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Abstract

The bed nucleus of the stria terminalis (BNST) is a brain region important for regulating anxiety-

related behavior in both humans and rodents. Here we used a chemogenetic strategy to investigate 

how engagement of G protein-coupled receptors (GPCR) signaling cascades in genetically defined 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
*Address correspondence to: Thomas Kash, Laboratory of Molecular Neurophysiology, Bowles Center for Alcohol Studies, 
Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, USA, tkash@email.unc.edu. 

Conflict of interest
The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Mol Psychiatry. Author manuscript; available in PMC 2018 January 04.

Published in final edited form as:
Mol Psychiatry. 2018 January ; 23(1): 143–153. doi:10.1038/mp.2016.218.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GABAergic BNST neurons modulates anxiety-related behavior and downstream circuit function. 

We saw that stimulation of vesicular γ-Aminobutyric acid (GABA) transporter (VGAT)-

expressing BNST neurons using hM3Dq, but neither hM4Di nor rM3Ds Designer Receptors 

Exclusively Activated by a Designer Drug (DREADDs), promotes anxiety-like behavior. Further, 

we identified that activation of hM3Dq receptors in BNST VGAT neurons can induce a long-term 

depression (LTD)-like state of glutamatergic synaptic transmission, indicating DREADD-induced 

changes in synaptic plasticity. Further, we used DREADD-assisted metabolic mapping 

(DREAMM) to profile brain-wide network activity following activation of Gq-mediated signaling 

in BNST VGAT neurons and saw increased activity within ventral midbrain structures, including 

the ventral tegmental area (VTA), and hindbrain structures such as the locus coeruleus (LC) and 

parabrachial nucleus (PB). These results highlight that Gq-mediated signaling in BNST VGAT 

neurons can drive downstream network activity that correlates with anxiety-like behavior, and 

points to the importance of identifying endogenous GPCRs within genetically defined cell 

populations. We next used a microfluidics approach to profile the receptorome of single BNST 

VGAT neurons. This approach yielded multiple Gq-coupled receptors that are associated with 

anxiety-like behavior and several potential novel candidates for regulation of anxiety-like 

behavior. From this, we identified that stimulation of the Gq-coupled receptor 5-HT2CR in the 

BNST is sufficient to elevate anxiety-like behavior in an acoustic startle task. Together, these 

results provide a novel profile of receptors within genetically defined BNST VGAT neurons that 

may serve as therapeutic targets for regulating anxiety states and provide a blueprint for examining 

how G-protein mediated signaling in a genetically defined cell type can be used to assess behavior 

and brain-wide circuit function.

INTRODUCTION

Anxiety disorders, including generalized anxiety disorder (GAD), panic disorder, and social 

anxiety disorder, are prevalent neuropsychiatric conditions. Despite decades of research and 

the availability of diverse pharmacological treatment options, few treatments for these 

disorders remain effective long-term (1–4). In order to develop better therapies, it is 

important to understand the complex neural networks spanning cortical, limbic, and 

hindbrain nuclei that control both the behavioral and autonomic components of anxiety 

states (5). One brain region that has long been associated with modulating such states is the 

bed nucleus of the stria terminalis (BNST; recently reviewed in (6,7)). This ventral forebrain 

structure has a large population of GABAergic neurons and has reciprocal projections with 

numerous limbic and hindbrain nuclei (8–10). Such diverse connectivity allows the BNST to 

function as a critical relay center for regulating a range of emotional and motivational 

processes. In humans, the BNST has elevated activity during anticipatory threat, and in 

rodents, broad inhibition of the BNST reduces anxiety-like behavior (11–15). However, 

optogenetic activation of discrete BNST outputs can also reduce anxiety-like behavior, 

highlighting how BNST stimulation can have opposing regulatory processes (15,16). 

Increased activity within the BNST is associated with elevated anxiety states in both humans 

(11,14,17) and non-human primates (18,19), while lesioning or pharmacological inhibition 

of the BNST reduces anxiety-like behavior (15,20–22). Thus, the BNST is an important 

nucleus in the regulation of anxiety and studies aimed at better understanding the role of the 

BNST in anxiety are important for the development of more effective therapeutics.
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In addition to complex anatomical connectivity, the BNST expresses an array of ionotropic 

channels and metabotropic G-protein coupled receptors (GPCRs) for both neurotransmitter 

and neuropeptidergic systems (23,24). Pharmacological and ex vivo slice electrophysiology 

studies have demonstrated that local infusion of GPCR ligands into the BNST can produce 

changes in anxiety-like behavior and synaptic function, but the broader effects of 

downstream network activity remain unknown (25–30). Treatment with an α1-receptor 

antagonist, for example, can blunt stress-induced increases in anxiety, and restraint stress 

elevates norepinephrine release in the BNST (25). 5-HT2c knockout (KO) mice show 

blunted anxiety and reduced c-fos induction in corticotropin-releasing factor (CRF)-

expressing cells of the BNST following an anxiogenic stimulus (31). While these studies 

highlight the importance of GPCR-coupled signaling and anxiety within the BNST, they are 

unable to determine whether the effects are driven by pre- or postsynaptic mechanisms. Here 

we provide the first characterization of the behavioral and network consequences following 

activation of Gq-mediated signaling within BNST VGAT-expressing neurons using 

chemogenetic approaches. Further, we identify endogenous Gq-coupled GPCR expression in 

BNST VGAT neurons at the single cell level that may provide useful targets for modulating 

anxiety-like states.

METHODS

Mice

All animals (>8 weeks old) were group housed on a 12 hour light cycle (lights on at 7 a.m.) 

with ad libitum access to rodent chow and water, unless described otherwise. VGAT-ires-Cre 

(VGAT-Cre) mice were provided by Dr. Bradford Lowell (Harvard University) and have 

been described previously (32). To isolate BNST VGAT neurons for single-cell qPCR and 

whole-cell patch clamp electrophysiology, VGAT-Cre mice were crossed with a Rosa26-

floxed-stop-L10-GFP reporter line (VGAT-L10)(33). Only male mice were used for 

behavioral, DREAMM, and single-cell profiling experiments. Male and female mice were 

used for electrophysiological recordings and in situ hybridization experiments as described 

below. All procedures were conducted in accordance with the National Institutes of Health 

guidelines for animal research and with the approval of the Institutional Animal Care and 

Use Committee at the University of North Carolina at Chapel Hill. For acoustic startle 

assessment, eight week old, male C57BL/6J mice (n = 16) were obtained from Jackson 

Laboratories in Bar Harbor, Maine. Mice were housed in groups of four in standard acrylic 

cages (24 cm (W) × 45cm (D) × 20cm (H)) located in an Association for Assessment and 

Accreditation of Laboratory Animal Care (AAALAC) approved conventional animal facility. 

