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Abstract

Cervical spondylotic myelopathy (CSM) is a common spinal cord dysfunction disease with
complex symptoms in clinical presentation. Resting state fMRI (rsfMRI) has been introduced
to study the mechanism of neural development of CSM. However, most of those studies
focused on intrinsic functional connectivity rather than intrinsic regional neural activity level
which is also frequently analyzed in rsfMRI studies. Thus, this study aims to explore whether
the level of neural activity changes on the myelopathic cervical cord and evaluate the possi-
ble relationship between this change and clinical symptoms through amplitude of low fre-
quency fluctuation (ALFF). Eighteen CSM patients and twenty five healthy subjects
participated in rsfMRI scanning. ALFF was investigated on each patient and subject. The
results suggested that ALFF values were higher in the CSM patients at all cervical seg-
ments, compared to the healthy controls. The severity of myelopathy was associated with
the increase of ALFF. This finding would enrich our understanding on the neural develop-
ment mechanism of CSM.

Introduction

Cervical spondylotic myelopathy (CSM) is the most common disease resulting in spinal dys-
function [1]. The degeneration of cervical spine causes stenosis of the spinal canal leading to
static and dynamic compression to the cervical cord [2]. However, this simple mechanistic
explanation cannot explain the variety of clinical presentation because the neurological func-
tion deficits are not always associated with the severity of stenosis [3]. As a result, the mecha-
nism of neural development of CSM is still obscure due to lack of more detailed information.
To obtain more information, many neuroimaging techniques have been introduced to
explore the mechanism of neural development of CSM in different aspects. Anatomic mag-
netic resonance imaging (MRI) can visualize the cervical spondylosis, malalignment, cord
compression and high signal intensity within the cord [4, 5]. However, observation of cord
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compression degree is usually inconsistent with the severity of CSM symptoms in clinical prac-
tice [6-9].

Resting state fMRI (rsfMRI) has advantages over anatomic MRI in exploring pathology of
neural diseases. RsfMRI focused on low-frequency blood oxygen level-dependent (BOLD)
fluctuations which are considered to reflect intrinsic neural activity. In recent years, rstMRI
has already been introduced in spinal cord studies and revealed that the spinal cord is intrinsi-
cally organized [10-12].

To observe intrinsic functional neural activity, one main stream of rsfMRI is functional
connectivity which focuses on temporal correlation of BOLD signal to reflect neuronal syn-
chronization [13-15]. A primate spinal cord injury model proposed in one study has once sug-
gested that the intrinsic functional connectivity within the spinal cord was altered after injury
[16]. However, functional connectivity is useful in revealing relationship among different
regions of the neural system but unable to explore specific regional neural activity dynamics.

Another rstMRI analysis that focuses on the amplitude of BOLD signal can be applied to
analyze specific regional neural activity dynamics. Amplitude of low frequency fluctuation
(ALFF) is one of the most reliable and reproducible rsfMRI parameters reflecting the level of
regional functional neural activity [17-22] and may help us to explain the neural development
mechanism of CSM.

In this study, rsftMRI was employed to investigate the regional functional neural activity
strength in both healthy subjects and CSM patients. ALFF values were calculated and com-
pared between healthy subjects and CSM patients.

The aim of this study is to explore whether the ALFF will change after CSM. Based on previ-
ous studies, we hypothesized that (1) CSM patients would present ALFF alteration on the spi-
nal cord, and (2) these alterations of ALFF would correlate with clinical CSM evaluating
scores.

Material and Methods
Subjects Information

Ethical approval for the study was granted by the Clinical Research Ethics approved by the
Institutional Review Board of the University of Hong Kong/Hospital Authority (UW 12-468).
The written consent was obtained from every participant before he/she join this study. The
procedure for introduction and consent was approved by the ethics committees. A total of 25
healthy subjects (female/male = 7/18, age = 32+9 years, age ranged from 22 to 61 years) and 18
CSM patients (female/male = 5/13, age = 58+14 years, age ranged from 26 to 83 years, duration
of symptom > 1 year, compression position range from C3 to C6 segment) were recruited in
this study, and informed consents were obtained from all participants.

