-β signaling in the cytoplasm and the nucleus, respectively [160].

Table 12: Association studies of SNPs in SMAD7 gene and CRC.

Population
Reference
SNP (rs)

Location Association Reference

African
American and
Caucasian

rs4939827 Intron 3
In women:

yes [166]
rs4464148 Intron 3 Yes

Caucasian

rs12953717 Intron 3 Yes

[167]rs4939827 Intron 3 Yes

rs4464148 Intron 3 No

Swedish rs4939827 Intron 3 Yes [168]

European
rs4464148 Intron 3 Yes

[169]
rs4939827 Intron 3 No

Chinese

rs4939827 Intron 3 No

[170]rs12953717 Intron 3 Yes

rs4464148 Intron 3 No

African
American

rs4939827 Intron 3 Yes [171]

Chinese rs4939827 Intron 3 Yes [76]

Romanian rs4939827 Intron 3

CRC vs
control: no

[172]Rectal vs
colon

cancer: yes

Caucasian rs4939827 Intron 3 Yes [173]

Croatian rs4939827 Intron 3 Yes [77]

Italian rs4939827 Intron 3 Yes [174]

Korean rs4939827 Intron 3 Yes [175]

Spanish rs4939827 Intron 3 Yes [176]

French
rs4939827 Intron 3 Yes

[177]
rs58920878 Intron 3 Yes

MCP 1
ERK 1
IL-6

P13K
MAPK
VEGF

IL-1B
EGFR

SPARK/JNK
P-38

TGF-�훽
NF-KB
IL-8

Figure 9: Several synergistic and antagonistic factors modulate the
regulatory functions of YKL-40. EGFR: epidermal growth factor
receptor; SAPK: stress-activated protein kinases; MCP-1: monocyte
chemoattractant protein-1.
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High Smad7 expression was reported to be correlated with
the clinical prognosis of patients with colorectal, pancreatic,
liver, and prostate cancer. In contrast, a protective role of
high Smad7 expression was reported in other tumors [163].
Boulay et al. [164] found that CRC patients with deletion of
Smad7 had a favorable clinical outcome compared with
patients with Smad7 expression. Additionally, Smad7 was
found to act as a scaffold protein to facilitate TGF-β-induced
activation of p38 and subsequent apoptosis in prostate cancer
cells [162].

Even in the same tumor, the function of Smad7 can
switch from tumor suppressive to tumor promoting depend-
ing on the tumor stage (i.e., early versus advanced). These
apparently contradictory functions are in harmony with
the opposite roles of TGF-β signaling pathway in the early
versus advanced tumor stages and the interaction of Smad7
with a vast array of functionally heterogeneous molecules
that may be differently expressed during the carcinogenic
process [160].

The overexpression of Smad7 in CRC cell was reported
to enhance cell growth and inhibit apoptosis through a
mechanism dependent on suppression of TGF-β signaling
[100]. In addition, Smad7-deficient CRC cells were reported
to enhance the accumulation of CRC cells in S phase of cell
cycle and cell death through a pathway independent on
TGF-β [165]. Genetic variants in SMAD7 gene have been
extensively studied in CRC patients (Table 12).

7. Chitinase 3 Like 1/YKL-40

YKL-40 is a mammalian member of the chitinase protein
family. YKL-40 is a 40 kDa heparin- and chitin-binding

glycoprotein. The human protein was named YKL-40 based
on its three N-terminal amino acids tyrosine (Y), lysine (K),
and leucine (L) and its 40 kDa molecular mass [178]. This
protein has several names, YKL-40 [178], human cartilage
glycoprotein-39 (HC-gp39) [179], 38 kDa heparin-binding
glycoprotein (Gp38k) [180], chondrex [181], and 40 kDa
mammary gland protein (MGP-40) [182].

In a search of new bone proteins, the glycoprotein YKL-
40 was identified in 1989 to be secreted in vitro by the human
osteosarcoma cell line MG63. The protein was later found to
be secreted by differentiated smooth muscle cells, macro-
phages, human synovial cells, and nonlactating mammary
gland [178, 181, 182]. In 1997, the chitinase 3 like 1 (CHI3L1)
gene encoding for YKL-40 was isolated. It is assigned to chro-
mosome 1q31-q32 and consists of 10 exons and spans about
8 kilobases of genomic DNA [178, 183].

