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Abstract

Coastal managers require reliable spatial data on the extent and timing of potential coastal inundation, particularly in a
changing climate. Most sea level rise (SLR) vulnerability assessments are undertaken using the easily implemented bathtub
approach, where areas adjacent to the sea and below a given elevation are mapped using a deterministic line dividing
potentially inundated from dry areas. This method only requires elevation data usually in the form of a digital elevation
model (DEM). However, inherent errors in the DEM and spatial analysis of the bathtub model propagate into the inundation
mapping. The aim of this study was to assess the impacts of spatially variable and spatially correlated elevation errors in
high-spatial resolution DEMs for mapping coastal inundation. Elevation errors were best modelled using regression-kriging.
This geostatistical model takes the spatial correlation in elevation errors into account, which has a significant impact on
analyses that include spatial interactions, such as inundation modelling. The spatial variability of elevation errors was
partially explained by land cover and terrain variables. Elevation errors were simulated using sequential Gaussian simulation,
a Monte Carlo probabilistic approach. 1,000 error simulations were added to the original DEM and reclassified using a
hydrologically correct bathtub method. The probability of inundation to a scenario combining a 1 in 100 year storm event
over a 1 m SLR was calculated by counting the proportion of times from the 1,000 simulations that a location was
inundated. This probabilistic approach can be used in a risk-aversive decision making process by planning for scenarios with
different probabilities of occurrence. For example, results showed that when considering a 1% probability exceedance, the
inundated area was approximately 11% larger than mapped using the deterministic bathtub approach. The probabilistic
approach provides visually intuitive maps that convey uncertainties inherent to spatial data and analysis.
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Introduction

The 0.2 m of approximate global sea level rise (SLR) over the

past 100 years is the result of higher global temperatures due to

increased atmospheric CO2 levels. This rise is forecast to

accelerate during the next decades, reaching a level of about

1 m or more by 2100, potentially resulting in the permanent

inundation of large areas of low-lying coastal land [1,2]. Globally,

it has been estimated that between 9.2 and 10.9% of the world

population in 2006 lived on land areas adjacent to the sea and

10 m below mean sea level [3]. In addition to coastal inundation,

extreme high sea levels and associated erosion driven by

meteorological events such as storms and cyclones, changes in

wave climate and potential changes in regional El Niño–Southern

Oscillation (ENSO) are also forecasted to increase in magnitude

[4–6].

The physical, ecological and socio-economic impacts of SLR

are of great concern [7–9] but the complexity and uncertainties

inherent to this issue increases the challenges of implementing

effective adaptation policies [1]. Coastal planners, decision-makers

and stakeholders require reliable spatial data on the extent and

timing of potential coastal inundation and associated hazards to

better manage related risks. Most SLR vulnerability assessments

are elevation-based, where areas adjacent to the sea and below a

given elevation (e.g. representing an SLR forecast or storm surge

level) are mapped using a deterministic line dividing potentially

inundated from dry areas [10]. This approach, known as the

bathtub method, is easily implemented and hence commonly used,

only requiring an elevation dataset usually in the form of a digital

elevation model (DEM) [11].

The quality of the DEM, which is a function of the spatial

resolution and vertical accuracy of the data source, has a great

influence on the accuracy of the inundation mapping [12].

Airborne light detection and ranging (LiDAR) has become the

most cost-effective and efficient technique to collect terrain data

over large areas and generate high-resolution, high-accuracy

DEMs [13]. LiDAR-derived DEMs have typical horizontal spatial

resolutions of 1 m and a global vertical accuracy better than

0.2 m, making them suitable to depict subtle features on otherwise

flat coastal areas. Evidence shows that resolving fine objects such

as roads and other infrastructure results in a better delineation of

coastal inundation and more reliable vulnerability assessments
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[12,14]. However, quantifying the accuracy of inundation

mapping cannot be based only on summary measures of vertical

accuracy. The error in a DEM, defined as the difference between

predicted and measured ground elevation (hereinafter referred to

as elevation errors), is spatially variable and cannot be adequately

represented with a single global parameter of dispersion, such as

the commonly used root mean square error (RMSE) [15]. For

example, measured ground or bare-earth LiDAR elevations can

be considerably less accurate depending on land cover type such as

dense vegetation [16,17], or terrain variables such as slope,

convexity or ruggedness [18–21]. In addition, error is added

during the data interpolation process [22,23], propagating

uncertainties into the final mapping. Elevation errors are also

spatially correlated, meaning that error values tend to be similar at

nearby locations, and this can also have a considerable impact on

the output of spatial analyses that use a DEM as input.

