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Abstract 

Several signaling cascades are involved in cell death, with a significant amount of crosstalk 
between them. Despite the complexity of these cascades several key pro-survival and 
pro-death players have been identified. These include PI3-kinase, AKT and caspase-3. Here we 
review the approaches used to date to perform molecular imaging of these important targets. 
We focus in particular on approaches that include the possibility of modulating the activity of 
these kinases and proteases in a theranostic approach. 
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Introduction 

Several techniques have been developed to im-
age cell death and viability. These include the detec-
tion of changes in the pharmacokinetics and distribu-
tion of exogenous contrast agents (for example de-
layed gadolinium enhancement in the myocardium), 
and the detection of altered metabolic activity in tis-
sue (for example radiolabeled glucose uptake in tu-
mors). More recently, molecular imaging techniques 
have been developed to image the mechanism of cell 
death. Several ligands, most notably annexin V and 
synaptotagmin, that bind to the surface of apoptotic 
cells have been used to image apoptosis in vivo by 
MRI and SPECT [1-5]. In addition, a DNA-binding 
gadolinium chelate (Gd-TO) has been developed to 
specifically image necrotic cell death in vivo [6, 7]. 
Imaging the intracellular signaling involved in cell 
death and survival, however, has proven more chal-
lenging. Nevertheless, several novel techniques to 

image key players in cell death/survival signaling 
have been developed.  

Here we review recent progress in the molecular 
imaging of three central kinases/proteases involved 
in cell death and survival: 1) phosphatidylinosi-
tol-3-kinase (PI3-kinase or PI3K); 2) the ser-
ine/threonine kinase AKT and; 3) the cysteine prote-
ase caspase-3. Particular emphasis is placed on the 
role of these agents in cardiovascular disease and 
cancer. We use the term “theranostic” fairly broadly 
to include any construct that can be imaged noninva-
sively in vivo and can modulate the biological activity 
of a kinase/protease. In some cases the imaging lig-
and and the therapeutic moiety may thus be identical, 
and in other cases the imaging ligand may serve only 
as a delivery vehicle for a separate therapeutic moiety. 
The appeal of the latter type of constructs (diagnostic 
delivery vehicle with attached therapeutic) lies in 
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their breadth. A library of theranostic agents can be 
generated by attaching a variety of therapeutic moie-
ties to the agent. The challenge of these types of 
theranostic constructs is that they are larger, more 
complex, and require a stable release mechanism for 
the therapeutic. As discussed below, initial progress 
in the field has thus been made largely with the for-
mer type of theranostic constructs, where the imaging 
ligand serves a dual diagnostic and therapeutic pur-
pose.  

A Brief Overview of Cell Death/Survival 
Signaling 

Cells can die via apoptosis, necrosis and au-
tophagy [8]. The signaling pathways involved in all 
three of these pathways are extremely complex and 
beyond the scope of this review. Moreover, a signifi-
cant amount of crosstalk exists between these path-
ways, producing a complex and interconnected sys-
tem of signals. Nevertheless, several key nodes in 
these pathways have been identified including PI3K, 
AKT and caspase-3 (Figure 1).  

The PI3-kinases are a family of lipid kinases that 
are able to phosphorylate the 3-hydroxyl group of the 
phosphoinositidyl ring [9]. Three classes of PI3K have 
been described. Class 1A PI3K is the focus of this pa-
per and plays a major role in cell death and survival, 
as well as autophagy via mTOR signaling. Class 1A 
PI3K has a regulatory subunit (p85) and a catalytic 
subunit (p110). The activation of PI3K is produced by 
the binding of growth factors such as HER2, IGF and 
EGRF to their receptor tyrosine kinases. Activation of 
the receptor tyrosine kinases results in an interaction 
with the p85 regulatory subunit of PI3K and removes 
its inhibitory effect on the p110 catalytic subunit. 
Negative feedback from downstream molecules, and 
the activity of the tumor suppressor PTEN, keep PI3K 
activation in balance [10]. Class 2 PI3K are catalytic 
enzymes that function downstream to activated EGF 
receptors, play a role in cell death/survival, and have 
no regulatory/adapter subunit. Class 3 PI3Ks, like 
class 1, contain a regulatory (p150) and catalytic 
(Vps34, 100 kDa) subunit and play an important role 
in cellular autophagy.  