Based on amino acid sequence, it was found that YKL-
40 belongs to the glycosyl hydrolase family 18 that hydroly-
ses the glycosidic bond between two or more carbohydrates
or between a carbohydrate and a noncarbohydrate moiety.
Based on sequence similarity, there are more than 100 differ-
ent families of glycosyl hydrolases [184–186].

Chitin, a polymer of N-acetyl glucosamine, is the
second most abundant polysaccharide in nature, following
cellulose. It is found in the walls of fungi, the exoskeleton
of crabs, shrimp and insects, and the micro filarial sheath
of parasitic nematodes [187]. Chitin accumulation is regu-
lated by the balance of chitin synthase-mediated biosynthesis
and degradation by chitinases. Although YKL-40 contains
highly conserved chitin-binding domains, it functionally
lacks chitinase activity due to the mutation of catalytic
glutamic acid into leucine [183].
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Figure 10: YKL-40 regulates the pathogenesis of cancer and inflammatory disorders [198].
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Several types of solid tumors can express YKL-40 such
as osteosarcoma [178], CRC [188], thyroid carcinoma
[189], breast [190], ovarian [191], lung [192], pancreatic
cancer [193], glioblastoma [194–196], and cholangiocarci-
noma [197].

There are several synergistic and antagonistic factors that
modulate the regulatory functions of YKL-40 (Figure 9) in
both normal and pathological conditions [198].

8. CHI3L1/YKL-40 Targets and Actions

Although the biological function of YKL-40 is not fully
understood, the pattern of its expression suggests function
in remodeling or degradation of ECM. The diverse roles of
YKL-40 in cell proliferation, differentiation, survival, inflam-
mation, and tissue remodeling have been suggested [199].
Aberrant expression of YKL-40 is associated with the patho-
genesis of an array of human diseases (Figure 10).

Elevated serum YKL-40 levels were reported to be associ-
ated with a wide range of inflammatory diseases (Table 13).
More than 75% of patients with streptococcus pneumoniae
bacteremia had elevated serum levels of YKL-40 compared
with age-matched healthy subjects. Treatment of these
patients with antibiotics resulted in reaching serum YKL-40
normal level within few days in most patients before the
serum C-reactive protein (CRP) reach the normal level [200].

Biologically, YKL-40 was found to activate a wide range
of inflammatory responses. An inflammatory stimulus can
trigger the secretion of a variety of cytokines that in turn
may regulate YKL-40 (Figure 11). Increased YKL-40 was
reported to regulate chronic inflammatory responses like
asthma, chronic obstructive pulmonary disease (COPD),
cardiovascular disease (CVD), and arthritis. Inhibition of
YKL-40 by utilizing anti-CHI3L1 antibody may be a useful
therapeutic strategy to control/reduce the effect of inflamma-
tory diseases [198].

Over the past three decades, a considerable attention has
been focused on the potential role of YKL-40 in the develop-
ment of a variety of human cancers. Serum levels of YKL-40
(Table 14) were independent of serum carcinoembryonic
antigen (CEA) in CRC [188], serum cancer antigen 125

(CA-125) in ovarian cancer [191], serum human epidermal
growth factor receptor 2 (HER-2) in metastatic breast cancer
[190], serum lactate dehydrogenase (LDH) in small cell lung
cancer [192], and serum prostate-specific antigen (PSA) in
metastatic prostate cancer [208]. Therefore, it may be of
value to include serum YKL-40 as a biomarker for screening
of cancer together with a panel of other tumor markers as it
can reflect other aspects of tumor growth and metastasis than
the routine tumor markers [201].

Macrophages and neutrophils in tumor microenviron-
ment or tumor cells were found to secrete YKL-40 into
extracellular space, which can enhance tumor initiation, pro-
liferation, angiogenesis, and metastasis (Figure 12).

The ability of YKL-40 to induce cytokine secretion,
proliferation, and migration of target cells suggests the
existence of their receptors on the cell surface. However,
receptors interacting with YKL-40 are incompletely char-
acterized, and only limited information is available about

Table 14: Serum YKL-40 levels (ng/ml) in patients with localized or
advanced cancer [201].

