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Background: Wilms tumor (WT) is a widespread urologic tumor in children. Ferroptosis, on the other 
hand, is a novel form of cell death associated with tumor development. In this study, we aim to explore the 
predictability of ferroptosis-related biomarkers in estimating prognosis in WT patients.
Methods: To determine a link between ferroptosis-related gene expression and WT prognosis, we first 
collected RNA sequencing data and clinical information, involving 124 WT and 6 healthy tissue samples, 
from the TARGET database. Next, we screened the collected information for ferroptosis-related long non-
coding RNA using Cox regression analysis, and constructed a signature model, as well as a nomogram, 
related to prognosis. Finally, we explored a potential link between ferroptosis-related lncRNA and tumor 
immunity and screened for possible immune checkpoints.
Results: We constructed a WT prognosis prediction signature containing 12 ferroptosis-related lncRNAs. 
The area under the curves values, from the ROC curves, predicting overall survival rates at the 1, 3-, and 
5-year timepoints were 0.775, 0.867, and 0.891 respectively. Moreover, we generated a nomogram, using 
clinical features and risk scores, carrying a C-index value of 0.836, which suggested a high predictive value. 
We also demonstrated significant differences in tumor immunity between low- and high-risk WT patients, 
particularly in the presence of B cells, NK cells, Th1 cells, Treg cells, inflammation promoting, and type I 
and II IFN responses. In addition, we showed that immune checkpoints like SIRPA, ICOSLG, LAG3, PVRIG, 
NECTIN1, and SIRPB2 can serve as potential therapeutic targets for WT.
Conclusions: Based on our analyses, we generated a ferroptosis-related lncRNA signature that can both 
estimate prognosis of WT patients and may provide basis for future WT therapy.
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Introduction

Wilms tumor (WT) is a common embryonal kidney tumor 
that is prevalent among children <5 years of age (1). Being 
the fifth ranking childhood malignancy in the world, 1 in 
10,000 children typically experience abdominal mass or 
hematuria and are diagnosed with WT (2). In the 1930s, 
the survival rate of WT patients was <30%. Fortunately, 
with advancements in medical care, radical resection, and 
chemoradiotherapy, the survival rate has improved to 
>90% (3). However, the high-intensity chemoradiotherapy 
produce side effects that severely affect quality of life in 
WT patients (4,5). Meanwhile, there are no other treatment 
options for patients with poor tumor stage, bilateral lesions, 
and recurrence (6,7). Therefore, clarifying WT molecular 
mechanism, identifying potential therapeutic targets, and 
developing individualized treatment for WT are keys to 
improving patient prognosis and survival.

In recent years, ferroptosis has been widely regarded 
as a novel type of regulated cell death (8). The concept of 
ferroptosis was first proposed by Dixon et al. in 2012 (9). 
Unlike traditional cell necrosis and apoptosis, ferroptosis 
is characterized by oxidative cell death, resulting from 
massive accumulation of lipid reactive oxygen species 
(ROS), caused by dysregulation of the intracellular iron 
homeostasis (10). Recent reports have demonstrated a close 
association between ferroptosis and pathophysiology of 
multiple diseases (11-13). Hence, modulating ferroptosis to 
regulate development and progression of serious diseases has 
become a hot topic in academic research. Indeed, activation 
of ferroptosis-inducing agents was shown to strongly 
inhibit proliferation of renal cell carcinoma (14), pancreatic 
cancer (15), and liver cancer (16). Therefore, the search for 
ferroptosis-related biomarkers in predicting early diagnosis 
and prognosis of oncology patients is of utmost importance.