Mice were maintained on a 12 h light/dark cycle (lights on at 07:00 h) with food and water 

available at all times. All procedures were approved by the University of Vermont Animal 

Care and Use Committee.

Viruses and tracers

All AAV viruses were produced by the Gene Therapy Center Vector Core at the University 

of North Carolina at Chapel Hill and had titers of >1012 genome copies/mL. For 

chemogenetic manipulations, mice were bilaterally injected with 0.4–0.5 µl of rAAV8-hsyn-
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DIO-mCherry, rAAV8-hsyn-DIO-hM3Dq-mCherry, rAAV8-hsyn-DIO-hM4Di-mCherry, or 

rAAV8-hsyn-DIO-rM3Ds.

Stereotaxic injections

Adult mice (>8 weeks) were deeply anesthetized with 5% isoflurane (vol/vol) in oxygen and 

placed into a stereotactic frame (Kopf Instruments) while on a heated pad. Sedation was 

maintained at 1.5–2.5% isoflurane during surgery. Following 3 alternating swabs with 

betadine and 70% ethanol, an incision was made down the midline of the scalp, a burr hole 

was drilled above the target regions, and viruses were microinjected using a 1 µl Neuros 

Hamilton syringe at a rate of 100 nl/min. After infusion, the needle was left in place for at 

least an additional 5 minutes to allow for diffusion of the virus before being slowly 

withdrawn. Injection coordinates for the BNST were (in mm: midline, Bregma, dorsal 

surface): ±0.9 − 1.10, 0.30, −4.35 (34). Following surgery, all mice were returned to group 

housing. Mice were allowed to recover for at least 3 weeks prior to the start of experiments.

BNST cannulation

Cannulae were obtained from Plastics One (Roanoke, VA). The cannulae used had a 22 

gauge inner diameter and extended 5 mm below the 4mm pedestal. Injection cannulae had 

an inner diameter of 28 gauge and were 9.5 mm long and projected 0.5 mm beyond the 

guide cannula. Mice were anesthetized using 2% Isoflurane and oxygen and then placed into 

a stereotaxic instrument (Steolting, Wood Dale, Illinois). The scalps of the mice were shaved 

and then scrubbed in alternate with 9% betadine and 95% ethyl alcohol. The scalp was 

opened using a cut along the midline and then the skull was lightly scraped with the edge of 

a scalpel blade to remove fascia. A small burr hole was drilled in the skull where each 

cannula was lowered. Coordinates were 0.3 mm anterior to Bregma, 2.6 mm lateral, and 4.2 

mm ventral. The cannulae were lowered at a 20 degree angle in order to avoid hitting the 

ventricles that lie dorsal and medial to the BNST. The same procedure was done for both the 

left and right BNST. After lowering both cannulae, they were affixed to the skull using glue 

(Loctite 454, Locktite, Westlake, OH) and a glue hardening accelerator (Loctite 7542). Mice 

were given 0.05mg/kg of buprenorphine prior to being removed from the sterotaxic 

apparatus. The mice were allowed to recover under a heat lamp prior to being returned to 

their home cage and the colony room. Mice were monitored daily and received 3 more doses 

of buprenorphine to help alleviate pain associated with the surgical procedure.

Drugs

Tetrodotoxin (TTX) and picrotoxin were purchased from Abcam, while U73122, SR 

141716A, and meta-Chlorophenylpiperazine (mCPP) were purchased from Tocris. 

Clozapine N-oxide (CNO) was generously provided by Dr. Bryan Roth (University of North 

Carolina).

Electrophysiology

Mice were decapitated following deep isoflurane anesthesia, then brains were extracted and 

placed in ice-cold sucrose artificial cerebrospinal fluid (aCSF) containing (in mM) 194 

sucrose, 20 NaCl, 4.4 KCl, 2 CaCl2, 1 MgCl2, 1.2 NaH2PO4, 10.0 glucose, and 26.0 
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NaHCO3 saturated with 95% O2/5% CO2. Coronal sections of the BNST were sliced at 300 

µm on a Leica 1200S vibratome at 0.07 mm/s. Slices were incubated in a heated holding 

chamber containing normal, oxygenated aCSF [(in mM): 124 NaCl, 4.4 KCl, 2 CaCl2, 1.2 

MgSO4, 1 NaH2PO4, 10.0 glucose, and 26.0 NaHCO3] maintained at 32 ± 1°C for at least 1 

hour before recording. Slices were then transferred to a recording chamber (Warner 

Instruments), submerged in normal, oxygenated aCSF and maintained at 28–30°C with a 

flow rate of 2 ml/min and allowed to incubate for 30 minutes. Female mice were used for 

recordings validating Gq DREADD function and Long-term depression (LTD) experiments, 

while male and female mice were used to verify hM4Di-induced hyperpolarization in 

response to CNO. Neurons of the BNST were visualized using infrared differential 

interference contrast (DIC) video-enhanced microscopy (Olympus) and DREADD-

expressing cells were identified by mCherry fluorescence. Whole-cell patch clamp 

recordings were made in current clamp mode with a potassium gluconate-based intracellular 

solution [(in mM): 135 K-gluconate, 5 NaCl, 2 MgCl2, 10 HEPES, 0.6 EGTA, 4 Na2ATP, 

0.4 Na2GTP, pH 7.3, 289–292mOsmol]. To record CNO-induced depolarization of Gq-

DREADD expressing VGAT neurons in the presence of 0.5 µM TTX, 10 µM CNO was bath 

applied for 5 minutes after a four-minute baseline. The CNO-induced depolarization was 

calculated as the difference between the resting membrane potential (RMP) during the last 2 

minutes of CNO application and the RMP 2 minutes before CNO reached the bath. To assess 

the effects of phospholipase C (PLC) inhibition on CNO-induced depolarization, 10 µM 

U73122 was present in the bath throughout recordings. Similar recordings were obtained in 

Gi-DREADD expressing cells without TTX present in the bath. In Gi-DREADD-expressing 

cells, the rheobase, which was defined as the minimal amount of current required to elicit an 

action potential using a current ramp, was obtained using the potassium gluconate internal 

described above both before and following 5 minutes of bath application of 10 µM CNO. 

