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Abstract

New emerging infectious diseases are identified every year, a subset of which become

global pandemics like COVID-19. In the case of COVID-19, many governments have

responded to the ongoing pandemic by imposing social policies that restrict contacts outside

of the home, resulting in a large fraction of the workforce either working from home or not

working. To ensure essential services, however, a substantial number of workers are not

subject to these limitations, and maintain many of their pre-intervention contacts. To explore

how contacts among such “essential” workers, and between essential workers and the rest

of the population, impact disease risk and the effectiveness of pandemic control, we evalu-

ated several mathematical models of essential worker contacts within a standard epidemiol-

ogy framework. The models were designed to correspond to key characteristics of cashiers,

factory employees, and healthcare workers. We find in all three models that essential work-

ers are at substantially elevated risk of infection compared to the rest of the population, as

has been documented, and that increasing the numbers of essential workers necessitates

the imposition of more stringent controls on contacts among the rest of the population to

manage the pandemic. Importantly, however, different archetypes of essential workers dif-

fer in both their individual probability of infection and impact on the broader pandemic

dynamics, highlighting the need to understand and target intervention for the specific risks

faced by different groups of essential workers. These findings, especially in light of the mas-

sive human costs of the current COVID-19 pandemic, indicate that contingency plans for

future epidemics should account for the impacts of essential workers on disease spread.

Introduction

New emerging infectious diseases are identified every year [1], a subset of which become global

pandemics (e.g., COVID-19, H1N1, HIV, and Zika). In the past 20 years alone, several viral

respiratory diseases have emerged [2], including three resulting from novel coronaviruses
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(SARS, MERS, and COVID-19), many of which required public health interventions to pre-

vent disease transmission [3–5]. In the case of COVID-19, these interventions often involve

some form of “shelter in place” (SIP) in which the majority of the population remains in their

homes except for essential activities like grocery shopping. The motivation is to either locally

eradicate the infection, or to reduce its spread enough to decrease peak demand on healthcare

and gain time to develop testing capacity, therapies and vaccines. SIP orders have been guided

by extensive modeling of the COVID-19 pandemic to predict its future and understand its

impact on the population under various scenarios, including different stringencies of SIP (e.g.,

[6–8]).

By necessity, SIP involves exceptions for “essential workers”, typically including those

involved in the delivery of health care, the production and distribution of food, emergency ser-

vices and defense, public works and utilities, communications and information technology,

and logistics and delivery. The fraction of workers designated as essential varies geographically

due to different regulations and the makeup of the local economy [9]. Within the United

States, industries designated as essential are estimated to employ approximately 40% of the

workforce [9]. In New York City, workers in categories deemed essential (as of March 2020

[10]) are estimated to comprise a quarter of the workforce [11], or over 1M people, of whom

over half are employed in healthcare and 15% in grocery, convenience and drug stores. Esti-

mates in California are that one in eight individuals is considered an essential worker [12].

The sheer number of essential workers, and their exemptions during SIP, suggests they may

have unique and substantial impacts on epidemic control. By necessity, essential workers

maintain many of their contacts [13, 14], which puts them at both increased risk of becoming

infected and of potentially infecting others [15–22]. Moreover, different types of essential

workers differ in their contacts among themselves and with others, which suggests their risks

of infection and of infecting others plausibly differ as well. Yet while healthcare workers have

received a great deal of attention, for obvious reasons, other kinds of essential workers much

less so. Despite their likely impact on epidemic dynamics, most models of the COVID-19 pan-

demic, including those used to guide policy [23–28] do not explicitly consider essential work-

ers, let alone differences among them. Thus, we lack an understanding of the impacts that

essential workers have on the spread of the pandemic and of policy measures that could ame-

liorate these impacts.

As a step toward closing this gap, here, we extend the widely-employed “SEIR” epidemio-

logical model [6–8] to qualitatively evaluate the individual infection risk faced by different

types of essential workers, and the impact that essential workers have on pandemic control.