Uncertainty is inherent to spatial data and spatial analysis and

therefore it is of paramount importance to effectively communi-

cate it, particularly when dealing with decision-making in a

changing climate. Communicating uncertainty in terms of

probability distributions to a diverse audience is challenging but

becoming more popular and effective with the use of visualization

techniques (e.g. for weather, sports, economics) [24]. In the

context of sea-level rise mapping, few studies have attempted to

communicate, in a spatially-explicit way using maps, the effects of

elevation errors and uncertainty in the final vulnerability

assessments (i.e. uncertain location of the inundation line). Notable

exceptions include the work by Gesch [11] and Gesch [25] where

uncertainty was incorporated in maps of potential SLR inunda-

tion. Elevation error was characterised in these studies by

calculating the RMSE of the elevation dataset. The RMSE was

treated as the standard deviation from which confidence intervals

can be derived at different confidence levels assuming unbiased

predictions and a Normal distribution. The linear error with a

95% confidence level (LE95), a metric used by the National

Standard for Spatial Data Accuracy (NSSDA) [26], was calculated

by:

LE95~1:96:RMSE ð1Þ

However, assumptions required for using the RMSE to

characterise the elevation error, such as the stationarity of the

variance, are disputed [15,22]. Acknowledging these limitations,

Gesch [25] highlighted the importance of future research

examining the effects of the spatial variability of elevation errors

in sea-level rise vulnerability assessments.

More recently, Schmid et al. [27] extended the deterministic

linear error approach to a probabilistic approach by calculating

and mapping z-score values based on the RMSE of the elevation

data. In addition, the approach incorporated uncertainties

associated with determining water surfaces such as shifting tidal

datum. Furthermore, Cooper and Chen [28] evaluated the effect

of combining vertical uncertainties in elevation data, datum

transformation and future SLR estimates using Monte Carlo

simulation to propagate probability distributions through the

inundation models. Even though both approaches considerably

improved mapping and portraying inundation uncertainty in

bathtub-derived SLR vulnerability assessments, the underlying

assumption of unbiased, uncorrelated and stationary errors in the

elevation data remains a shortcoming.

The overall aim of this study was to assess the impacts of

spatially variable and spatially correlated elevation errors in high-

spatial resolution DEMs when applied to the mapping of coastal

inundation. In order to account for the spatial variability of

elevation errors and the propagation of uncertainty to bathtub-

derived inundation maps, we used a probabilistic approach based

on geostatistical simulations that generates the input required for a

Monte Carlo uncertainty propagation analysis. This approach

effectively communicates uncertainty using visually intuitive maps

that can support decision-making. Accounting for uncertainties in

other components of SLR vulnerability assessments, such as sea-

level forecasts [28], determination of future water level [27] or

estimation of population at-risk [29], although very important, but

are not part of the scope of the present study.

Methods

Study area
The study area covers approximately 1.5 km2 of Brighton, the

northernmost suburb of Brisbane City, Australia. Brighton is

located 19 km north of the Brisbane city centre and features

mostly suburban housing on low-lying coastal land adjacent to

Moreton Bay (Figure 1). The area has different land covers and

infrastructure that are prone to inundation due to storm surge and

future rises in sea level [30]. These include low-lying houses, low-

energy sandy beaches, parks and roads infrastructure and wetlands

including mangroves fringing the coast (Figure 2). The prevailing

low-energy conditions in the mesotidal (approximately 2 m), semi-

enclosed, estuarine Moreton Bay are amenable to bathtub

mapping, as erosion is not the most significant process.