Currently, genome sequencing technology is the chief 
technique for identification of tumor related biomarkers (17). 
Long non-coding RNAs (lncRNAs) comprise more than 
80% of the human transcriptome (18). They play a key role 
in various physiopathological processes by regulating mRNA 
expression (19). Multiple evidences suggest a strong link 
between lncRNAs and tumor development (20,21). Hence, 
lncRNAs may have potential in the diagnosis and treatment 
of numerous tumors. Till date, ferroptosis-related lncRNAs 
have not been studied extensively. Here, we investigated 
the role of ferroptosis-related lncRNAs in the prognosis of 
WT patients. We analyzed gene sequencing information 
from 124 WT and 6 healthy tissue samples and constructed 

a prognostic signature containing 12 ferroptosis-related 
lncRNAs. In addition, we evaluated the predictability 
and immunologic characteristics of the ferroptosis-
related lncRNAs signature. Finally, we proposed potential 
therapeutic targets for improvements in WT management.

We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://dx.doi.
org/10.21037/tp-21-211).

Methods

Data collection and processing

RNA sequencing data from 124 WT and 6 healthy 
tissue samples and corresponding clinical reports were 
downloaded from the TARGET database, with the TCGA 
data portal (https://portal.gdc.camcer.gov/; Data Release 
28.0; release time: February 02, 2021). This study abided by 
the publication criteria provided by TCGA and, therefore, 
did not require ethics committee approval. To ensure 
accuracy in analysis, we selected sequencing data from 
primary tumor tissues for subsequent analysis. Relevant 
clinical data are summarized in Table 1. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Identification of ferroptosis-related lncRNAs

We obtained 259 ferroptosis-related genes from the 
FerrDb15 website (http://www.zhounan.org/ferrdb/) (22) 
and screened for ferroptosis-related genes within the WT 
verses healthy sequencing information, collected from the 
TARGET database. Next, Pearson correlation analysis was 
employed to assess correlations between ferroptosis-related 
genes and lncRNAs. Ferroptosis-related lncRNAs with 
correlation coefficient absolute value >0.6 and P value <0.05 
was considered closely related.

Generation and verification of the ferroptosis-related 
lncRNA signature

The differential expression of ferroptosis-related lncRNAs 
(DElncRNAs) between the WT and healthy samples were 
screened using the R software with the following criteria: 
|log2 fold-change (FC)| >1 and false discovery rate (FDR) 
<0.05. Next, the DElncRNAs with potential prognostic 
value were recognized using univariate Cox regression 
analyses. The identified DElncRNAs were then analyzed 

https://dx.doi.org/10.21037/tp-21-211
https://dx.doi.org/10.21037/tp-21-211
https://portal.gdc.camcer.gov/
http://www.zhounan.org/ferrdb/
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with the Lasso-penalized Cox regression analysis to generate 
the ferroptosis-related lncRNA signature. The formula used 
was as follows: Risk score = (expressionlncRNA1 × βlncRNA1) + 
(expressionlncRNA2 × βlncRNA2) + ... + (expressionlncRNAn × βlncRNAn). 
The patients were then assigned to one of two groups, 
low-risk or high-risk, according to their median risk score. 
Kaplan-Meier analysis and ROC curves were then employed 
to determine predictive power of the signature model.

Next, we analyzed the clinical characteristics (rank sum 
test) and predictability independence (Cox regression 
analysis) of the model. Additionally, we generated a 
nomogram of clinical characteristics and ferroptosis-related 
lncRNA signature to individualize the estimated 1-, 3-, 
5-year survival of WT patients. Lastly, concordance index 
(C-index) and calibration curves were employed to assess 
the prediction accuracy of the nomogram.

Construction of the lncRNA-mRNA co-expression network 
and functional enrichment analysis

The mRNAs significantly associated with ferroptosis-
related lncRNAs were recognized with Pearson correlation 
coefficient (absolute value >0.3 at P<0.05). Next, Cytoscape 
was employed to generate the lncRNA-mRNA co-
expression network. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment mRNA analyses of the lncRNA-mRNA co-
expression network were conducted with DAVID (https://
david.ncifcrf.gov/) and KOBAS 3.0 (http://kobas.cbi.pku.
edu.cn/kobas3/), respectively. The results of the analyses 
were visualized using R software.

Gene set enrichment analysis

The gene set enrichment analysis (GSEA) was utilized 
to investigate the differences in biological characteristics 
between the low- and high-risk groups. The analysis based on  
1,000 random permutations, and P value <0.05, FDR <0.25, 
|NES| >1 was considered to be significantly enriched.