Similar to models that compartmentalize the population by location (e.g., zip code or county

[23, 29]) or by age [26, 28], we explicitly model transmission within and between two subpopu-

lations: essential workers and everyone else. We focus on the impact of essential workers on

the spread of COVID-19, but our results should generalize to any infectious disease where SIP

is used to prevent transmission.

Modeling essential workers

We began by implementing a standard SEIR model to describe the dynamics of COVID-19 in

a population (Fig 1A). Following previous work [6–8], we included three types of infected indi-

viduals, corresponding to those destined to a) show no symptoms, b) have symptoms but not

require hospitalization, and c) require hospitalization. We also included three types of hospi-

talized individuals corresponding to those who will a) recover without critical care, b) require

critical care but will recover, and c) die after receiving critical care. We make the standard,

simplifying modeling assumption that recovered individuals cannot be reinfected.
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We parameterized the differential equations that describe the rate at which individuals tran-

sition between model states based on the epidemiological literature for COVID-19 (see

Table 1), and chose the lockdown date based roughly on New York City (see Modeling

Details). Although it was not our goal to model the outbreak in any particular region, we veri-

fied that the parameters used match observed pandemic dynamics during March and April of

2020 in three US cities (see Section 5 Fitting to empirical data of S1 Appendix). In S1 Appen-

dix, we vary parameter values to check that our qualitative results are insensitive to variation

within the range examined (See Figs 1–16 in S1 Appendix for alternative versions of Fig 2, Figs

17–29 in S1 Appendix for Fig 3, and Figs 20–46 in S1 Appendix for Fig 4).

We next created two cloned instances of the SEIR model, one for essential workers and one

for everyone else, and connected them via terms that describe the probability that an infected

individual in one subpopulation infects a susceptible individual in the other (Fig 1B–1D). In

what follows, we refer to these two subpopulations as essential workers (EWs) and non-essen-

tial-workers (nEWs), the latter category encompassing all other workers and people not in the

labor force. The models for EWs and nEWs have identical structure and parameters, except

for the within and between subpopulation transmission rates. We do not attempt to fit the

model including EWs due to lack of longitudinal data on infections differentiating EWs from

nEWs (see Discussion).

Fig 1. Diagram of the SEIR model with extensions. A) An illustration of the basic SEIR model used in all scenarios, including additional compartments within the

infected (outlined in green) and hospitalized (outlined in blue) classes. ‘S’ is susceptible, ‘E’ is exposed, ‘I’ is infected, ‘H’ is hospitalized, ‘D’ is dead, and ‘R’ is recovered.

Within the infected class, individuals can be asymptomatic ‘IA’ and destined to recover; symptomatic ‘IR’ but destined to recover; or symptomatic ‘IH’ and destined to be

hospitalized. Within the hospital, individuals either go to recovery ‘HR’ or go to critical care ‘Hc’. For those in critical care, individuals either die ‘CD’ or go on to the

recovered class ‘CR’, with an additional time spent in the hospital ‘L’. B) To model the impact of EWs, who make up a proportion f of the total population, we created two

cloned instances of the SEIR model. Here, for visualization, the infectious and hospitalized classes are collapsed into a single compartment. The β terms represent the

transmission routes between infectious individuals within and between essential ‘E’ and non-essential ‘N’ groups. In the model of public-facing EWs (such as cashiers,

transportation workers and public safety personnel), SIP reduces contacts (highlighted in red) only among nEWs. C) In the model of non-public-facing EWs (such as

factory, warehouse, and agricultural workers), SIP reduces all contacts (highlighted in red) except for those among other EWs. This model is relevant for EWs that can

social distance from nEWs but not from each other. D) To model the impact of healthcare workers, an additional infectious route (βH) is included from within the

hospitalized compartments to susceptible individuals in the essential group.

https://doi.org/10.1371/journal.pone.0255680.g001
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For our analysis, the critical characteristic of EWs that distinguishes them from nEWs is

that they maintain a substantial fraction of their work-associated contacts after the institution

of SIP. However, there is great diversity among EWs in their contact profiles. For example, fac-

tory, warehouse and agricultural workers retain contacts with the other employees at their

Table 1. Parameter estimates for the model.