One cell was identified as an outlier by the Grubbs’ test (alpha set to 0.01) and was excluded 

from the rheobase dataset. To assess the effects of Gq-DREADD activation in BNST VGAT 

neurons on LTD, whole cell voltage clamp recordings were obtained using a cesium-

gluconate internal [(in mM): 117 Cs-gluconate, 20 HEPES, 15.2 EGTA, 83 TEA, 40 MgCl2, 

200 Na2ATP, 20 Na2GTP, pH 7.31, 292 mOsmol] with the cell clamped at −70 mV 

throughout the recording period. All experiments were performed with 25 µM picrotoxin, or 

picrotoxin plus 5 µM SR 141716A, present in the bath. To record evoked excitatory 

postsynaptic currents (EPSCs), a bipolar Ni-chrome stimulated electrode was placed in the 

dorsal BNST and dorsal to the recorded neuron. EPSCs were evoked at a frequency of 0.167 

Hz using either voltage or current pulses. Evoked experiments were analyzed in Clampfit 

10.5 (Molecular Devices Sunnyvale, CA). All evoked responses were normalized to the 

average EPSC amplitude during the first 50 sweeps (5 mins) before CNO application. Each 

data point consists of a 60 second (6 sweep) average of evoked responses. In all experiments, 

signals were digitized at 10–20 kHz and filtered at 3 kHz using a Multiclamp 700B 

amplifier.

Behavioral Assays

Mice used for behavioral studies were habituated to handling for two days beginning three 

days prior to the first behavioral test. All behavioral testing was done during the light cycle, 

and there was at least 48 hours between test sessions. For chemogenetic manipulations, mice 
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were transported to a holding cabinet adjacent to the behavioral testing room to habituate for 

at least 30 minutes before being pretreated with CNO (3.0 mg/kg, i.p.) unless stated 

otherwise. All behavior testing began 30 minutes after CNO treatment. Equipment was 

cleaned with a damp cloth between mouse trials. Sessions were video recorded and analyzed 

using EthoVision software (Noldus Information Technologies). Elevated Plus Maze: Mice 

were placed into the center of an elevated plus maze and allowed to explore for a 5 minute 

session. Light levels in the open arms were ~14 lux. The probability of an open arm entry 

was calculated as the number of open arm entries divided by the total number of arm entries 

(open + closed). Open Field: Mice were placed into the corner of a white Plexiglas open 

field arena (20×20×10 cm) and allowed to freely explore for 30 minutes. The center of the 

open field was defined as the central 25% of the arena. Light levels were ~14 lux. Light-
Dark: Mice were placed into the dark side of a two-compartment box containing a dark side 

(black walls with lid) and a light side (clear Plexiglas walls, no lid) and were allowed to 

freely explore for 15 minutes. The two sides were connected by a central small opening in 

the walls of the enclosed side. Light levels in the light side were ~300 lux in the center. 

Acoustic startle: mCPP HCl (Tocris, Ellisville, MO) was mixed fresh on the morning that 

behavioral testing took place. mCPP was mixed with artificial cerebral spinal fluid (aCSF) at 

1 µg/.5 µl. Animals were randomly assigned to receive mCPP or vehicle with the flip of a 

coin. Mice received either vehicle or mCPP infusions using the injection cannula connected 

with polyethelene tubing to a 10ul micro syringe (Hamilton, Reno, NV). Infusions were 

performed with a mechanical infusion pump (KD Scientific, Holliston, MA) at a rate of 

0.25ul/minute for 2 minutes for a total volume of .5ul per side. The injector cannulae were 

left in place for an additional 2 minutes to aid in diffusion of the drug into the target area. 

Behavioral testing took place immediately after infusion. The startle tests were conducted in 

eight sound attenuating cubicles measuring 58 cm (W) × 32 cm (D) × 55 cm (H). Each 

cubicle was lined with black, sound absorbing foam with no internal source of light. Each 

cubicle contained a stabilimeter device consisting of a load cell platform onto which the 

behavioral chamber was mounted (MED-ASR-PRO1, Med-Associates, Georgia, VT). The 

chamber was constructed from clear acrylic, cylindrical in shape, 12.5 cm in length, with an 

inner diameter of 5 cm. The floor of the chamber consisted of a removable grid composed of 

6 steel rods 3.2 mm in diameter, and spaced 6.4 mm apart. Startle responses were transduced 

by the load cell, amplified, and digitized over a range of 0–4096 units. Startle amplitude was 

defined as the largest peak to trough value within 100 ms after the onset of the startle 

stimulus. After a five-minute acclimation period, mice were presented with the first of 30 

startle stimulus alone trials. The startle stimulus was comprised of white noise bursts lasting 

for 20 milliseconds. Ten stimuli of each intensity level (95, 100, and 105 dB) were presented 

in a pseudo-random order (the constraint being that each intensity occur within each block 

of 3 trials) with an inter-trial interval (ITI) of 60 s. Data collection and the control and 

sequencing of all stimuli were controlled by Med-Associates startle reflex hardware and 

software. Raw startle scores were converted into a percent change score based on the 

average startle response in vehicle treated mice.

Placement Verification and Histology

All mice used for behavioral and anatomical tracing experiments were anesthetized with 

Avertin and transcardially perfused with 30 ml of ice-cold 0.01M PBS followed by 30 ml of 
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ice-cold 4% paraformaldehyde (PFA) in phosphate buffered saline (PBS). Brains were 

extracted and stored in 4% PFA for 24 hours at 4°C before being rinsed twice with PBS and 

stored in 30% sucrose/PBS until the brains sank. 45 µm slices were obtained on a Leica 

VT1000S and stored in 50/50 PBS/Glycerol at −20°C. DREADD-containing sections were 

mounted on slides, allowed to dry, coverslipped with VectaShield (Vector Labs, Burlingame, 

CA), and stored in the dark at 4°C. Viral injection sites were verified on either a Zeiss Axio 

Zoom.V16 microscope or Zeiss 800 confocal microscope. For the acoustic startle study, 

mice were euthanized using pentobarbital (SleepAway, Fort Dodge Drug Company, Fort 

Dodge, IA) and were immediately perfused transcardially using 0.9% saline followed by 

10% neutral buffered formalin. Brains were saved in 10% neutral buffered formalin and 

coronal sections were obtained on a cryostat at 50–60um. Slices were stained with cresyl 

violet for cannula placement verification.