 
 

 

Figure 1: Schematic of principal cell death/survival pathways. 
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Activation of PI3K produces a robust pro-growth 
and survival effect, principally by activating the ser-
ine/threonine kinase AKT [11]. The activation of PI3K 
converts phosphatidylinositol-bisphosphate (PIP2) 
into phosphatidylinositol-triphosphate (PIP3). This in 
turn recruits AKT and the kinase PDK-1 (phospho-
inositidyl dependent kinase 1) to the cell membrane, 
where AKT is phosphorylated and activated. Acti-
vated AKT exerts a myriad of effects on the cell: AKT 
stimulates protein synthesis and cell growth by acti-
vating mTOR (mammalian target of rapamycin). (It 
should be noted that mTOR plays a major role in au-
tophagy signaling and thus plays a highly mul-
ti-faceted role in cell death). AKT promotes cellular 
proliferation by promoting the cell cycle proteins 
(c-Myc and cyclin D1) and inactivating the cell cycle 
inhibitors (p27 and p21). Functioning indirectly 
through the mTOR complex (mTORC1), AKT also 
regulates cell proliferation and hypertrophy. AKT 
inhibits the pro-apoptotic genes (BAD and BIM) thus 
promoting cell survival [10-12].  

The pro-survival role of AKT in the cell is op-
posed by a family of cysteine-aspartate proteases, or 
caspases, which play a pivotal role in cell death by 
apoptosis [8]. Apoptosis can be initiated via an intrin-
sic or extrinsic pathway, with different initiator 
caspases involved. The intrinsic pathway typically is 
initiated by the interaction of cytochrome c with 
caspase-9. This pathway plays a major role in cardi-
omyocyte death in ischemic injury. The extrinsic or 
death receptor pathway involves caspase-8 and plays 
an important role in inflammatory conditions and 
chemotherapy. Both the intrinsic and extrinsic apop-
totic pathways lead to the activation of caspase-3, 
which is the principal effector or executioner caspase 
in the cell [8]. In addition to executing the apoptotic 
program, caspase-3 is able to cleave sarcomeric pro-
teins in the myocardium, leading to a loss of function 
independent of cell death [13].  

The pivotal role played by PI3K, AKT and 
caspase-3 in cell death/survival has been shown in 
transgenic animal models, by using chemical inhibi-
tors and by insights provided from genomic analysis 
of human cancer. Reduced PTEN expression and 
mutations in PIK3A (gene on chromosome 3 encoding 
for the p110 subunit) are found in numerous human 
cancers [10]. These tumor cells are resistant to apop-
tosis due to hyperactivity of the PI3K-AKT pathway. 
The activation of AKT, frequently observed in human 
tumor cells, can promote growth factor-mediated cell 
survival directly by inactivating several proapoptotic 
factors (BAD, procaspase-9 and Forkhead/FKHR 
transcription factors), and indirectly by activating 
transcription factors that upregulate anti-apoptotic 

genes (cyclic-AMP response element-binding protein 
(CREB), Nuclear Factor-κB).  

In the heart, the activation of the PI3K/AKT 
cascade by IGF-1 has a profound cardioprotective 
effect in acute ischemia [14]. Conversely, the inhibi-
tion of PI3K by wortmannin (Wm) promotes apopto-
sis and exacerbates cell death in the heart during is-
chemia [12]. Wm has been extensively studied as a 
chemotherapeutic agent in vitro, and recent data 
show that it also exerts a robust anti-inflammatory 
effect that may prove useful in rheumatological syn-
dromes and other inflammatory conditions [10, 15, 
16]. The inhibition of caspase-3 can be achieved with 
small molecules and has been shown to be extremely 
cardioprotective in ischemia and heart failure [17-19]. 
Transient overexpression of AKT in the myocardium 
during ischemic injury is also highly protective [20]. 
Chronic overexpression of AKT, however, leads to 
excessive negative feedback of PI3K and is harmful 
[21]. This underscores the complexity of the signaling 
involved in cell death/survival and the need for novel 
imaging tools to better understand how to modulate 
these processes.  