Parameter Description Literature Estimates Values Used

R0 2–5 [30] 3

2.4–2.6 [7]

2–7 [31]

1.5–6.5 [32]

tE Latency period 4.6 days [6,7] 3 days�

5 days (1–14) [32–35]

tIA Infectious period (asymptomatic class) 5 days [6, 7, 34] 5 days

8 days [33]

tIR Time of between infection and recovery (mild symptoms) [infectious period for mild cases] 5 days [6, 7, 36] 5 days��

8 days [33]

Median 2 weeks [37]

~12 days [38]

< 18 days [39]

1–2 weeks [40]

tIH Time between infection and hospitalization 5 days [6, 7, 34] 5 days

1 week [37]

5–12 days [41]

7 +/- 4 days [42]

tHR Time in hospital (with no critical care) 8 days [6, 7] 8 days

11 days [33]

Total duration of infectious period through critical care path (to recovered or dead) 21 days [6, 7] 21 days

3–6 weeks [37]

16–23 days [42]

tHC Time in hospital before critical care 6 days [6, 7] 6 days

tCR Time in critical care before recovery 10 days [6, 7] 7 days���

Includes tCR and tL
tL Time in hospital after leaving critical care - 3 days���

tCD Time in critical care before death 10 days [6, 7] 10 days

pEIA Proportion of infections that are asymptomatic 33% [6, 7] 17.9% [43] 33%

13.5% [44] 25% [45]

pEIH Proportion of infections requiring hospitalization 4.4% [6, 7] 4.4%

pEIR Proportion of symptomatic not requiring hospitalization - 62.6%

pIHR Proportion of hospitalizations that do not require critical care - 70%

pIHC Proportion of hospitalizations that require critical care 30% [6, 7, 46] 30%

26%-32% [41]

pHCR Proportion of recoveries from critical care - 50%

pHCD Proportion of deaths in critical care 50% [6, 7] 50%

39% to 72% [41]

� We reduce the latency period from approximately five days to three days to account for pre-symptomatic transmission [38, 39]. When there is substantial variation in

estimates of a parameter, we choose what appears to be the consensus value (e.g., �� tIR = 5 days).

��� We split the estimate of ten days in critical care before recovery into seven days in critical care and three days in the hospital after leaving critical care.

https://doi.org/10.1371/journal.pone.0255680.t001
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place of work, but have their contacts with the remainder of the population reduced by SIP.

Others, such as cashiers, transportation workers, and police have frequent contacts with many

people who are nEWs. Hospital workers, in turn, are in contact not only with themselves, but

also with the people hospitalized with the virus.

We therefore generated three separate EW-containing SEIR models, one for each of these

archetypal EWs. These models differ in how an individual’s contacts are distributed within

and between subgroups, in how SIP affects these contacts, and, for healthcare workers, in

which individuals are the source of new infections.

The three models have two shared parameters: f, the fraction of the population that are

EWs; θ, the remaining proportion of individual to individual disease transmission after social

distancing (θ = 1 is no social distancing; θ = 0 is complete isolation for everyone). Without

EWs (f = 0), the pandemic is suppressed when R0θ (the post-SIP number of new infections

expected to arise from an infected individual in a fully susceptible population) is less than one.

Mathematical details and full parameter choices for each model are described in the Model-

ing Details section; the implementation and the results of simulations with these models (as

well as variations on them) are available in S1 Appendix.

Model 1: Public-facing essential workers (Fig 1B)

We began by considering workers such as cashiers and other shopworkers, transportation

workers and public safety personnel, whose work involves extensive contact with nEWs. The

critical feature of our model of such “public-facing” EWs is that only contacts among nEWs

are reduced by SIP.