DREADD-Assisted Metabolic Mapping (DREAMM)

Male VGAT-Cre mice expressing a DIO-hM3Dq-mCherry in the BNST were fasted 

overnight. The next morning mice were injected with either vehicle or CNO (3 mg/kg, i.p.) 

and 5 minutes later were injected with [18F]fluorodeoxyglucose (FDG) (~250 µCi, i.p.) and 

placed individually in a mouse home cage (each mouse was scanned twice). 35–40 minutes 

after the FDG injection mice were anesthetized with 1.5% isoflurane, placed in a prone 

position on the bed of an Inveon microPET scanner (Siemens Medical Solutions, Malvern, 

PA) and scanned using a 20 min static acquisition protocol. These time points were chosen 

to align with those used for behavioral testing. All scans were reconstructed using the 

maximum a posteriori (MAP) algorithm. After reconstruction, images were spatially 

processed and normalized using the Pixel-wise Modeling software suite (PMOD) (PMOD 

Inc., Zurich, Switzerland) to a mouse brain MRI template (35). Normalized scans were then 

analyzed using statistical parametric mapping (SPM) as previously described (36). All SPM 

contrasts consisted of paired t-tests within each group (e.g. VEH>CNO, VEH<CNO) and 

were evaluated at p=0.01. Only clusters of at least 100 contiguous voxels were reported.

FACS and Single-Cell qPCR

Single-cell suspension preparation: On two separate experimental runs, brains from one 

adult male VGAT-ires-Cre:Rosa26-floxed-stop-L10-GFP and one adult male mouse lacking 

either Cre or L10-GFP expression, were extracted following deep isoflurane anesthesia. The 

brains were blocked on ice to obtain a 1 mm thick coronal section containing BNST. The 

BNST was then isolated from the rest of the section using razor blades and was then finely 

minced with razor blades before being transferred to 1 ml of ice-cold Hibernate A (HA-if, 

Brain Bits). The samples were centrifuged for 2 minutes at 110×g at 4°C, the supernatant 

removed, and the pellets resuspended in 1 ml of Accutase (SCR005, Millipore) and 

triturated up and down 4 times before digesting the tissue for 1 hour at 4°C with end-over-

end mixing. Following digestion, the tissue was centrifuged for 2 minutes at 960×g at 4°C, 

the supernatant was removed, and the pellets were resuspended in 0.6 ml of ice-cold 

Hibernate A. The samples then underwent a series of trituration steps using fire-polished 

glass pipettes with successively smaller diameters (1.3, 0.8, and 0.4 mm) that consisted of 

triturating up and down 10 times followed by placing the tube on ice for 2 minutes to allow 

undissociated debris to settle before collecting the supernatants and resuspending the 
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undissociated debris with 0.6 ml of Hibernate A. The supernatants were pooled after each 

trituration step. Three additional trituration steps were carried out with a 0.4 mm diameter 

glass pipette resulting in pooled samples of dissociated cells with a volume of ~3.6 ml. 

These samples were then filtered with 100 µm and 40 µm cell strainers (Falcon brand, BD 

Biosciences) before being used for FACS. Single-cell isolation and qPCR: Cells expressing 

VGAT-ires-Cre:Rosa26-floxed-stop-L10a-GFP were isolated by Fluorescence Activated Cell 

Sorting (FACS) using a Sony SH800 FACS instrument (Sony Biotechnology, San Jose, CA). 

Multimers were excluded using a Forward-Scatter Area (FSC-A) versus Forward-Scatter 

Height (FSC-H) gating strategy. Dead cells were excluded using SYTOX Blue Live/Dead 

stain (S34857; Thermo-Fisher Scientific, USA). Gating windows were adjusted to only 

include events present in the GFP+ sample relative to the GFP-control brain. ~8–9,000 

VGAT-ires-Cre:Rosa26-floxed-stop-L10a-GFP cells were sorted into 20 µl of Optimem with 

the apoptotic inhibitor Y-27632 (Cat. #S1049, Selleck Chemical) diluted to 1:1000. Eight µl 

of the cell suspension (~4000 cells) was added to 2 µl of C1 resuspension buffer (Fluidigm, 

South San Francisco). Five µl of this cell suspension was added to a 17–25 µm Fluidigm C1 

Integrated Fluidics Chip (IFC). Specific target amplification (STA) was performed on the C1 

instrument according to manufacturer’s specifications. The STA for each cell was 

interrogated for target gene (See Supplemental Table 1 for Taqman probe information) 

expression levels by qPCR on a 192.24 IFC using the Fluidigm Biomark HD instrument 

according to that standard Fluidigm protocols.

Double Fluorescence in situ hybridization (FISH)

For validation of the VGAT-Cre line and comparison of VGAT and GPCR cellular 

colocalization, mice were anesthetized using isoflurane, rapidly decapitated, and brains 

rapidly extracted. Female VGAT-Cre mice were used for Slc32a1/Cre comparisons, while 

male C57Bl/6 mice were used for comparisons of Slc32a1 and GPCR expression. 

Immediately after removal, brains were placed on a square of aluminum foil on dry ice to 

freeze. Brains were then placed in a −80°C freezer for no more than 1 week before slicing. 

12 µm slices containing the BNST were obtained on a Leica CM3050S cryostat (Germany) 

and placed directly on coverslips. FISH was performed using the Affymetrix ViewRNA 2-

Plex Tissue Assay Kit with custom probes for Slc32a1 (VGAT), Grm5, Chrm1, Htr2c, 
Adra1a, Adra1b, and Cre designed by Affymetrix (Santa Clara, CA). Slides were 

coverslipped with SouthernBiotech DAPI Fluoromount-G. (Birmingham, AL). 3×5 tiled z 

stack (8 optical sections comprising 10.57 µm total) were obtained on a Zeiss 800 confocal 

microscope. All images were preprocessed with stitching and maximum intensity projection. 

For quantification of Slc32a1 and GPCR probe colocalization, 8–9 BNST images from 3 

mice were hand counted using the cell counter plugin in FIJI (ImageJ). For validation of the 

VGAT-Cre line, 3 BNST images from 3 mice were analyzed. For all studies, cells were 

classified into three groups: probe 1+, probe 2+, or probe 1 and 2 +. Only cells positive for a 

probe were considered.