Molecular Imaging of PI3-Kinase 

Numerous inhibitors of PI3K have been devel-
oped and are being studied in a variety of cancers [10]. 
Some are pure PI3K inhibitors, while others inhibit 
both PI3K and mTOR. Conceivably, several of these 
inhibitors might be suitable ligands for imaging PI3K, 
but this will need to be established in future studies. 
The greatest experience to date is with the natural 
PI3K inhibitor Wortmannin. Wm is a steroid-like vi-
ridin metabolite derived from the fungus Penicillium 
wortmanni. It is a broad and powerful inhibitor of all 
classes of PI3K with an IC50 in the low nanomolar 
range. Wm irreversibly inactivates PI3K through a 
covalent interaction between C20 on its furan ring and 
a lysine residue on the ATP binding pocket of the 
p110 catalytic subunit of PI3K [22]. Unmodified Wm, 
however, is not a useful ligand for either conventional 
or theranostic molecular imaging. It is highly lipo-
philic, reacts extremely rapidly with both the cellular 
and non-cellular constituents of the blood, and has a 
very short blood half-life. Modified Wms have thus 
been developed to image and modulate PI3K activity 
in cancer and inflammation. 

Wm has been modified at both its C11 and C20 
positions to produce a library of theranostics. The 
fluorochrome NBD, has been attached to the C11 po-
sition of Wm to yield Wm-NBD [23]. Like Wm, NBD 
is a small, uncharged and lipophilic material. 
Wm-NBD thus maintains the properties of Wm, in-
cluding its low nanomolar IC50 for PI3K. However, 
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the presence of NBD on Wm allows the intracellular 
fate and location of the construct to be imaged with 
fluorescence and immunohistochemical techniques 
[23]. The modification of Wm at its C20 position inac-
tivates it. However, depending on the nature of the 
modification, the C20-modified Wm can reactivate 
itself [24, 25]. These Wms are thus self-activating vi-
ridins (SAV). The nature of the C20 modification in-
fluences the rate of self-activation. With an N-methyl 
pyridine at C20, the half-time of Wm formation is 
approximately 2 hours. With an alkyl group based 
tertiary amines at C20, the half-time is 8-10 hours [24, 
25]. While the IC50 of the alkyl C20 modified Wms is 
reduced slightly, the prolonged nature of their release 

produced a stronger antiproliferative effect in vitro 
than unmodified Wm [24, 25].  

Modification of Wm at C20 also allows it to be 
attached to a fluorescently labeled dextran chain. 
Modification at C20 thus not only regulates 
self-activation but also produces a soluble Wm con-
struct with the biodistribution properties of the dex-
tran chain. In vivo imaging with this theranostic 
platform has been performed with a C11 (NBD) and 
C20 (alkyl, 70 kDa dextran-Cy5.5) modified construct 
(Figure 2) [25]. Intravital microscopy of the Cy5.5 
moiety showed that the agent moved from the vas-
cular to the interstitial compartments with a half-life 
of 1.3 hours (Figure 2).  

 

 

Figure 2: Theranostic imaging of PI3-kinase with a self-activating viridin (SAV). (A) The SAV consists of wortmannin modified at the C11 

and C20 positions. The modification at position C11 resulted in the addition of the fluorochrome, NBD, while position C20 (red arrow) 

is modified to allow self-activation and conjugation to a dextran chain. When the leaving group (R) at C20 is CH3, the self-activating 

construct (SAV) is formed. When R=H the construct is non-activating (NAV). (B) Uptake of injected SAV into the vascularized portions 

of an implanted xenograft tumor in a mouse [25]. Immunohistochemistry of NBD reveals that the accumulation of wortmannin correlates 

strongly with CD31 expression. (C) Mice injected with the SAV construct (blue line) showed a complete arrest in tumor growth, which 

was not seen with NAV or dextran. (D) Intravital microscopy of the Cy5.5 moiety revealed that the kinetics of SAV were dominated by 

the 70 kDa dextran chain. 4 minutes after injection the probe was exclusively intravascular, but by 24 hours it has accumulated robustly 
in the interstitial space. (white arrow = blood vessel) [25]. (E) Anti-inflammatory effects of SAV in a mouse asthma model [15]. 