Model 2: Non public-facing essential workers (Fig 1C)

Unlike public-facing EWs, factory, warehouse, and agricultural workers interact extensively

with other EWs, but their work does not involve contact with nEWs. The critical feature of our

model of such “non-public-facing” EWs is that all contacts except those among EWs are

reduced by SIP. We further assume that half of non-public-facing EW’s contacts are with

other essential workers; in contrast, for public-facing essential workers, we assume contacts

between subpopulations are symmetric and proportional to subpopulation size. These features

are meant to account for frequent and close contacts in the workplace, and may be essential to

explaining outbreaks within, say, factories [47, 48].

Model 3: Healthcare workers (Fig 1D)

Frontline healthcare workers are exposed to infected individuals in hospitals and other critical

care settings. We therefore created a specific “healthcare worker” model with an additional

interaction term describing the rate at which individuals hospitalized with COVID infect sus-

ceptible healthcare workers (see Modeling details). Neither these hospital-specific infections

nor infections among healthcare workers are affected by SIP, in contrast to contacts between

healthcare workers and nEWs, as well as contacts among nEWs. Similar to the non-public-fac-

ing essential worker model, we assume half of healthcare workers’ contacts are with other

healthcare workers because of their close contact at the workplace (see Figs 10, 23, and 40 in S1

Appendix for results with proportionate mixing). For simplicity, we further assume all

COVID-19 patients in any hospital compartment are equally infectious (see Figs 16, 29, and 46

in S1 Appendix for results where only patients in the HR and HC compartments are

infectious).
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Results

Essential workers have elevated infection risk

We began by examining the personal infection risk of each class of EW. Fig 2 shows the cumu-

lative fraction of EWs and nEWs infected as the pandemic progresses for each model, with f =

0.05 (5% of the population is EWs) and θ values corresponding to partially effective (θ = 0.5

and R0θ = 1.5), effective (R0θ = 0.9 and θ = 0.3) and highly effective (R0θ = 0.5 and θ = 0.16)

SIP.

For all three models, EWs have a substantially higher risk of infection than nEWs. The risk

is greatest for healthcare workers, who, under our model parametrization, are nearly all

infected quite rapidly, even when the rest of the population is under stringent SIP. But both

public-facing and non-public-facing EWs have much higher risk than nEWs: non-public-fac-

ing EWs are susceptible to the wave of infection that sweeps through their workplaces even

after SIP, while public-facing EWs are exposed to infected people at a much higher rate than

those under SIP.

Our model predicts a somewhat higher infection prevalence over the first 100 days than

seems plausible, likely because we are not taking into account measures taken by EWs, in par-

ticular healthcare workers, to reduce transmission in their workplaces.

Public-facing essential workers increase infection risk in the remainder of

population

Although the individual risk to public-facing EWs is relatively low, they have a substantial

impact on nEWs. In conditions when SIP would be expected to be effective at controlling the

growth of the pandemic (R0θ<1), having 5% of the population working in public-facing EW

jobs leads to a nearly 50% increase in the number of nEWs who are infected (Fig 2).

We were initially surprised that the high rate of infection of both non-public-facing and

healthcare EWs led only to marginal increases in the infection risk for nEWs (Fig 2). However,

the combination of the model assumptions of a relatively small EW subpopulation (5% of the

Fig 2. Cumulative infection rates among EWs and nEWs for different scenarios and values of θ. The dashed and solid lines correspond to EWs and nEWs

respectively. Note that the ordering of the colors is not the same for EWs and nEWs. The proportion of EWs, f, is assumed to be 0.05 for all models. Alternative values of

f yield similar qualitative results, as do alternative values of other parameters (see Section 2 and Figs 1–16 in S1 Appendix).

https://doi.org/10.1371/journal.pone.0255680.g002
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total), that half of EW contacts are with other EWs (see Model Details), and SIP suppression of

contacts between EWs and the rest of the population means that, even when there is rampant

infection among EW, there is a low leakage of infections to nEWs. And, although some trans-

mission from EWs to nEWs does occur, those infections lead to little onward transmission

among nEWs, due to the SIP.