Analysis of immunologic characteristics

Immune cells and responses between two groups were 
assessed with ESTIMATE (23), MCPcounter (24), 
CIBERSORT (25), and ssGSEA (26) algorithms. The 
enrichment levels of 16 immune cells and 13 immunologic 
functions were further quantified by ssGSEA to evaluate the 
immunologic characteristics of both groups. In addition, we 
predicted the potential immune checkpoints.

Statistical analysis

Overall survival (OS) differences between two groups were 
analyzed using log-rank test. The ssGSEA scores were 
compared with the Mann-Whitney test. Data analyses were 
conducted with packages within R (version 4.0.4). R and 
Cytoscape (version 3.8.2) were used for plotting. Lastly, 
P<0.05 was the significance threshold.

Results

Identification of prognostically significant ferroptosis-
related lncRNAs

We screened 239 ferroptosis-related mRNAs, in a total 
of 130 samples (124 WT and 6 healthy samples), with 

Table 1 Corresponding clinical features of 124 patients with Wilms 
tumor

Items
Patients, N=124

N %

Age

<5 79 63.710 

≥5 45 36.290 

Gender

Male 54 43.548 

Female 70 56.452 

Race

White 92 74.194 

Non-White 32 25.806 

Tumor stage

Stage I 16 12.903 

Stage II 49 39.516 

Stage III 46 37.097 

Stage IV 13 10.484 

Histologic classification

FHWT 42 33.871 

DAWT 82 66.129 

Survival status

Alive 74 59.677 

Dead 50 40.323 

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://kobas.cbi.pku.edu.cn/kobas3/
http://kobas.cbi.pku.edu.cn/kobas3/
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information from 259 ferroptosis-related genes (Table S1).  
We discovered 1,277 ferroptosis-related lncRNAs, using 
Pearson correlation analysis. Differential expression 
analysis of these lncRNAs revealed 443 DElncRNAs 
(Figure 1A, Figure S1). Univariate Cox regression analysis 
further recognized 26 ferroptosis-related lncRNAs that 
were closely correlated with OS. The top 10 ferroptosis-
related lncRNAs are i l lustrated in the forest plot  
(Figure 1B, Table S2).

Generation of the ferroptosis-related lncRNA signature

Using Lasso-penalized Cox regression analyses, we analyzed 
26 ferroptosis-related lncRNAs with close association with 
OS (Figure 2A,2B). Based on our analysis, 12 lncRNAs were 
strong predictors of WT patient prognosis (Table S3). Using 
this information, we generated a ferroptosis-related lncRNA 
signature model with the following formula: Risk score = 
(0.3281× AC007406.1 expression) + (-0.2534× AC005208.1 
expression) + (0.3987× LINC01770 expression) + (-0.5637× 
DLGAP1-AS2 expression) + (-0.2012× AP002761.4 
expression) + (0.3081× STPG3-AS1 expression) + (-0.1872× 
AC129507.1 expression) + (0.2002× AC234772.2 expression) 
+ (0.3068× LINC02447 expression) + (0.4400× AC009570.1 
expression) + (-0.3948× ZBTB20-AS1 expression) + 
(-0.2656× LINC01179 expression).

Next, we separated WT patients into low-risk and 
high-risk groups, based on the median risk score. Using 
Kaplan-Meier analysis, we revealed that the high-risk group 
experienced poor OS, compared to the low-risk group 
(Figure 2C). The ferroptosis-related lncRNA signature-
based OS predictability was then evaluated by ROC curves. 

The AUC values of 1-, 3-, 5-year were 0.775, 0.867, and 
0.891 respectively (Figure 2D). Figure 2E illustrates the 
risk score curve, survival status, and lncRNAs expression 
data of both groups. As shown, the death cases were 
concentrated in the high-risk group, relative to the low-
risk group. Moreover, the transcript levels of AC007406.1, 
LINC01770, STPG3-AS1, AC234772.2, LINC02447, and 
AC009570.1 were elevated in the high-risk group, relative 
to the low-risk group. Alternately, the levels of AC005208.1, 
DLGAP1-AS2, AP002761.4, AC129507.1, ZBTB20-AS1, 
and LINC01179 were diminished in the high- vs. the low-
risk group.