Whole-body fluorescence tomography images of the thoracic region show differential protease activity in the lungs. Mice injected with 

SAV show a marked reduction in protease activity in the lungs. Reproduced with permission.  
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Mice implanted with an A549 tumor xenograft 
and injected with 1mg/kg/day of the SAV construct 
showed a complete elimination of tumor growth [25]. 
This was not seen in mice injected with a 
non-activating Wm construct (NAV) or with dextran. 
The NBD moiety on the C11 position of the SAV con-
struct showed that the injected theranostic reached 
the vascularized portions of the tumor, where the 
activated Wm-NBD was released and affected tumor 
growth (Figure 2) [25].  

Transgenic knockout mice lacking PI3K show a 
reduction in neutrophil and macrophage activity. In 
particular, the oxidative burst in neutrophils is 
markedly attenuated in these animals. The ability of 
the SAV Wm construct to modulate immune related 
diseases has been shown in mouse models of in-
flammatory arthritis and asthma [15, 16]. Mice in-
jected with 0.75mg/kg/day of the construct did not 
develop arthritis in a serum transfer model, unlike the 
mice not injected with the agent [16]. Likewise, the 
administration of the SAV construct significantly re-
duced pulmonary inflammation in a murine asthma 
model (Figure 2) [15]. It should be noted that the in-
jected dose of SAV needed for immune modulation is 
significantly lower than that needed to exert an anti-
proliferative effect. This raises the possibility of using 
SAV as an anti-inflammatory agent and minimizing 
any deleterious effects in healthy tissues.  

The optical imaging approaches described above 
are extremely useful in the preclinical setting but have 
limited translational potential. Nevertheless, they 
demonstrate the potential of a PI3K theranostic and 
lay down a pathway towards clinical translation. 
Modification of the C11 position with a radioactive 
label such as 11C or 18F would result in a highly trans-
latable PET-detectable probe. (The specific activity of 
the agent would need to be tailored to the theranostic 
dose). Other PI3K inhibitors may likewise be suited to 
PET imaging. Ultimately, a probe that is able to dis-
tinguish between the activated and non-activated 
forms of PI3K could prove most useful. Many routes 
to theranostic imaging of PI3K thus exist and could 
play an important role in a large variety of conditions.  

Molecular Imaging of AKT 

Molecular imaging of AKT in vivo has been 
performed in mice using a bioluminescent reporter 
approach. Bioluminescent AKT reporters (BAR) con-
sist of the AKTpep and FHA2 domains of AKT, 
flanked on either side by the N-terminal and 
C-terminal domains of firefly luciferase [26]. Phos-
phorylation of the AKTpep domain causes it to inter-
act with the FHA2 domain, sterically hindering the 
formation of a functional luciferase (Figure 3). AKT 

activation thus decreases the luminescent signal from 
the construct and can be used to image AKT activa-
tion/deactivation in vitro and in mice in vivo (Figure 
3) [26, 27]. More recently a membrane bound version 
of this split reporter has been described [28]. This is 
based on the fact that the activation of AKT involves 
its translocation to the cell membrane. The modified 
AKT reporter has been reported to be more quantita-
tive and sensitive than the original construct [28].  

 
 
 
 

 

Figure 3: Bioluminescent AKT reporter (BAR). (A) The phos-

phorylation of AKT leads to a conformational change in the con-

struct and prevents the association of the N and C terminal do-

mains of the reporter [26]. Activation of AKT thus leads to a 

reduction in the signal. (B, C) Mouse implanted with xenografts 

transfected with the BAR construct. (B) Little signal is seen before 

treatment. (C) A large signal is seen in mice treated with the AKT 

inhibitor perifosine [26, 27]. Reproduced with permission [26, 27].  
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A similar approach (conformation dependent 
reporter complementation) has been used to image a 
variety of kinases [29-31], as well as proteases such as 
caspase-3 [32]. While extremely elegant, and of major 
utility in the preclinical arena, the translational po-
tential of this approach is unclear. Conceivably it 
might be possible for a clinically-detectable PET re-
porter to be used to report kinase activity, but this has 
yet to be shown. Theranostic approaches will also 
need to be developed. While many challenges remain, 
the central importance of AKT in cell growth and 
signaling make the development of theranostic agents 
to this molecule highly appealing.  