Statistics

Data are presented as means ± SEM. For comparisons with only two groups, p values were 

calculated using two-tailed paired or unpaired t-tests as described in the figure legends, 

unless specified otherwise. In cases where the data were not normally distributed, a Mann-
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Whitney test was performed as listed in the figure legends. Comparisons across more than 

two groups were made using a one-way Analysis of Variance (ANOVA). A Tukey’s posttest 

was performed following significance with an ANOVA. Differences were considered 

significant at p values below 0.05. All data were analyzed with GraphPad Prism 6 software. 

Figures were assembled using Adobe Illustrator.

RESULTS

Selectively targeting GABAergic neurons in the BNST

The BNST consists primarily of GABAergic neurons (8), but also contains a population of 

vesicular glutamate transporter 2 (vGlut2)-and vesicular glutamate transporter 3 (vGlut3)-

expressing glutamatergic neurons in the ventral BNST (vBNST) (37–39). As prior reports 

show that stimulation of glutamatergic and GABAergic BNST outputs can evoke opposing 

behavioral states, we selectively targeted GABAergic BNST neurons using stereotaxic 

delivery of adeno-associated viruses (AAVs) encoding Cre-inducible DREADDs to the 

BNST of VGAT-ires-Cre (VGAT-Cre) mice (16) (Figure 1a). Injection of these viral 

constructs encoding a control mCherry fluorophore, hM3Dq-mCherry, or hM4Di-mCherry 

produced robust expression in both the dorsal and ventral regions of the BNST (Figure 1b). 

Importantly, we did not observe DREADD expression in Cre-negative littermates injected 

with the Cre-inducible hM3Dq (see Figure 3f). Additionally, we validated that Cre 

expression was limited to VGAT-expressing cells using in situ hybridization and observed 

that 99.1% of cells expressing Cre were positive for Slc32a1 (VGAT) mRNA (Supplemental 

Figure 1). These data demonstrate that we were able to anatomically isolate BNST 

GABAergic cells for chemogenetic manipulations. To confirm functional DREADD 

expression, we recorded from hM3Dq-expressing BNST neurons using ex vivo whole cell 

slice electrophysiology (Figure 1c). Bath application of 10 µM CNO in the presence of TTX 

produced a 2.12 ± 0.85 mV depolarization in hM3Dq-mCherry expressing BNST VGAT 

neurons (Figure 1 d–e), consistent with previous reports (40–42). Bath application of the 

PLC inhibitor U73122 (10 µM) significantly reduced the CNO-induced depolarization 

(Figure 1 d–e). As PLC is a known downstream target of Gq activation, these data highlight 

that CNO-induced depolarization following activation of hM3Dq receptors involve 

canonical Gq-mediated signaling pathways. In the absence of TTX, 50% (3/6) of hM3Dq 

expressing neurons began firing action potentials within 5 minutes of 10 µM CNO 

application, while the remaining neurons showed an average depolarization of 1.69 ± 0.24 

mV (data not shown). Activation of Gq-coupled receptors can also result in an LTD of 

postsynaptic excitatory currents (43–45). To assess if activation of hM3Dq activity within 

BNST VGAT neurons is sufficient to produce LTD, we recorded electrically evoked EPSCs 

during and following bath application of 10 µM CNO. There was a rapid and sustained 

reduction in EPSC amplitude relative to baseline that persisted for at least 25 minutes after 

washout of CNO, which was not observed in cells from non-DREADD expressing mice 

(Figure 1f–h). Furthermore, antagonism of the cannabinoid receptor 1 (CB1R) with 

SR141716A (5 µM) blocked hM3Dq-induced LTD (Figure 1f–h). In opposition to our 

observations with hM3Dq activation, stimulation of the hM4Di receptor was sufficient to 

induce a hyperpolarization and increase the amount of current required to elicit an action 
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potential, thus indicating opposing actions of hM3Dq versus hM4Di signaling events (Figure 

1 i–l).

Acute chemogenetic activation of BNST VGAT neurons induces anxiety-like behavior

To determine how engagement of Gq-coupled and Gi-coupled signaling in BNST VGAT 

neurons affects acute anxiety-like behavior, we injected Cre-inducible hM3Dq or hM4Di 

constructs into the BNST of VGAT-ires-Cre mice with a Cre-inducible mCherry used as a 

control. Mice were treated with CNO (3.0 mg/kg) 30 minutes before testing to allow time 

for DREADD-induced changes in activity (Figure 2a). In the elevated plus maze (EPM, 

Figure 2b), DREADD activation did not alter locomotor activity, but hM3Dq-expressing 

mice spent less time in the open arms and had a significantly reduced likelihood of entering 

an open arm. In the open field, neither the hM3Dq-expressing nor the hM4Di-expressing 

group showed changes in distance traveled (Figure 2e, left), time spent in the center of the 

open field, or latency to enter the center of the open field (Figure 2e, center and right, 

respectively). In the light-dark test, only the hM3Dq-expressing mice spent less time in the 

light compartment and made fewer entrances to the light side (Figure 2f). Separately, we 

observed that acute activation of Gs-coupled signaling using the rM3Ds DREADD construct 

did not change anxiety in the same assays relative to mCherry controls (Supplemental Figure 

2). These results indicate that acute engagement of Gq-coupled, but neither Gi-nor Gs-

coupled, signaling in BNST VGAT neurons is sufficient to generate an anxiety-like state in 

specific contexts.