Field data
The suburb of Brighton (longitude 153.061613, latitude 2

27.288925) was visited on two occasions (22 August 2012 and 13

October 2013). During both visits real time kinematic (RTK) GPS

measurements were surveyed with nominal precisions of ,2 cm in

the horizontal and ,5 cm in the vertical positions. No specific

permissions were required for the topographic surveys on the

visited locations and the field studies did not involve endangered

or protected species. The horizontal coordinate system utilized was

the Australia (MGA) Zone 56, Geocentric Datum Australia 1994

(MGA56-GDA94). Two benchmarks installed by the Brisbane

City Council using spirit levelling (3rd Order, Class C vertical

control) were used to install the RTK GPS base antenna and

reduce the ellipsoid heights to Australian Height Datum (AHD),

which for this area closely corresponds to mean sea level (MSL)

[30]. The survey was closed by undertaking a reverse base-station

and rover traverse (,0.03 m).

A total of 407 points (108 and 299 in 2012 and 2013,

respectively) were measured, mostly along easily accessible

transects (i.e. roads, beaches, paths) across the major land cover

areas and areas with different topographical characteristics (slope,

ruggedness) (Figure 1). Orthophoto mosaics from 2009 and 2012

(see Section 2.3) were used to identify and avoid areas where land

cover had considerably changed during the period of LiDAR data

acquisition in 2009 (see Section 2.4) and the RTK GPS field data

surveying.

Remotely-sensed imagery
Two remotely-sensed image datasets were used in this study.

The first dataset was a very high resolution (7 cm spatial

resolution) orthophoto mosaic derived from true-colour (red,

green and blue) aerial photographs (http://maps.nearmap.com).

Orthophoto mosaics covering the study area in 2009 and 2012

were used to evaluate areas where considerable changes occurred

during the period of LiDAR data acquisition in 2009 (Section 2.4)

and RTK GPS field data surveying in 2012 (Section 2.2). The
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2012 orthophoto mosaic was georeferenced using five ground

control points measured with RTK GPS (RMSE 0.08 m). The

2009 orthophoto mosaic was georeferenced to the 2012 mosaic

(RMSE 0.047 m). Both orthophoto mosaics were resampled to

1 m resolution.

The second dataset was a Quickbird high-spatial resolution

satellite image (2.4 m spatial resolution) obtained in August 2010.

The image was sub-sampled to 1 m spatial resolution to match the

resampled orthophoto mosaics. A natural neighbours resampling

algorithm was used in order to honour the original range of values,

Figure 1. Location of study area. Classified land cover map with overlaid elevation errors for the 407 field measurements collected with real time
kinematic GPS. Representative land covers for the study area: (A) low-lying suburban housing, (B) low energy sandy beaches and (C) low-lying open
spaces (D) to the south of the highway and wetlands (D) to the north.
doi:10.1371/journal.pone.0108727.g001
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while keeping a smooth surface avoiding peaks or pits not

represented by the samples [31]. The Quickbird image was

georeferenced to the 2012 orthophoto mosaic (RMSE 1.1 m).

Lastly, the well-known normalized difference vegetation index

(NDVI) was calculated from the image:

NDVI~
NIR{VISð Þ
NIRzVISð Þ ð2Þ

where NIR and VIS stand for the spectral reflectance measure-

ments acquired by the Quickbird sensor in the near-infrared (Band

4) and visible (red) (Band 3) regions, respectively.

A land cover map was derived from the 2012 orthophoto

mosaic, the Quickbird image and the LiDAR dataset (Section 2.4)

following an object-based image analysis (OBIA) approach similar

to Arroyo et al. [32]. The advantage of employing this approach

was that the performance of the classification improved by

incorporating spectral information (e.g. NDVI), geometric char-

acteristics (e.g. rectangular fit of houses), contextual rules (e.g.

beach adjacent to water) and terrain variables (e.g. slope). The

classes mapped were: bare earth, houses, mangrove forest, roads,

sandy beach and sparse vegetation.

Figure 2. Representative land covers for the study area. (A) Low-lying houses, (B) low-energy sandy beaches, (C) low-lying bare earth/open
spaces and (D) mangroves forest (Source: Javier X. Leon).
doi:10.1371/journal.pone.0108727.g002

Figure 3. Flowchart of uncertainty propagation analysis.
doi:10.1371/journal.pone.0108727.g003
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Terrain data
A LiDAR dataset acquired by the State of Queensland’s former

Department of Environment and Resource Management (DERM)

was used in this study. The LiDAR data were collected for the

South-East Queensland Priority Area from a fixed wing aircraft

during ten flights between March 25th and April 24th, 2009.