Molecular Imaging of Caspase-3 

Caspase-3 is the key effector protease of the 
apoptotic cascade. Three approaches have been de-
veloped to image caspase-3 including: 1) reporter 
gene approaches, 2) activatable fluorochromes and, 3) 
radiolabeled caspase inhibitors [33]. Most of the re-
porter and activatable constructs developed are based 
on the cleavage of a peptide linker at the caspase-3 
recognition site DEVD (Asp-Glu-Val-Asp) [34-37]. 
This leads to conformational changes in the construct 
such as the dequenching of a flanking pair of fluoro-
chromes/quencher or the generation of a functional 
reporter [34-37]. To gain access to the cell these agents 
must incorporate a cell penetrating capability, such as 

the incorporation of a cell penetrating peptide. This 
elegant approach has allowed in vivo imaging of 
caspase-3 activation to be performed in small animals 
and in structures such as the retina of the eye (Figure 
4) [34-37]. Several limitations of this approach, how-
ever, bear mention. The intracellular trafficking of 
these constructs is difficult to control and accumula-
tion in lysosomes may lead to non-specific activation 
[33]. Furthermore the other effector caspases (caspases 
6, 7) can also activate these probes to some degree, 
although less so than caspase-3. The largest limitation 
of optical based caspase-3 imaging, however, lies in 
the limited potential for translation. The use of a 
thymidine kinase PET reporter to image caspase-3 
activity in vivo has been attempted but was less sen-
sitive than the use of fluorescent and bioluminescent 
reporters (Figure 4) [35]. Nevertheless, this raises the 
possibility of improved and translatable PET reporter 
approaches being used in the future to image caspa-
se-3 activity.  

The use of small chemical inhibitors to directly 
image caspase-3 provides alternative strategy for 
clinical translation. The most commonly used ligands 
are the isatin (1H-indole-2,3-dione) sulfonamide ana-
logs [38-40], which have an IC50 for caspase-3 inhibi-
tion in the nanomolar range. Several 18F-labeled isatin 
analogues have been used to image caspase-3 activity 
in small animal models in vivo (Figure 4).  

 
 
 

 

Figure 4: Molecular imaging of caspase-3. (A, B) Rats injected with a 18F labeled isatin analog. PET imaging shows that the signal in the liver 

(arrow) is significantly higher in a rat treated with cycloheximide (B) than in an untreated control animal (A) [38]. (C) Apoptosis in a 

xenograft tumor (arrows) imaged with PET after chemotherapy and the injection of an 18F labeled isatin analog [39]. (D) Luciferase 

reporter activated by caspase-3 [35]. A xenograft tumor transfected with the reporter emits a low signal before chemotherapy and a 

robust signal after treatment. Reproduced with permission [35, 38, 39]. 
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Uptake of the agent was increased in a rat model 
of cycloheximide induced liver injury [38]. Likewise, 
uptake of the agent in tumor xenografts was two-fold 
higher 24 hours after chemotherapy than in control 
animals [39]. While extremely promising, these stud-
ies have raised some important issues. Firstly, a large 
amount of background uptake of the isatin probes is 
seen in the liver and other abdominal organs. Sec-
ondly, the magnitude of the target signal seen from 
the isatin probes is moderate. Strategies will thus need 
to be developed to amplify the signal generated by the 
isatin probes and reduce their background uptake. In 
addition a very low specific activity formulation will 
need to be used to give the agent at a theranostic dose. 
Despite these challenges, the initial experience with 
these agents demonstrates the feasibility of generating 
theranostic approaches to image/modulate caspase-3 
activity in vivo.  

Conclusion 

Molecular imaging of cell death continues to 
gain momentum. While the imaging of the intracel-
lular kinases and proteases involved in cell death is in 
its infancy, the preclinical feasibility and utility of this 
approach has been well demonstrated. Future work 
must now focus on the development of translatable 
platforms to image intracellular kinase/protease ac-
tivity in vivo. In addition to new diagnostic con-
structs, novel theranostic constructs will also need to 
be developed. While this is a formidable challenge it is 
also one that promises large rewards and is well 
worth pursuing.  
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