Effects on pandemic control of increasing number of essential workers

The differing effects of EWs on disease risk in EWs and nEWs led us to next examine how the

different types of EW impact the pandemic. Fig 3 shows the total fraction of the population

expected to be infected after one year as a combined function of f and θ for all three EW mod-

els (Fig 3A), as well as the breakdown for EWs (Fig 3B) and nEWs (Fig 3C). The red contour

line in each panel of Fig 3 represents f, θ values for which the total fraction of the population

infected after one year is equal to the fraction infected for f = 0 and R0θ = 1. Values below and

to the right of this band result in fewer people infected, values above and to the left in more.

Fig 3. Heatmaps of cumulative infections after a year in the total population (A), in nEWs (B), and in EW (C). The red contour lines correspond to f,
θ values for which the prevalence of infection over a year in the population or subpopulation is equal to the prevalence without EWs (i.e., f = 0) and

R0θ = 1. These contour lines are absent in the two bottom right-most panels, because when f>0, the prevalence in EWs is greater than that expected

with f = 0 and R0θ = 1. For equivalent figures with alternative choices of parameter values, see Section 3 and Figs 17–29 in S1 Appendix.

https://doi.org/10.1371/journal.pone.0255680.g003
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In all models, increasing the number of EWs requires a compensatory increase in the strin-

gency of SIP. However, there is considerable difference in the stringency required in each case.

An approximately two-fold greater decrease in R0θ is required to compensate for an increase

in the number of public-facing EWs compared to the same increase in the number of non-

public-facing and healthcare EWs.

Dynamics of infections to, from and within essential worker

subpopulations

The differences in infectious interactions within and between subpopulations after SIP results

in a complex dynamics of the number and source of infections of EW and nEW over the

course of a year. To investigate their nature, and understand how they manifest in the three

different EW models, we examined the prevalence (the number of infected individuals on a

given day) of infection in EWs and nEWs assuming f = 0.05 and R0θ = 0.5 as a function of

time (Fig 4A).

Before SIP, the epidemic progression is identical in public facing EWs, non-public facing

EWs, and nEWs (Fig 4A) and the fraction of infected individuals that are EWs reflect their

proportion in the population f (Fig 4B). Healthcare workers, however, bear a proportionally

larger burden of the epidemic even before SIP, because they are subject to additional within-

hospital infections (Fig 4B).

After SIP is imposed, the prevalence of infections in nEWs begins to decline, but, because

EWs cannot social distance as effectively as nEWs, the prevalence in EWs continues to rise,

albeit more slowly (Fig 4A). In all three models, infections in EWs rapidly peak, after which

EW prevalence decays at the same rate as nEW prevalence, albeit at a higher level. There is,

however, a striking difference between the public-facing EW model and the other two, with

both a slower decay of prevalence, and less of a gap between EWs and nEWs in the public-fac-

ing EW model.

This difference is more evident when examining the fraction of all infections that are in

EWs as a function of time (Fig 4B). In the public-facing EW model, there is a rapid rise from

the initial setting of 0.05 to a peak of 0.15, where it levels off. In contrast both the non-public

facing and healthcare EW models reach a point where roughly half of all infections occur in