Acquisition was undertaken within +/2 2 hours of low tide to

ensure maximum coverage over tidal flats. LiDAR points

(approximately 1.5 points/m2) were filtered and classified as

ground and non-ground results. Ground points were interpolated

to a high-resolution 1 m topographic DEM using the natural

neighbour algorithm. Data acquisition and post-processing was

controlled to achieve a vertical accuracy (RMSE) within 0.15 m

and horizontal accuracy within 0.45 m (RMSE). The MGA56-

GDA94 coordinate system was used for the horizontal datum

projection and AHD for the vertical datum [33].

The DEM was further smoothed using a low-pass filter (363 m

window) to remove remaining outliers and prepare the data for

subsequent terrain analysis [34]. Terrain variables were derived

using SAGA 2.0 GIS software [35]. These included: slope, aspect,

profile and plan curvature, mean curvature [36], terrain convexity

[37], topographic position index (TPI) [38], terrain ruggedness

index (TRI) [39], multiresolution index of valley bottom flatness

(MRVBF) [40] and vector ruggedness measure (VRM) [41].

Error propagation
A spatial stochastic model-based method was used to incorpo-

rate the propagation of errors in the LiDAR-derived DEM to

bathtub SLR inundation maps. This approach offers a basis for

incorporating and handling uncertainty in spatial modelling, but

to date it has not been widely adopted [42], with some exceptions

[43–45]. As Hengl et al. [43] noted, spatial error propagation

analysis is beneficial when errors are spatially variable and

Figure 4. Spatial datasets used in regression analysis. (A) Digital elevation model (DEM), (B) Normalized difference vegetation index (NDVI)
and terrain variables including (C) slope and (D) terrain convexity. DEM was based on data provided by the State of Queensland’s former Department
of Environment and Resource Management and NDVI was based on satellite image provided by DigitalGlobe.
doi:10.1371/journal.pone.0108727.g004

Uncertainty and Coastal Inundation Mapping

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e108727



spatially correlated. A general workflow of the utilized approach is

presented in Figure 3.

Elevation errors in the LiDAR-derived DEM were assessed

using the more accurate RTK GPS surveyed points by subtracting

the RTK GPS measured points from the DEM. The distribution

of elevation errors was explored for normality and correlation with

land cover and terrain variables. In order to simulate the random

component of the elevation error a Monte Carlo simulation based

on geostatistics was used. Sequential Gaussian simulation (SGS)

was chosen as it is the most common technique to generate

conditional stochastic simulations for spatially continuous variables

[46]. SGS uses the geostatistical interpolator kriging to simulate

values. Kriging is a generic name for a family of generalised least-

squares regression algorithms based on regionalized variable

theory that assumes that spatial variation of the variable is

statistically homogeneous throughout the region. Kriging, as

opposed to deterministic interpolators, utilizes a model of the

spatial correlation or structure of processes. The spatial structure is

characterised by a variogram, which is estimated from the sampled

data. The variogram is then used to estimate kriging weights used

for data interpolation. Under the assumptions made, kriging is an

optimal spatial interpolation method (i.e. predictions are unbiased

with minimum prediction error variance). It also allows to quantify

prediction accuracy with the kriging variance [47].

Briefly, SGS works by randomly selecting a location (i.e. grid

cell) from the spatial domain. At this location a conditional

probability distribution of the elevation error is computed using,

for example, ordinary kriging, a simple and effective kriging

method that assumes a constant mean. Next a value is randomly

drawn from this probability distribution using a pseudo-random

number generator and assigned to the location. The simulated

value is added to the dataset and a new location is randomly

selected. The process is repeated until all locations have been

visited, each time including all previously simulated values in order

to preserve the spatial correlation in simulated values, as modelled

by the variogram.

More accurate simulations of topography are produced by

including both the deterministic and the spatially correlated

random components of the elevation errors. For example,

regression-kriging instead of ordinary kriging [45]. Regression-

kriging treats the variable of interest (i.e., the elevation error) as the

sum of a deterministic trend and a zero-mean stochastic residual.

The trend is often taken as a linear combination of exhaustively

known environmental variables, such as land cover and terrain.