For healthy subjects, the inclusion criteria were that subjects should be normal sensory and
motor functions and negative Hoffman’s sign. Those subjects with past history of spinal cord
injury, myelopathy, other neurological diseases or narrowing of the spine canal on T2
weighted (T2W) images were excluded.

All the patients with CSM were examined and diagnosed by experienced spine surgeons
with typical manifestation and imaging findings. The inclusion criteria of CSM in this study
were: 1) the presentation of spinal canal stenosis in T2W images measured by anterior-poste-
rior compression ratio (APCR); 2) increased signal intensities within the spinal cord observed
on the sagittal plane of T2W images. Patients with acute spinal cord injuries, prior spinal inter-
vention, other co-existing neurological disorders (e.g., multiple sclerosis) or claustrophobia
were excluded. The neurological deficits of all the CSM patients were evaluated by Japanese
Orthopaedic Association (JOA) score system.
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Anatomic MRI

To investigate the degree of cord compression of the CSM patients, T2W MRI images on the
axial plane were acquired for each patient through a fast spin echo sequence and APCR was
calculated for each body and disc level from vertebrae C2 to C7. APCR was calculated in the
following process: transverse diameter (a) and anterior-posterior diameter (b) of spinal cord
were measured on the cross section of T2W images; APCR = b/a [3]. The smallest value of
APCR was selected to represent the severity of cord compression.

Resting state fMRI data acquisition and preprocessing

RsfMRI data acquisition was conducted by a 3 Tesla (Philips Achieva, Amsterdam, the Nether-
lands) whole body MRI scanner and a 4-channel neurovascular coil. The rstMRI images were
acquired through a gradient-echo echo planar imaging (GE-EPI) sequence with the following
parameters: repetition time (TR)/echo time (TE) = 2000/30 ms, number of slices = 26, voxel
size = 1.25 x 1.25 x 4 mm, field of view (FOV) = 80 x 80 x 104 mm (from the level of vertebrae
C1 to C7). The sequence is typically used for brain while the parameters were optimized for
the spinal cord. Through the Statistical Parametric Mapping 8 (SPM8, http://www.fil.ion.ucl.
ac.uk/spm/) and Resting-State fMRI Data Analysis Toolkit (REST, http://restfmri.net/forum/
index.php) toolboxes in MATLAB 7.11.0 (Mathworks, Natick, MA, USA), the raw EPI images
were processed for slice timing, motion correction, nuisance regression, detrend, and band-
pass filtering (0.01-0.08 Hz). Regressors included: 1) cerebrospinal fluid (CSF) pulsation signal
and tissue motion signal that was extracted through independent component analysis (ICA)
through gift (http://mialab.mrn.org/software/gift/) toolbox; 2) motion correction parameters
(x and y translation)[12]. The first 10 volumes were discarded to exclude the initial transient
effects.

Region of interests (ROIs) were manually drawn on 15 out of 26 slices from the C2 to C6
segments to delineate the grey matter (3 slices for each segment) based on comparatively
higher image contrast and anatomy of spinal cord gray matter. Slices crossing every inter-ver-
tebral disc within the C1 and C7 segments were discarded due to FOV mismatch or severe
artifact. The gray matter ROI was split into ROI1 (ventral horn) and ROI2 (dorsal horn)
according to their function because dorsal horn and ventral horn are involved in sensory and
motor neural information respectively. Then ventral and dorsal horn ROIs were furtherly sep-
arated into left and right parts. In total, 60 ROIs were drawn in 5 segments (3 slices per seg-
ment and 4 ROIs per slice, Fig 1).