EWs before stabilizing slowly to a value of approximately one third. This difference arises

because under the public-facing worker model, the rate of contact between EWs and nEWs is

not reduced by SIP, decreasing the divergence in the rate of infection of the two subpopula-

tions. In contrast, in the non-public facing and healthcare worker models, SIP largely decou-

ples the epidemic of EWs from nEWs. Thus, the increased prevalence among EWs does not

cause substantially more infections among nEWs, resulting in EWs comprising a dispropor-

tionately large proportion of the infections (i.e., >>f).
The changes in the distribution of infections across the EW and nEW subpopulations over

time results in complex, shifting patterns of who is infecting who (Fig 4C). In all models,

before SIP, most infections spread among nEWs, as they constitute the vast majority of the

population. Immediately after SIP, infections stemming from contacts that are reduced by SIP

drop sharply (e.g., EN in non-public facing and NN in all models) and conversely, the propor-

tion of infections from contacts unaffected by SIP increases. In the public-facing EW model,

there is a rapid shift post-SIP to there being a roughly equal probability that a new nEW infec-

tion came from either another nEW or an EW—a striking result given that only 5% of the pop-

ulation are EWs. In contrast, public-facing EWs are roughly ten times more likely to be

infected by a nEW than an EW.
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Fig 4. Time resolved dynamics of infections, for f = 0.05 and R0θ = 0.5. Times before the implementation of SIP (day 53) are denoted by the grey shade. A) Time-

resolved proportion of EWs (dashed lines) and nEWs (solid lines) that are infected. B) The fraction of infected individuals that are EWs. Prior to SIP, this fraction is

f, except in the healthcare model where EWs also become infected from individuals within the hospital compartments. After SIP, this fraction increases, i.e., EWs

bear a proportionally larger burden of the epidemic. C) Where new infections originate. SIP reorganizes the flow of infections through the subpopulations in a

model-dependent manner. The acronyms denote different types of transmission, with the first and second letters denoting the infecting and the infected

subpopulation respectively (e.g., EN is infections from EWs to nEWs); WH refers to infections that occur within hospitals. For equivalent figures with alternative

choices of parameter values, see Section 4 and Figs 30–46 in S1 Appendix.

https://doi.org/10.1371/journal.pone.0255680.g004
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The non-public-facing EW model has quite different dynamics. It takes longer for EWs to

become a significant source of new infections for nEWs, a product of the time it takes for the

infection to spread extensively within the EW subpopulation. In contrast to the public-facing

model, where EW to nEW and nEW to nEW are effectively tied for the most common type of

infection transfer, in the non-public-facing model, the two most common infection types are

both within group terms. The dynamics of the healthcare EW model are largely similar to the

non-public-facing EW model, except that infections associated with hospital care of infected

individuals become a major source of infection for healthcare EWs.

Thus it is a fundamental aspect of all three EW models that one important and potentially

observable feature of the pandemic—who is infecting who—is expected to change over time.

Discussion

It is intuitive that, when populations are sheltering in place to reduce virus transmission, EWs

whose jobs require them to maintain contacts with each other and/or the public have a higher

risk of infection, and, if infected, an increased probability of spreading. Yet the precise nature

of this effect has received relatively little attention in COVID-19 modeling and public plan-

ning. Our goal here was to address a critical issue, how variation in the contact profiles of com-

mon types of EWs affect their disease risk and efforts to control the pandemic, within the

context of the epidemiological models that are widely used to guide policy decisions.

We emphasize that, while our modeling leads to several general observations about the

potential effects of EWs on the pandemic dynamics, especially for COVID-19, it was not

designed to predict pandemic progress in specific populations. Fitting models including essen-

tial workers is all the more challenging, since existing data on essential workers is often limited

to cross-sectional measurements (e.g., infection prevalence on a single day, total deaths, or

seroprevalence) compared between essential (or frontline) workers and others [15–17, 20–22]

and is confounded by correlated factors (e.g., neighborhood location, socioeconomic status,

family size, and race/ethnicity) [15, 49]. Moving towards predictive models would require, at a

minimum, accurate data on contacts among EWs and between EWs and nEWs in the specific

context being modeled, incorporation of demographic differences in EW and nEW subpopu-

lations, and treatment of the compartmentalization of both subpopulations into specific work-

places and households [11, 50–52].