The estimated trend is added to the kriged stochastic residual [48].

The advantage of regression-kriging is that it allows a separate

interpretation of the deterministic and random components of

spatial errors and extends the method to a broader range of

regression techniques [49]. Despite some limitations [49,50],

regression-kriging generally outperforms other spatial interpola-

tion methods [51–54]. Regression-kriging predictions are calcu-

lated by:

ẑz s0ð Þ~m̂m s0ð Þzêe s0ð Þ

~
Xp

k
bbbk
:Xk s0ð Þz

Xn

i~1
li
:e sið Þ

ð3Þ

where ẑz s0ð Þ is the predicted value, m̂m s0ð Þ is the fitted linear

regression and êe s0ð Þ is the spatially interpolated residual at the

prediction location s0. The b̂bk are the estimated regression

Figure 5. Histogram of elevation errors.
doi:10.1371/journal.pone.0108727.g005
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coefficients and Xk the explanatory variables. X0 is often taken as

unity so that b̂b0 is the intercept of the regression model. The li are

kriging weights for the residuals, where e sið Þ is the residual at

measurement location si i.e., the difference between the elevation

error and the fitted trend atsi. The regression coefficients b̂bk

� �
are

estimated using generalized least squares (GLS), and hence

incorporate the spatial correlation of the stochastic residual of

the regression-kriging model. SGS based on the regression-kriging

model can also be obtained for spatial stochastic simulation. This

is done in the same way as explained before, where the kriging step

uses regression-kriging instead of ordinary kriging.

Geostatistical simulations were run using both ordinary kriging

and regression-kriging interpolators for comparison purposes. The

Exploratory Regression tool, as implemented in ArcGIS 10.2 [55],

was used to evaluate all possible combinations of explanatory

variables used to model the deterministic trend for the regression-

kriging analysis. Exploratory regression is similar to stepwise

regression but in addition to looking at high Adjusted R2 values,

other factors are included to ensure that the requirements and

Figure 6. Box-whisker plots of elevation errors grouped by land cover.
doi:10.1371/journal.pone.0108727.g006

Table 1. Regression coefficients for best linear model.

Estimate Standard Error t value Pr(.|t|)

(Intercept) 0.350 0.077 4.562 0.000 ***

NDVI 20.156 0.051 23.063 0.002 **

slope 0.514 0.103 4.992 0.000 ***

convexity 20.579 0.113 25.122 0.000 ***

landcover (bare earth) 20.104 0.045 22.319 0.021 *

landcover (sparse vegetation) 20.111 0.053 22.077 0.038 *

landcover (sand) 20.156 0.054 22.877 0.004 **

landcover (mangrove) 20.065 0.051 21.276 0.203

landcover (roads) 20.054 0.047 21.166 0.245

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
doi:10.1371/journal.pone.0108727.t001
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assumptions of a properly specified linear regression are met.

Factors include statistically significant coefficients for all explan-

atory variables, avoidance of multi-colinearity (Variance Inflation

Factor ,7.5) and normally distributed residuals (non-significant

Jarque-Bera probability value) [55]. Environmental variables

explaining elevation errors included orthophoto mosaic and

Quickbird image spectral bands (Section 2.3), terrain variables

(Section 2.4) and land cover class, which was incorporated in the

regression analysis as a factor.

The spatial structure of the elevation errors, for both ordinary

kriging and regression-kriging models, were modelled using the

valid and flexible Matérn variogram [56]. The simulation process

was fully performed with the GSTAT package [57] as imple-

mented in the R Environment for Statistical Computing software

[58]. A total of 1,000 realizations of elevation errors were

generated to guarantee a stable result [59]. Simulated elevation

errors were added to the original LiDAR-derived DEM and

inundation maps were produced using the bathtub approach

following the hydrological connectivity method proposed by

Poulter and Halpin [10].