Metabolic mapping of BNST VGAT hM3Dq-evoked activity reveals broad circuit 
engagement

The BNST sends projections to many structures involved with reward, anxiety, and the 

regulation of autonomic function (9,15). Injection of a Cre-inducible mCherry to the BNST 

of a VGAT-Cre mouse (Figure 3a) showed direct projections of BNST VGAT fibers to these 

established regions, including the ventral tegmental area (VTA), locus coeruleus (LC), or 

parabrachial nucleus (PBN) (Figure 3b). Given that we observed increases in anxiety-like 

behavior following the activation of Gq-coupled DREADDs in BNST VGAT neurons, we 

hypothesized that engagement of Gq-mediated signaling within BNST VGAT neurons could 

produce extensive changes in network dynamics in these downstream targets. We used 

DREADD-assisted metabolic mapping (DREAMM) (46,47) to assess how activation of 

hM3Dq receptors in BNST VGAT neurons alters network activity. VGAT-Cre mice 

expressing DIO-hM3Dq in the BNST underwent two imaging sessions following both 

vehicle and CNO pre-treatment. Five minutes after this pre-treatment, mice were injected 

with [18F]fluorodeoxyglucose (FDG) before being anesthetized with isoflurane 25 minutes 

later and undergoing scanning (Figure 3c). Mice with hM3Dq expression in the BNST 

(Figure 3d) showed increases in FDG uptake in the BNST, ventral tegmental area (VTA), the 

locus coeruleus (LC), and the parabrachial nucleus (PBN) (Figure 3e). Interestingly, we also 

observed elevated FDG uptake in the medial prefrontal cortex (mPFC), somatosensory 

cortex, and the central nucleus of the amygdala (CeA) (see Supplemental Video 1). Cre-

negative littermates injected with a DIO-hM3Dq-mCherry lacked DREADD expression and 

showed neglibile CNO-induced changes in FDG uptake in these regions (Figure 3f–g, 

Supplemental Video 2).
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Single-cell profiling of BNST VGAT cells highlights endogenous transcription of Gq-
coupled GPCRs

As we observed robust changes in anxiety-like behavior following activation of Gq signaling 

in hM3Dq-expressing, but neither hM4Di- nor rM3Ds-expressing BNST VGAT neurons, we 

sought a greater understanding of the range of endogenous Gq-coupled receptors expressed 

within these cells. To isolate this population, the BNST was dissected from VGAT-Cre mice 

crossed with a flox-stop L10-EGFP reporter line. After creating a single-cell suspension, we 

isolated EGFP positive cells using fluorescence-activated cell sorting (FACS), then captured 

sorted cells using a Fluidigm C1 microfluidics chip. Captured cells were lysed and used for 

single-cell quantitative polymerase chain reaction (qPCR) with probes targeting Slc32a1 

(VGAT), Map2 (a neuronal marker), Gad1 and Gad2 (GABA markers), and an array of Gq-

coupled receptors (Figure 4a–b). We were able to capture 163 cells from two samples 

collected from two individual mice run on two separate chips. Our a priori exclusion criteria 

removed from analysis any cells negative for VGAT (13/163), Map2 (0/163), or both Gad1 

and Gad2 (1/163), resulting in 149 remaining cells. Interestingly, none of the excluded cells 

were positive for Slc17a6 (vGlut2), and only 1 cell was positive for Slc17a8 (vGlut3). Of the 

remaining 149 cells, we observed that greater than 50% of captured cells expressed 

transcripts for the Gq-coupled receptors Grm5 (93.3%), Ntsr2 (85.2%), Chrm1 (71.1%), 

Htr2c (55.7%), or Grm1 (50.3%) (Figure 4c). We next used fluorescence in situ 
hybridization (FISH) to validate our qPCR findings by examining colocalization of mRNA 

for VGAT and various GPCRs (Figure 4d–i). In agreement with the microfluidics approach, 

we observed a similar distribution of the probed GPCRs in VGAT mRNA positive cells 

(Figure 4i). Together, these results reveal an array of endogenous Gq-coupled receptors 

expressed within a genetically defined cell population in the BNST.

Infusion of a 5-HT2CR agonist in the BNST increases anxiety-like behavior

Of the identified endogenous Gq-coupled receptors identified in BNST VGAT neurons, we 

selected the 5-HT2CR for further analysis. The 5-HT system is known to be involved in 

anxiety and other affective-related behaviors, including within the BNST (48–50). We 

implanted cannulae over the BNST and locally infused the 5-HT2CR agonist mCPP 

immediately before testing in an acoustic startle task. Briefly, mice were placed on an 

accelerometer in a sound-attenuated chamber then presented with short noise burst. The 

magnitude of the startle served as an index of anxiety-like behavior. Bilateral infusion of 

mCPP (1 µg) into the BNST reliably increased acoustic startle responding relative to vehicle 

treated controls, thus indicating that activation of this Gq-coupled receptor leads to an 

increase in anxiety-like behavior (Figure 5).

DISCUSSION

Existing pharmacological options for anxiety disorders remain ineffective in many patients 

and are often accompanied by undesirable side effects (1,4). Therapeutic difficulties arise, in 

part, due to the incomplete understanding of cell populations and brain circuits involved in 

mediating the desirable effects of drug treatments. Advances in optogenetic and 

chemogenetic techniques have revealed how stimulation of specific cell types within a 

structure can drive pathological behavior. However, many of these studies to date have 

Mazzone et al. Page 11

Mol Psychiatry. Author manuscript; available in PMC 2018 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



focused on well-known anatomical pathways, and few have capitalized on discovery-based 

tools to identify novel endogenous modulators of function. Here we use a chemogenetic 

strategy to probe the role of GPCR signaling within a genetically defined cell population 

involved in anxiety-like behavior. We show that engagement of Gq-mediated signaling in 

BNST VGAT-expressing neurons induces anxiety-like behavior, while acute activation of 

both Gi and Gs signaling is insufficient to change anxiety-like responses in the assays tested. 

DREAMM imaging analysis following activation of Gq-DREADD signaling in BNST 

VGAT neurons showed enhanced activity in brain areas including the VTA, LC, and PBN. 

Furthermore, we used a discovery-based approach to identify potential novel GPCR 

regulators of this cell population. These results not only provide an anatomical framework 

for anxiety-like behavior, but a conceptual framework to parse out novel GPCR regulators of 

circuit function and behavior.

While hM3Dq-treated mice showed increased anxiety-like behavior, it is interesting that we 

did not see reductions in anxiety-like behavior following activation of hM4Di signaling, 

particularly in light of previous work showing that pharmacological or optical inhibition of 

the BNST reduces anxiety behavior (15). At rest, the BNST has low levels of activity, and it 

is possible that the environment for our assays was not sufficient to engage BNST function. 

As the hM4Di DREADD produced a hyperpolarizing inhibitory effect (Figure 1), 

suppressing activity of the BNST in these contexts may be insufficient to further reduce 

anxiety-like behavior. It would be interesting to repeat these experiments with activation of 

hM4Di DREADDs during a stressor that is known to increase BNST activity (foot shock, 

restraint, etc.) immediately before anxiety testing. Alternatively, similar experiments could 

be performed under brighter lighting conditions, as previous work has shown that open field 

exposure under bright lights (~600 lux) increases c-fos expression in the BNST (31). 