We also examined the association between the ferroptosis-
related lncRNA signature and clinical characteristics, such 
as, age, gender, race, stage, and histological classification. 
Based on our analysis, there was a strong correlation between 
the ferroptosis-related lncRNA signature and tumor stage 
and histological classification (Figure 3A). This suggests the 
possibility of using the ferroptosis-related lncRNA signature 
for dentification of tumor progression. To test whether this 
signature can independently predict WT patient prognosis, 
we further performed univariate and multivariate Cox 
regression analyses. Univariate Cox regression analysis 
revealed that the gender, tumor stage, and risk score strongly 
predicted WT patient prognosis (Figure 3B, Table S4) 
whereas multivariate Cox regression analysis revealed that 
tumor stage and risk scores were stand-alone estimators of 
WT patient prognosis (Figure 3C, Table S5). Furthermore, 
we plotted ROC curves of clinical characteristics verses 
ferroptosis-related lncRNA signature and demonstrated that 
the risk score AUC value (0.775) was far greater than other 
clinical characteristics (Figure 3D).
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Figure 1 Identification of ferroptosis-related lncRNAs in WT patients. (A) Volcano plot of DElncRNAs. (B) Forest plots of the hazard 
ratios (HR) of the top 10 ferroptosis-related lncRNAs. WT, Wilms tumor.
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Establishment of individualized prognostic prediction 
nomogram

To increase the accuracy of WT patient prognosis 
prediction, we generated a nomogram, based on the 
relationship between the clinical characteristics and 
ferroptosis-related lncRNA signature (Figure 4A). The 
nomogram had a C-index of 0.836, which enabled us to 
estimate the 1-, 3-, and 5-year survival of WT patients. 
Using calibration curves, we revealed that the predicted 
survival was very close to the actual survival (Figure 4B). 

Therefore, we confirmed the accuracy of the ferroptosis-
related individualized prognostic prediction nomogram.

Construction of the lncRNA-mRNA co-expression network

We also constructed a lncRNA-mRNA co-expression 
network to illustrate the relationships between RNAs 
(Figure 5A). This network consisted of 214 lncRNA-mRNA 
pairs, generated from 12 lncRNAs and 128 mRNAs. The 
risk characteristics of lncRNAs and mRNAs in the co-
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expression network are summarized in the Sankey diagram 
(Figure 5B). Next, we examined the biological functions 
of mRNAs within the network, using GO and KEGG 
enrichment analyses (Figure 5C,5D). Based on our analysis, 
the biological processes were enriched in the “oxidation-
reduction process”; the cellular components were enriched 
in the “cytoplasm”; and the molecular function was 
mainly enriched in “protein binding”. According to the 
KEGG analysis, the “metabolic pathways” and “pathway 
in cancer” were most enriched. Interestingly, mRNAs 
from the lncRNA-mRNA co-expression network were 
also enriched in immunologic pathways, such as, “Th17 
cell differentiation”, “T cell receptor signaling pathway”, 
“natural killer cell mediated cytotoxicity”, and “B cell 
receptor signaling pathway”. This is indicative of the 
ferroptosis-related lncRNAs being closely related to tumor 
immunity.

Gene set enrichment analyses

GSEA was employed for the analysis of enrichment 
differences between two groups (Figure 6). We revealed 

that the low-risk group was enriched in multiple immune-
related biological processes, such as “regulation of substrate 
adhesion”, “positive regulation of endothelial”, “regulation 
of NOTCH signaling pathway”, “lymphoid progenitor cell 
differentiation”, and “mature B cell differentiation involved 
in immune response”. It is possible that the low-risk group 
had better prognosis due to the possible enhancement of 
immune function. Given these data, the ferroptosis-related 
lncRNAs may potentially be associated with immune 
regulation.