Moreover, the R0 value we used in the model may be more representative of urban areas,

which, because of population density, public transportation and other factors, tend to have

higher rates of contact than do regions with lower population density [53]. Nonetheless,

empirical data on rates of infection and fatalities in groups of EWs in urban areas hard-hit by

COVID-19 paint a clear picture of increased individual risk [54–57], and the models developed

here suggest that, at a minimum, this is likely to be a pervasive challenge in population centers.

There is also evidence for elevated EW risk in factories and food-processing facilities in areas

with lower population density [58]; however we did not explore how the various models

behave in such conditions. Additionally, we treat all parameters as fixed over time, ignoring

the emergence of new viral variants with higher R0 or differences in other epidemiological

parameters [59].

We also have not fully explored the full range of scenarios that our models could capture. In

particular, we focused on the impact on and of EWs within the context of SIP orders applied

in the midst of a rapidly growing local outbreak, as occurred repeatedly across the planet in the

first few months of the COVID-19 pandemic. EWs may have a very different disease risk and

impact on the epidemic when SIP is applied before a large number of individuals are infected,

or after the outbreak is much farther along or already under control. There is also likely to be a
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significant effect of the conditions under which EWs under consideration live and work (e.g.,

[60]). Our models, for example, do not take into account protective measures taken by EWs,

in particular healthcare workers, which are likely to ameliorate infectious transmission among

EWs and between them and nEWs (notably for public-facing EWs).

These limitations notwithstanding, it is clear that the type of essential work in which a per-

son is engaged has a big effect on their individual and collective risk of infection. For example,

even with limited exposure to the public, EWs at high interaction workplaces such as

manufacturing and food processing facilities, or with high exposure to infected individuals,

are at the highest individual risk of infection. But more public-facing workers, such as cashiers,

even when they have a much lower individual risk, can have a much greater impact on the

pandemic.

The specific observations depend on our modeling assumptions and parameters, yet these

results highlight the importance of not treating EWs as an undifferentiated class. Our model

established the extent of EW interaction with nEWs as a critical feature in studying the effects

of SIP orders and EWs on individual and collective risk. Similar to models that include sepa-

rate compartments to differentiate populations by age or neighborhood, we should also differ-

entiate subpopulations that have fundamentally distinct contact profiles, such as EW versus

nEWs. Including essential workers can have substantial effects on the predicted number of

infections and deaths from COVID-19 [61]. While models that account for heterogeneity in

disease spread [14] capture some features of our model, understanding the effects of specific

types of workers and any related interventions requires that essential workers be modeled

explicitly.

Although our model is parameterized using data from COVID-19 infections, we expect our

qualitative findings to generalize to similar future pandemics. The success of SIP orders and

social distancing in slowing COVID-19 transmission [62, 63] suggests that they are likely to be

used as tools for controlling future pandemics. However, all SIP orders require a substantial

fraction of the population be exempt from SIP to maintain essential services. How many and

which workers should be exempt from SIP orders deserves further consideration and will

depend on characteristics of the virus (e.g., on R0).

In that regard, our model makes clear that policy decisions should consider both the collec-

tive and individual risk associated with the numbers and contact profiles of different types of

EWs. For example, a larger pool of EWs requires that the remainder of the population shelter

in place more stringently to maintain pandemic suppression. EWs in greater contact with the

much larger nEW subpopulation contribute more to collective risk and thus require greater

increases in stringency. Policy decisions regarding EWs must consider the willingness and

ability of nEWs to increase the stringency of SIP.

Alternatively, policy decisions could mitigate the contact profiles, and therefore disease

transmission, of EWs. While we treat these profiles as static, they are not: the deployment of

personal protective equipment, workplace social distancing policies, and vaccines in both EWs

and nEWs can play a significant role in limiting EW exposure to infected individuals, and, if

infected, minimizing their role in disease transmission [64]. Widespread workplace testing for

infections and temporary removal of infected individuals from the workplace would also

reduce transmission. Modeling efforts like ours can help inform the best way to target these

interventions, including optimal vaccine allocation (e.g., [65–67]).