Amplitude of low frequency fluctuation (ALFF) analysis

ALFF was calculated through REST toolbox under MATLAB. The REST toolbox will calculate
the square root of the power spectrum of BOLD signals from each voxel and compute the sum
of frequencies in the low frequency band (0.01-0.08Hz) [22]. For each ROI, the ALFF was
determined through calculating the mean value of ALFF values of all voxels in this ROL

Statistical Analysis

Two sample t-test was used to investigate the differences of ALFF among healthy subjects and
CSM patients. In order to evaluate the relationship between ALFF and clinical symptoms,
CSM patients were divided into two groups based on their JOA scores, severe group (JOA<13,
10 patients, age = 67+7 years, age ranged from 59 to 83 years) and mild group (JOA>13, 8
patients, age = 49+14 years, age ranged from 26 to 67 years). Two sample t-test was performed
to compare differences of APCR and ALFF between mild CSM patients and severe CSM
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Fig 1. Gray matter regions of interest (ROIs) definition in the cervical spinal cord. The rsfMRI scanning field of
view (FOV) and slice location that cover vertebrae C1 to C7 (a); the gray matter was drawn on post-processed echo
planarimaging (EPI) images (b); the gray matter ROl was then delineated and split into ROI1 (ventral horn) and
ROI2 (dorsal horn) (c); left and right parts of each horn were also furtherly separated; finally 60 ROIs were extracted
from each subject (d).

doi:10.1371/journal.pone.0167279.g001

patients. The ALFF comparison was conducted on the cervical cord and segments from C2 to
C6 separately. Mean value of all ROISs in 3 slices of one segment (3 slices * 4 ROIs = 12 ROIs)
was used for statistical analysis. ALFF values of all ROIs (5 segments * 3 slices * 4 ROIs = 60
ROIs) were averaged to be one ALFF for whole cord.

Results
Healthy subjects vs CSM patients

ALFF values of healthy subjects and CSM patients on the cervical cord and segments from C2
to C6 are separately listed in Table 1. The ALFF comparison result is shown in Fig 2a. In the

Table 1. ALFF values of healthy subjects and CSM patients (mean * SEM).

ALFF values Healthy subjects (N = 25) CSM patients (N = 18) F t P
CcC 12.90+0.83 31.23+4.12 28.612 -4.355 <0.001
Cc2 13.58 £ 0.92 28.07 £ 3.64 27.715 -3.858 0.001
C3 12.60+0.83 28.71+£3.82 32.995 -4.117 0.001
C4 12.70+0.85 30.42+4.20 30.238 -4.135 0.001
C5 12.55+0.85 34.02+£4.93 23.241 -4.290 <0.001
C6 13.11+0.95 34.91+£4.39 30.527 -4.849 <0.001

ALFF values Mild CSM patients (N = 8) Severe CSM patients (N = 10) F t P
CcC 19.38+2.55 40.70 £5.59 3.983 -3.188 0.006
Cc2 17.87+1.95 36.24 £5.10 4.686 -3.362 0.006
C3 17.83+1.75 37.41+£5.37 8.639 -3.465 0.005
C4 18.12+2.65 39.87 +5.77 4.243 -3.074 0.007
C5 20.04 +2.91 45.20+6.79 4.772 -3.407 0.005
C6 22.55 + 3.81 44.80 £5.67 2.141 -3.081 0.007

Note: CC—whole cervical cord; C2/C3/C4/C5/C6—C2/C3/C4/C5/C6 segment of cervical cord

doi:10.1371/journal.pone.0167279.t001
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Fig 2. ALFF comparison between healthy subjects and CSM patients. In the whole cervical cord (CC) and each segment from C2 to C6, amplitude of low
frequency fluctuation (ALFF) had the trend of healthy subjects < CSM patients. From two sample t-test results, all of the differences were significant (a). After
separating CSM patients into mild (JOA>13, 8 patients, age = 49+11 years, age ranged from 26 to 67 years) and severe (JOA<13, 10 patients, age = 6717
years, age ranged from 59 to 83 years) groups, Anterior-Posterior Compression Ratio (APCR) of each patients in mild and severe groups was compared. The
difference of APCR between mild and severe CSM patients was not significant (b). ALFF had the trend of mild CSM patients < severe CSM patients. From two
sample t-test results, all of the differences were significant (c) (*: P<0.05, significant, ns: P>0.05, not significant).

doi:10.1371/journal.pone.0167279.g002

whole cervical spinal cord and each segment, the ALFF values of healthy subjects were less
than those of CSM patients. Two sample t-test results indicated that all the differences of ALFF
between healthy subjects and CSM patients were significant.