Likewise, we did not see changes in anxiety-like behavior following manipulation of Gs-

coupled signaling. While Gq- and Gs-coupled receptors have stimulatory effects, a recent 

study identified that activation of Gq- and Gs-coupled DREADDs in agouti-related peptide 

(AgRP) neurons of the hypothalamus promoted feeding behavior through independent 

mechanisms, and that only Gs DREADD activation promoted AgRP release (51). As the 

BNST expresses an array of peptides, including corticotropin-releasing factor (CRF) and 

neuropeptide Y (NPY) that are known to produce opposing behavioral responses, it is 

possible that potential stimulation of peptide release in BNST VGAT neurons using the Gs-

coupled DREADD occludes the effect of activation of these individual peptide receptors 

alone (52–56).

In addition to observing Gq-induced changes in behavior, our ex vivo slice electrophysiology 

recordings identified that activation of hM3Dq receptors in BNST VGAT neurons produced 

stimulatory depolarizing effects capable of increasing action potential firing that were 

accompanied by an LTD-like reduction of evoked EPSCs that persisted at least 25 minutes 

following washout of CNO. These changes are in agreement with previous studies 

demonstrating that bath application of agonists for the Gq-coupled α1-adrenergic receptor or 

group I metabotropic glutamate receptors induces LTD in the BNST (43–45). Similarly, in 

the CA1 region of the hippocampus, stimulation of Gq-coupled DREADDs alters long-term 

plasticity, including LTD and long-term potentiation (LTP) as assessed by field recordings 

(57). It is important to note, however, that while Gq-induced LTD has been observed in the 
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BNST, we are currently unable to selectively antagonize the hM3Dq receptor following LTD 

induction to confirm the observed changes in synaptic plasticity are independent of CNO 

remaining bound to the DREADD receptor. Interestingly, we observed that the hM3Dq-

induced reductions in EPSC amplitude involved CB1R-dependent activity, in agreement with 

previous long-term plasticity reports indicating CB1R-dependent reductions in evoked EPSC 

amplitude in the BNST (43,58).

Our results from DREAMM analysis point to changes in metabolic activity throughout brain 

regions previously associated with anxiety pathology, including the mPFC, CeA, VTA, PBN, 

and the somatosensory cortex (5,59–62). Of note, we observed no reductions in regional 

metabolic activity following CNO treatment. Other studies assessing brain glucose 

metabolism during periods of anxiety have also observed enhanced metabolic activity in 

subcortical and limbic regions across species including rats, monkeys, and humans (18,63–

65). Importantly, FDG uptake represents increased glucose uptake and would therefore also 

be observed in active presynaptic terminals (46). Therefore, the exclusive increase in activity 

may reflect both enhanced presynaptic activity of BNST GABAergic afferents and increased 

local activity resulting from polysynaptic disinhibition. In agreement with this, previous 

work has shown that GABAergic BNST projections to the VTA innervate GABAergic VTA 

neurons (16). However, the BNST to VTA projection is unlikely to account for the 

anxiogenic phenotype reported here as that study demonstrated that optogenetic stimulation 

results in anxiolysis. Nonetheless, given that stimulation of Gq-mediated signaling in BNST 

VGAT neurons was sufficient to induce anxiety, the observed changes in metabolic activity 

throughout the brain may highlight a potential biomarker for pathological anxiety.

While the results reported here reflect acute activation of BNST VGAT neurons and 

corresponding increases in anxiety, changes in BNST neuronal activity have been observed 

under other models of pathological anxiety. For example, we recently found that BNST 

neurons exhibited increased excitability following chronic alcohol exposure, and that 

elevated BNST excitability correlated with increased anxiety-like behavior (66). Moreover, 

we previously found that the increase in excitability was associated with excessive 5-HT2CR 

mediated signaling (67), and here we identify that an agonist of 5-HT2CR in the BNST 

increases anxiety-like startle responding. The approach outlined in this study provides a 

framework for identifying GPCRs that may be differentially altered during anxiety states. 

Additionally, the application of whole brain imaging using these genetic approaches 

provides a robust and reproducible approach for connecting cellular signaling events to 

broad patterns of activity. Identification of brain-wide network activity patterns is especially 

important as this provides a point of translation for human studies. For example, the new 

Research Domain Criteria (RDoC) system proposed by the National Institute of Mental 

Health as a means for understanding brain disorders, suggests that identifying the circuit 

elements associated with specific endophenotypes across multiple disorders can provide 

insight into treatment. One such RDoC construct is potential threat or anxiety. Our work 

highlights a whole brain metabolic map that could potentially serve as a biomarker for 

heterogeneous populations of patients suffering from conditions co-morbid with anxiety 

disorders and identifies potential receptor targets that may drive this endophenotype. Our 

results presented here in the naive state lay the foundation for future work to assess how the 

development of pathological anxiety states, such as anxiety associated with withdrawal from 
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chronic alcohol exposure, changes GPCR expression patterns in BNST VGAT neuron and 

correspondingly changes metabolic brain-wide activity patterns.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Select modulation of BNST VGAT neurons using DREADDs. (a) Stereotaxic delivery of 

viruses encoding a Cre-inducible mCherry or DREADD (hM3Dq or hM4Di) into the BNST 

of VGAT-Cre mice. (b) Representative sections showing expression of a Cre-inducible 

mCherry (left), hM3Dq (middle), or hM4Di (right). Scale bars indicate 500 µm. (c) 

Schematic of ex vivo slice electrophysiology in hM3Dq-mCherry-expressing BNST neurons 

in the presence of CNO. (d) Representative traces from an hM3Dq-expressing BNST VGAT 

neuron depolarized by bath application of 10 µM CNO in the presence of TTX, but not in 
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the presence of the PLC inhibitor U73122. (e) Average change in resting membrane 

potential during the last 2 minutes of CNO application in ACSF + TTX with and without 

U73122 (right). N: ACSF, 6 cells from 4 mice; ACSF + U73122, 4 cells from two mice. (f) 
Time course of hM3Dq-induced reduction in evoked EPSCs is blocked by CB1R antagonist 

SR 141716A. **, p<0.01, Mann Whitney test. Error bars indicate SEM. (g) Representative 

superimposed average evoked responses of the five minutes before CNO bath application 

(solid trace) and 20 to 25 minutes of washout (dotted line). (h) Mean evoked EPSC 

amplitude during minutes 30–35 (20–25 minutes of washout). F(2,10)=10.36, p=0.0037. 