Disease
Median serum
YKL-40 (ng/l)

Reference

Metastatic breast cancer 80 [209]

CRC 160 [210]

Glioblastoma multiforme 130
[195]

Lower grade gliomas 101

Primary breast cancer 57 [211]

Small cell lung cancer 82

[192]Local disease 71

Extensive disease 101

Metastatic prostate cancer 112 [208]

Ovarian cancer, all stages 94

[212]Ovarian cancer, stage III 168

Ovarian cancer, relapse 94

Inflammatory stimulus

IL-18 IL-6 TNF-�훼

YKL-40

Inflammation
Tissue

remodeling
Allergy

Figure 11: Role of inflammatory cytokines in YKL-40-mediated
allergy and inflammation.

Table 13: Serum YKL-40 levels (ng/ml) in patients with
inflammation, tissue remodeling, or fibrosis [201].

Disease
Median serum
YKL-40 (ng/l)

Reference

Viral hepatitis 83

[202]Noncirrhotic fibrosis 158

Posthepatitis cirrhosis 204

Rheumatoid arthritis 110 [203]

Streptococcus pneumoniae bacteremia 342 [200]

Osteoarthritis 112 [204]

UC, severe 59
[205]

CD, severe 59

Pulmonary sarcoidosis 201 [206]

Asthma 92 [207]
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YKL-40-induced signaling pathways. There are evidences to
strengthen a hypothesis that a cross talk between adjacent
membrane-anchored receptors plays a key role in transmit-
ting “outside-in” signaling to the cells, leading to a diverse
array of intracellular signaling [213, 214].

YKL-40 possesses heparin-binding affinity, which enables
it to specifically bind heparan sulfate (HS) fragments [215].
Syndecans are transmembrane molecules with cytoplasmic
domains that can interact with a number of regulators
[216]. Syndecan-1 is the major source of cell surface HS.
There is compelling evidence demonstrating that syndecan-
1 can act as a matrix coreceptor with adjacent membrane-
bound receptors such as integrins to mediate cell adhesion
and/or spreading [217]. It was found that YKL-40 could
induce the coupling of syndecan-1 and αvβ3 integrin
(Figure 13), resulting in phosphorylation of focal adhesion
kinase (FAK) and activation of downstream ERK1/2 signal-
ing pathway, which enhance vascular endothelial growth fac-
tor (VEGF) expression in tumor cells, angiogenesis, and
tumor growth [214]. Additionally, ERK1/2 and JNK signal-
ing pathways were reported to upregulate proinflammatory
mediators such as C-chemokine ligand 2 (CCL2), chemokine
CX motif ligand 2 (CXCL2), and MMP-9; all of which con-
tribute to tumor growth and metastasis [218].

Another VEGF-independent pathway was reported to
mediate angiogenic activity of YKL-40, as an anti-VEGF neu-
tralizing antibody failed to impede YKL-40-induced migra-
tion [219]. Therefore, targeting both YKL-40 and VEGF
could be an efficient course of therapy along with radiother-
apy for eventual eradication of deadly diseases.

Furthermore, YKL-40 was demonstrated to stimulate
TGF-β1 production in malignant cells via interleukin-13

receptor α2- (IL-13Rα2-) dependent mechanism (Figure 14).
The binding of YKL-40 to IL-13Rα2 results in the activation
of MAPK, AKT, and Wnt/β-catenin which play an important
role in inhibiting apoptosis and interleukin-1β (IL-1β) pro-
duction thereby acting as a potential cancer promoter [220].

Recently, Low et al. [221] showed that YKL-40 can also
bind surface receptor for advanced glycation end product
(RAGE), which is involved in tumor cell proliferation, migra-
tion, and survival through β-catenin- and nuclear factor
kappa-B- (NF-κB-) associated signaling pathways [221, 222].

Most of the ongoing researches have been carried out on
SNP rs4950928 in the promoter region of CHI3L1 gene as it
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ERK1/2-MAPK
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Tumor initiation Tumor growth
Tumor growth
and metastasis
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metastasis

Figure 12: YKL-40 supports tumor progression.
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Figure 13: Involvement of YKL-40 in pathways pertaining to cell
proliferation, survival, differentiation, and tumorigenesis.
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was found to be associated with the serum/plasma YKL-40
levels [223, 224] and diseases such as asthma, bronchial
hyperresponsiveness [207], and the severity of hepatitis C
virus-induced liver fibrosis [225]. Some of the association
studies of CHI3L1 SNPs with different diseases are shown
in Table 15.
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