Mild CSM patients vs severe CSM patients

After grouping patients according to the JOA score, APCR was compared between the two
groups of CSM patients and the results are listed in Fig 2d. There was no significant difference
in APCR between mild CSM (0.259+0.075) and severe CSM groups (0.258+0.067) (F = 0.034,
t=-0.020, P = 0.985). Mild and severe CSM groups had no significant difference in APCR.

ALFF values of mild and severe CSM patients on the cervical cord and segments from C2 to
C6 separately are listed in Table 1. The ALFF comparison result is shown in Fig 2c. In the
whole cervical spinal cord and each segment, the ALFF values of mild CSM patients were sig-
nificantly less than those of severe CSM patients.

Discussion

RsfMRI showed that ALFF was increased in CSM patients when compression appeared on the
cervical cord. Furthermore, severity of clinical symptom in CSM was associated with ALFF
changes. Patients with higher JOA score presented lower ALFF. Vice versa, patients with lower
JOA score presented higher ALFF. This finding could help understand the mechanism of CSM
neural development.

On the one hand, the severity of compression is usually measured in T2-weighted MRI
images with anterior-posterior transverse diameter [23]. APCR is a parameter delineating the
deformity and flattening of the cervical cord and it is calculated through dividing the sagittal
diameter of the transverse diameter of the axial section of T2W images [24-28]. On the other
hand, the severity of clinical symptom is commonly evaluated by JOA in clinical setting [29],
in comparison with other evaluation tools like Nurick scale, Harsh scale, Cooper scale, Prolo
scale and European Myelopathy score [30-34]. CSM patients in this study were recruited with
similar degrees and patterns of compression to the cervical cord but with different JOA scores,
i.e., 14.5+1.6 in 8 patients and 10.7+2.1 in 10 patients. The different clinical presentations of
JOA in this group of patients can exclude the effect of compression ratio on the severity of
clinical symptom. Spinal cord rsfMRI was applied to investigate the potential explanation of
intrinsic functional organization between different clinical symptom presentations.
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In rstMRI study, ALFF is used as a metric to measure the level of regional functional neural
activity [20]. In this study, CSM patients have higher ALFF values than healthy subjects.
Higher ALFF values indicate the high level of regional neural activity in the spinal cord. Dur-
ing resting state, brain regions with ALFF values higher than the global mean level exhibit sig-
nificantly a higher metabolic rate of oxygen and glucose than other regions [22], which means
that those regions have higher level of neural activity. When there is an injury to the spinal
cord, rsfMRI study has confirmed that the processing of nociceptive and tactile inputs engages
a much more complex spinal cord circuitry than previously recognized [16]. As a result, it will
add extra burdens to neurons in the spinal cord and make neurons consume more energy to
maintain the function of the neural network. Taken together, for CSM patients, the level of
neural functional activity rises as reflected by the increased ALFF values.

CSM patients with stenosis on the spinal cord canal may have various neurological function
deficits [3]. However, results of this study demonstrated that ALFF values can be well associate
with the neurological function deficits. Therefore, it can be assumed that ALFF is a potential
new valuable factor to reflect various neurological function deficits under similar stenosis
conditions.

Based on our findings, the phenomenon that the spinal cord increased its neural activity
level in response to compression of CSM coincides with the existed concept of neural plasticity
that the nervous system can change its function in response to injury [35]. Previous anatomical
studies have reported that neural plasticity occurs in the nervous system after spinal cord
injury [36, 37]. Besides, intrinsic brain functional plasticity was also reported in CSM patients
that the functional connectivity strength increased after CSM happened [38]. To our best
knowledge, our study is the first demonstration of intrinsic functional plasticity on the spinal
cord in CSM patients, and provides a possible explanation for neural development mechanism
of CSM.

In addition, F-test between healthy subjects and CSM patients showed large F values which
surpassed the cutoff F value (cutoff F value 2.20, degree of freedom [df] of larger variation
group was 12, df of smaller variation group was 23) (Table 1). The large F values indicated that
CSM patients had significantly larger ALFF variations than healthy subjects. CSM patients are
usually with more complex neural activity conditions than healthy controls, corresponding to
their various symptoms and conditions [39-41]. Since ALFF is the most reliable and reproduc-
ible rsftMRI parameter in reflecting regional functional neural activity, there should be more
ALFF variations in CSM patients than in healthy subjects.