*p<0.05, Tukey’s multiple comparison test; **p<0.01 Tukey’s multiple comparison test. (i) 
Schematic of ex vivo slice electrophysiology in hM4Di-mCherry-expressing BNST neurons 

in the presence of CNO. (j) Representative tracing showing hyperpolarization of hM4Di-

mCherry-expressing BNST neuron in the presence of 10 µM CNO. (k) Mean 

hyperpolarization induced by 10 µM CNO. **p<0.01, one-sample t-test. N: 10 cells from 6 

mice. (l) Mean change in rheobase following bath CNO application. **p<0.01, one-sample 

t-test. N: 5 cells from 4 mice.

Mazzone et al. Page 19

Mol Psychiatry. Author manuscript; available in PMC 2018 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Chemogenetic activation of BNST VGAT neurons increases anxiety-like behavior. (a) 

Behavioral assay design. VGAT-Cre mice expressing DIO-mCherry, DIO-hM3Dq, or DIO-

hM4Di in the BNST were injected with 3.0 mg/kg CNO 30 minutes before being tested in 

exploratory assays. (b) Elevated plus maze (EPM). (c) Distance traveled (left; F(2,23)=1.413, 

p=0.26), time in open arms (middle; F(2,23)=3.894, p<0.05, One-Way ANOVA and Tukey’s 

post-hoc test) and probability of an open arm entry (right; F(2,23)=6.305, p<0.01, One-Way 

ANOVA, p<0.05, Tukey’s post-hoc test) during a 5 minute EPM session. N: 8 mcherry, 9 
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hM3Dq, 9 hM4Di). (d) Averaged heat maps showing time spent in open and closed arms for 

mCherry (left), hM3Dq (center), and hM4Di (right) expressing mice. (e) Open field. 

Distance traveled (left; F(2,18)=0.2503, p=0.78, One-Way ANOVA. N: 7 mCherry, 6 hM3Dq, 

8 hM4Di), time in the center (middle; F(2,18)=0.5538, p=0.58. N: 7 mCherry, 6 hM3Dq, 8 

hM4Di), and latency to enter the center (right; F(2,22) = 0.3674, p=0.6967. N: 8 mCherry, 9 

hM3Dq, 8 hM4Di) during a 30 minute open field session. (f) Light-dark box. Time in (left; 

F(2,23)=5.266, p<0.05, One-Way ANOVA, p<0.05, Tukey’s post-hoc test) and entrances to 

(right; F(2,23)=3.629, p<0.05), One-Way ANOVA, p<0.05, Tukey’s post-hoc test) the light 

compartment during a 15 minute session. N: 8 mCherry, 9 hM3Dq, 9 hM4Di. *p <0.05 

relative to mCherry, # p<0.05 relative to hM4Di, Tukey’s post hoc test. Error bars indicate 

SEM.
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Figure 3. 
Metabolic mapping of downstream activity following CNO-induced activation of hM3Dq in 

BNST VGAT neurons. (a) Injection of a DIO-mCherry to the BNST of a VGAT-Cre to label 

projection fibers. (b) mCherry fluorescence observed in the BNST injection site (left) and 

fluorescent fibers in the VTA (middle) and PB/LC (right). Scale bars: 1 mm. (c) µPET 

imaging timeline. Mice were injected with vehicle or CNO and five minutes later injected 

with FDG. 25 minutes later mice were anesthetized with isoflurane and placed on the 

scanning bed for a 20 minute scanning session. (d) Representative image of a DIO-hM3Dq-

mCherry BNST injection site. Scale bar: 500 µm. (e) Increased FDG uptake in areas 

corresponding to the BNST (left) VTA (middle) and PB/LC (right) following activation of 

hM3Dq in BNST VGAT neurons. (f) Representative injection of a DIO-hM3Dq-mCherry to 

a Cre-negative control mouse. (g) No change in FDG uptake in the BNST (left), VTA 

(middle), or PB/LC (right) from pooled adjacent controls. N: 4 mice per group. A.c.: anterior 

commissure.

Mazzone et al. Page 22

Mol Psychiatry. Author manuscript; available in PMC 2018 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Single-cell qPCR analysis reveals Gq-coupled GPCRs in BNST VGAT cells. (a) BNST 

tissue was dissected from a VGAT-Cre×L10-EGFP mouse and dissociated to create a single-

cell suspension. Following FACS, individual EGFP-positive cells were captured on a C1 

chip and used for single-cell qPCR with probes targeting Gq-coupled receptors. (b) Heat 

map depicting delta Ct values of individual probes from 149 cells positive for Slc32a1, 

Map2, and Gad1 and/or Gad2. Values are normalized to RN18S. (c) Percent of cells 

expressing transcripts for each Gq-coupled GPCR. (d–h) Representative fluorescent in situ 
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hybridization sections for assessing colocalization of VGAT mRNA and mRNA for mGluR5 

(d), M1mAchR (e), 5-HT2CR (f), α1-AR (g), α1-BR (h). Scale bar: 100 µm. (i) Percent of 

VGAT mRNA positive cells expressing various GPCR transcripts. Error bars indicate SEM. 

Gene (Protein): Grm5 (MGLUR5), Ntsr2 (NTSR2), Chrm1 (CHRM1), Htr2c (HTR2C), 

Grm1 (mGluR1), Adra1a (α1-AR), Tacr1 (TACR1), Htr2a (5-HT2AR), Chrm3 (M3 

mAChR), Calcr (CT), Oxtr (OXTR), Chrm5 (M5 mAChR), Adra1b (α1-BR), Ntsr1 
(NTSR1), Adra1d (α1-DR), Npsr1 (NPSR1), Gpr171(GPR171), Cckar (CCKAR), Htr2b (5-

HT2BR), Avpr1b (AVPR1B).
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Figure 5. 
Local infusion of mCPP to the BNST increases acoustic startle. (a) Mice with cannulae 

inserted over the BNST received an infusion of 1 µg mCPP and were immediately placed in 

the acoustic startle chamber. Following a 5 minute habituation period, mice were presented 

with 30 startle stimuli. (b) Mice treated with mCPP showed an exacerbated acoustic startle 

response (t(14) = 3.015, p = 0.0093). N: 7 vehicle, 9 mCPP. **p<0.01, unpaired t-test. Error 

bars indicate SEM.
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