Immunologic characteristics of ferroptosis-related lncRNAs

We further evaluated the relationship between WT 
patient prognosis and immune status using ESTIMATE, 
MCPcounter, CIBERSORT, and ssGSEA algorithms 
(Figure 7). The ssGSEA-based quantitative evaluation of 
the immunologic characteristics between the two groups 
revealed that there were marked differences between 
presence of immune cells and immunologic functions 
between two groups. In particular, immune cells like B cells, 
NK cells, Th1 cells, and Treg cells, as well as immunologic 
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functions, such as, inflammation-promoting and type I and 
II IFN responses were vastly different between the two 
groups (Figure 8A,8B). In addition, we screened immune 
checkpoints, and distinct differences were observed in the 
expression of SIRPA, ICOSLG, LAG3, PVRIG, NECTIN1, 
SIRPB2 between two groups (Figure 8C).

Discussion

WT is a common urological tumor in children. Despite 
advances in WT care, tumor stage and postoperative 
recurrence remain the main factors affecting long-term 
survival of patients (27). In recent years, ferroptosis has been 
discovered as a novel form of cell death (8). Moreover, it has 
been shown to regulate development of numerous tumor 

cells and suppress tumor sensitivity to chemotherapeutic 
agents (28,29). Till date, the function of ferroptosis in WT 
has not been elucidated. Given its intricate relationship in 
multiple tumors, the identification of ferroptosis-related 
biomarkers in WT patients is of utmost importance, 
especially in terms of diagnostic and prognostic evaluation. 
Furthermore, the search for potential therapeutic targets by 
revealing ferroptosis-related signaling pathways may help 
improve anti-tumor therapy for WT patients.

Being ubiquitously expressed in the human transcriptome, 
lncRNAs are critical to the occurrence and development 
of tumors (30). Therefore, it is particularly important to 
explore the ferroptosis-related lncRNAs in WT patients. 
Here, we systematically evaluated the ferroptosis-related 
lncRNAs in WT patients and generated a ferroptosis-
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related lncRNA signature for the prediction of patient 
prognosis. Additionally, we explored correlations between 
the ferroptosis-related lncRNA signature and immunologic 
characteristics to identify potential therapeutic targets for 
the management of WT.

We first identified 12 ferroptosis-related lncRNAs 

(AC007406.1, AC005208.1, LINC01770, DLGAP1-AS2, 
AP002761.4, STPG3-AS1, AC129507.1, AC234772.2, 
LINC02447, AC009570.1, ZBTB20-AS1 and LINC01179) 
using univariate Cox and Lasso-penalized Cox regression 
analyses, and established a ferroptosis-related lncRNA 
signature model to evaluate prognosis. DLGAP1-AS2 was 
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previously shown to target YAPP1 and promote glioma 
tumorigenesis (31). In addition, it was also shown to 
promote hepatocellular carcinoma and cholangiocarcinoma 
progression via regulation of miR-154 and miR-505, 
respectively (32,33). However, other ferroptosis-related 
lncRNAs have not been studied in relation to tumors, and, 
therefore, requires additional investigation. 

We next tested the accuracy of our signature model’s 

predictive power, using Kaplan-Meier and ROC curves. 
The AUC values for our model predicting the 1-, 3-, and 
5-year OS rate were 0.775, 0.867 and 0.891 respectively. 
Given that  AUC values  >0.70 indicate  excel lent 
performance, our signature model had high predictability 
value. Moreover, our predictability value was better than a 
WT risk evaluation model constructed by Ren et al. using 
thigh-riskee lncRNAs (34). Next, we explored correlations 
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between the lncRNAs signature model and clinical 
characteristics, and found tumor stage and histological 
classification to be strongly correlated with the lncRNAs 
signature. This implies that the risk score has great potential 
for evaluating the prognosis of WT patients. We further 
tested this correlation using multivariate Cox analysis and 
showed that the risk score can be an efficient stand-alone 
estimator of WT patient prognosis.