Modeling details

We were guided by two principles in designing our models for different types of EWs. First,

we wanted them to capture essential characteristics of archetypes of EWs: cashiers interact
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extensively with the public, factory workers and healthcare workers have a large fraction of

their contacts in the workplace, and healthcare workers are exposed to a unique infection risk

from their exposure to a high concentration of infected individuals. Second, we wanted the

models to be simple enough that we could connect the modeling results back to these essential

characteristics. Hence none of these models should be considered to fully represent a real

group of EWs; rather they represent distinct essential characteristics that are often found in

real groups of EWs.

All models are described in terms of the number of potentially infectious contacts per day,

where these contacts are apportioned between subpopulations according to βij, which represents

the number of contacts an individual in subpopulation i has with individuals in subpopulation j.
Representing EWs by E and nEWs by N, the four corresponding parameters are βNN, βNE, βEN, and

βEE. We assume that contacts are symmetric, such that with proportion f of EWs and 1−f of NEs:

ð1 � f ÞbNE ¼ fbEN :

We further assume that before SIP every individual has a set total number of contacts βT
such that:

bNE þ bNN ¼ bEE þ bEN ¼ bT:

For public-facing EWs, we assumed that before SIP contacts between subpopulations are

proportional to the susceptible subpopulation’s size such that:

bEE ¼ fbT; bEN ¼ ð1 � f ÞbT; bNE ¼ fbT; and bNN ¼ ð1 � f ÞbT:

As we are further assuming that public-facing EWs contacts are unaffected by SIP, θ is

applied only to βNN, such that after SIP the parameters are:

bEE ¼ fbT; bEN ¼ ð1 � f ÞbT; bNE ¼ fbT; and bNN ¼ θð1 � f ÞbT:

For non-public-facing and healthcare EWs, prior to the proportional assortment of con-

tacts, we reserve a fraction ρ of their contacts to be with other EWs. Thus, we assume that

before SIP:

bEE ¼ ðrþ f ð1 � rÞÞbT; bEN ¼ ð1 � f Þð1 � rÞbT; bNE ¼ f ð1 � rÞbT; and

bNN ¼ ð1 � f ð1 � rÞÞbT:

We further assume that all contacts except the ρβT reserved to be among EWs in the work-

place are reduced by SIP, and thus post SIP the parameters are:

bEE ¼ ðrþ yf ð1 � rÞÞbT; bEN ¼ θð1 � f Þð1 � rÞbT; bNE ¼ θf ð1 � rÞbT; and

bNN ¼ yð1 � f ð1 � rÞÞbT:

For the examples presented here, we set ρ = 0.5. We show results with ρ = 0 in Figs 10, 23,

and 40 in S1 Appendix.

The healthcare model builds on the non-public facing model, but in this case all hospital-

ized individuals have an extra βHE contacts with healthcare workers per day. We assume βHE
scales with the number of healthcare workers, and parameterize the choice of its value such

that a healthcare worker is κ times more likely to get infected by a nEW than is a nEW (see Sec-

tion 5 of S1 Appendix for details). In the main text, we set κ = 1.5. Alternative parameter values

and parameterization of βHE are explored in Section 5 of S1 Appendix.
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The other parameters used in the SEIR model come largely from [6, 7], as detailed in

Table 1, with further consideration of the dynamics of COVID-19 in New York City before

SIP. In particular, we assume that R0 = 3, which is consistent with previous estimates (see

Table 1), and rely on R0 to determine the value of βT given values of the other parameters. We

further placed the start of SIP at day 53, such that our model without EWs predicts approxi-

mately the observed number of deaths in New York City on the day formal SIP orders were

issued. This is relatively late in the pandemic progression, in that a substantial fraction of the

population was already infected (as seems to have been the case in New York City, according

to recent serological estimates [68, 69]), and accounts for the high prevalences in the models.

In S1 Appendix, we present results for alternative parameter values, which are qualitatively—

and often quantitatively—similar.

Supporting information

S1 Appendix.

(PDF)
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