In clinical practice, therapy management for CSM usually contains two strategies: conserva-
tive and surgical treatment [42, 43]. The ability of neural plasticity should be considered to
determine whether a patient with CSM to receive surgical treatment without further delay of
natural progress of neurological symptom development. This ALFF technique can show the
functional plasticity of CSM patients, and suggests the significant time point to perform surgi-
cal treatment with risk of missing the most appropriate intervention time. It may provide a
new indication for surgeons to select the surgical time for curing spinal cord function of CSM.

The fractional anisotropy (FA) value of diffusion tensor imaging (DTT) is another MRI
technique that has already been applied in the clinical investigation of CSM patients. DTI
focuses on the ultrastructural information of white matter of central nervous system (CNS)
[44]. ALFF is a technique that focuses on the functional activity of gray matter of CNS [18].
Therefore, the combination of DTT and ALFF may provide comprehensive understanding of
the mechanism behind CSM [45]. The scanning for rstMRI and DTT have no conflict with
each other, which makes both scanning possible to be co-utilized in detection. More impor-
tantly, the co-utilized DTT and ALFF may provide a comprehensive evaluation in both
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structure and function of the spinal cord, providing precise diagnosis of CSM for treatment
decision making.

It is a technical challenge to reduce physiological noise in spinal cord rstMR]I, including
periodic motion and hemodynamic washout [46-48]. During cardiac and respiratory cycles,
periodic pulsatory motion of both CSF and spinal cord itself produces degradation on spinal
cord signal [49]. Motion of the spinal cord can be observed during scanning, with a maximum
displacement of approximately 0.5-1mm [46]. In the present study, the subjects were carefully
recruited to have a good compliance to this study. They were asked to lie on the bed peacefully,
with comfortable bed and sponge filling to avoid their motion. In the processing of rsftMRI,
the maximum tolerance of displacement is below half of the voxel size in each direction, which
is the same as commonly used tolerance in rsfMRI brain studies. The periodic signal from CSF
was decreased through a band pass filter of 0.01-0.08Hz because the frequency of periodic
changes of CSF flow with the cardiac cycle is about 1Hz [46]. To reduce the impact from
hemodynamic washout caused by large vessels [50], the flow contribution to the BOLD signal
was minimized by the fast imaging speed so that one slice was acquired less than 80ms in an
interleaved way. Also, the application of nuisance regression helped to regress out physiology
signals from time series of rstMRI images.

There are some limitations in the current study. It should be noted that it is difficult to
recruit an age-matching group because most of elderly healthy subjects would have more or
less degeneration of the cervical spine. So the conclusion of this study may not represent the
full range of population. However, linear regression between age and ALFF values of healthy
subjects showed that ALFF was not affected by age (Fig 3). Besides, the cross-sectional diame-
ter of the spinal cord is very small (10-15mm), which means that the MRI images of the spinal
cord have a limited number of voxels [49]. MRI of the spinal cord also involves considerable
magnetic field inhomogeneity because of the large susceptibility differences among tissues. In
this study, to observe the functional organization of the spinal cord integrally, we manually
draw ROIs on the gray matter of the cervical spinal cord from C2 to C6 segments. This manu-
ally ROI definition method does have advantages and disadvantages. Although drawing ROIs

Healthy Subjects ALFF & Age Distribution
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Fig 3. Linear regression between age and ALFF values in healthy subjects. The linear regression result
showed that ALFF was not affected by age.

doi:10.1371/journal.pone.0167279.9003
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manually is time-consuming, labor-intensive and less objective when compared to obtaining
ROIs from normalized images, it can guarantee the accuracy of ROI location on the gray mat-
ter of the spinal cord, with high inter-observer and intra-observer reliability.

Conclusions

This study revealed the increase of ALFF in the gray matter of the cervical spinal cord after
CSM. The severity of clinical symptom in CSM is likely associated with the degree of ALFF
increase. The novel spinal cord rstMRI investigation facilitates the understanding of the mech-
anism of neurological development of CSM. It may promote future researches to improve
diagnosis, prognosis and management of CSM.
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