Nomograms are widely used in oncology medicine 
as formulative diagrams to understand the relationship 
between a patient’s individualized survival status and clinical 
variables (35). We, therefore, generated a nomogram based 
on the risk score and clinical variables like age, gender, race, 
stage, and histologic classification. Through the nomogram, 

we confirmed that the tumor stage and risk score are the 
main determinants of WT patient prognosis. Generally, a 
c-index >0.5 is considered to have predictive value. Pan et al. 
constructed a prognostic nomogram for WT patients with 
a c-index of 7.46 (36). We achieved a higher c-index value 
of 0.836, suggesting a better predictive value. Furthermore, 
calibration curves showed that our predicted survival were 
similar to actual survival. Collectively, this nomogram 
demonstrated great potential in predicting long-term 
survival in WT patients and can be adapted into clinical 
practice in the future.

LncRNAs exert biological functions by regulating mRNA 
expression (37). Hence, to delineate the role of lncRNA 
in WT progression, we generated a lncRNA-mRNA co-
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expression network, using the ferroptosis-related lncRNAs, 
and analyzed its underlying molecular mechanisms with 
GO and KEGG analysis. GO analysis revealed that the 
co-expression network mRNAs were mostly enriched 
in the oxidation-reduction process and protein binding. 
It is possible that this is related to the induction of lipid 
peroxidation after ferroptosis activation (38). On the 
other hand, the chief enriched KEGG pathways involved 
metabolic, cancer, and immunologic pathways. Given its 
enrichment of the immunologic pathway, we hypothesized 
that ferroptosis-related lncRNAs may regulate tumor 
immunity. As we expected, GSEA results demonstrated 
that the low-risk WT samples were enriched in multiple 
immunologic pathways, further suggesting a link between 
ferroptosis-related lncRNAs and tumor immunity.

Given the relevance of ferroptosis-related lncRNAs 
in tumor immunity, we next assessed differences among 
immune cells and within immunologic functions between 
two groups using ssGSEA. We demonstrated a marked 
decrease in B cells, Th1 cells, and Treg cells in the high-
risk group, whereas NK cells were remarkably elevated. 
This is suggestive of the NK cells becoming predominant 
within the tumor microenvironment of WT high-risk 
patients. In a study by Sottile et al., reduction in iron and 
ferritin modulate content in tumor cells was shown to 
activate NK cells (39), thereby indicating a link between 
ferroptosis and NK cell activation. Moreover, differential 
analysis of immunologic functions revealed an increased 
type I IFN response in the high-risk group, along with a 
simultaneous decrease in type II response. This may be 
related to a potential dual mechanism of the type I IFN (40). 
In addition, the decreased type II IFN response is indicative 
of poor antigen-presentation in high-risk patients, which 
may contribute to poor prognosis (41). Recent evidences 
reveal that abnormal levels of immune checkpoints may be 
an important factor in cancer development (42). Therefore, 
we screened immune checkpoints genes for differential 
expression between the low- and high-risk groups. Based 
on our analysis, the SIRPA, ICOSLG, LAG3, PVRIG, 
NECTIN1, and SIRPB2 genes were markedly different 
between two groups and, therefore, can be used as potential 
therapeutic targets for the management of WT.

Admittedly, there were several limitations in our study. 
First, due to the rarity of the disease, we only performed a 
search of the TARGET database, which was not multicenter 
validated. Secondly, the TARGET database selected for 
this study contained only 124 Wilms tumors and 6 healthy 
tissue samples. In the future, we will collect more data to 

strengthen our study. Finally, this study was retrospective 
in nature and based on database analysis. Hence, further 
clinical confirmation is needed to validate the results in the 
future.

Conclusions

In summary, we established a ferroptosis-related lncRNA 
signature for the prediction of WT patient prognosis and 
provided potential therapeutic targets for the treatment of 
WT. To aid in individualized prognosis, we also generated a 
nomogram using clinical characteristics. Lastly, we detected 
a close relationship between ferroptosis-related lncRNAs 
and tumor immunity, which is impaired in WT patients, 
and screen for potential immune checkpoints.
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