For the sake of simplicity, a scenario of 3.9 m above MSL, a

linear combination of a 2.9 m storm surge over a 1 m SLR above

MSL, was chosen for the bathtub inundation map, even though in

reality the interactions between SLR and storm surge are highly

complex [60]. The 2.9 m storm surge water level is equivalent to

the 100 year storm average recurrence interval (ARI), or a storm

with 1% annual exceedance probability, calculated for this area

[30]. Maps of inundation with 1% and 50% probability of

Figure 7. Variograms of elevation errors. Fitted Matérn variogram based on ordinary kriging model (blue dashed line and squares) and
regression-kriging model (red line and circles).
doi:10.1371/journal.pone.0108727.g007

Figure 8. Interpolated elevation errors. Inset showing interpolation elevation errors based on ordinary kriging model (left panel) and regression-
kriging model (right panel). Location of (A) seawall and (B) park are shown for reference (see main text).
doi:10.1371/journal.pone.0108727.g008
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Figure 9. Probability inundation map for a scenario combining a 2.9 m 100 ARI storm surge event over a 1 m SLR. The fat solid black
line represents the deterministic bathtub-derived inundation border. The thin solid line shows the area that has a probability greater than 1% to
become inundated.
doi:10.1371/journal.pone.0108727.g009
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exceedance were derived for comparison purposes with the

deterministic inundation map.

Results

Elevation errors
The DEM elevations ranged from 0.03 to 21 m above MSL,

with an average elevation of 4 m above MSL (Figure 4). Elevation

errors, as quantified from the 407 RTK GPS points, closely

approximated a normal distribution and varied from 20.49 to

0.48 m. Elevation errors were slightly biased with a mean value of

0.04 m (Figure 5). The standard deviation of 0.18 m was

consistent with commonly reported errors in LiDAR-derived

DEM. The spatial distribution of elevation errors showed some

clustering mainly correlated with land cover (Figure 1). Correla-

tion analysis between elevation errors and land cover revealed that

smaller errors were found on ‘‘built’’ and homogeneous environ-

ments such as houses, roads and bare earth. The largest elevation

errors were found on vegetated areas, including both sparse trees

and mangrove, and on sandy beaches. A box plot of elevation

errors grouped by land cover is presented in Figure 6.

The deterministic component of the elevation errors was first

modelled using OLS regression. The best model incorporated the

following significant predictors: land cover, NDVI, slope and

convexity (Table 1). The model avoided multicollinearity

(VIF = 1.04) and residuals were sufficiently normally distributed

(non-significant Jarque-Bera probability values). The predictors

explained 14% of the variance in the elevation errors.

The spatial structure of elevation errors showed a range of

102 m and partial sill of 0.023.

Both the range and partial sill of the variogram fitted to GLS-

derived residuals were smaller (65 and 0.018, respectively), as

expected due to about 14% of variance being explained by the

regression model (Figure 7).

Inundation mapping
Interpolated elevation errors based on ordinary kriging and

regression-kriging models showed considerable differences across

the study area (Figure 8). Interpolation based on the regression-

kriging model was visually more realistic than the ordinary kriging-

derived interpolation. For example, complex terrain or vegetated

areas such as parks were better approximated by the regression-

kriging model. The ordinary kriging-derived DEMs underestimat-

ed structures such as steep seawalls by up to 20 cm (Location A in

Figure 8). Conversely, the elevation of parks was overestimated by

up to 15 cm (Location B in Figure 8). Based on this, the regression

kriging-derived DEMs were deemed more appropriate for

inundation mapping in our study site.

The 1,000 regression-kriging -derived simulated elevation error

maps were added to the LiDAR-derived DEM and reclassified

using bathtub inundation modelling. The adopted bathtub

modelling ensured inundated areas were hydrologically connected

to the ocean, thus avoiding flooding of inland depressions not

connected to the ocean and potential overestimation of inundated

areas. The probability of inundation to a scenario combining a

2.9 m storm surge (ARI100 event) over a 1 m SLR was calculated

by counting the proportion of times from the 1,000 simulations

that a location was inundated.

Inundation maps based on the deterministic and geostatistical

bathtub approaches are shown in Figure 9. The bathtub method

includes non-linear operations and spatial flows which results in a

slightly larger area (0.5%) for the inundation map obtained for the

determinstic run than the median of the probabilistic inundation

map. However, when considering a 1% probability exceedance,

the inundated area is approximately 11% larger than that mapped

using the deterministic approach. This additional inundated area

conveys information about elevation errors and propagation of

uncertainties through the mapping and spatial analysis process.

For example, low-lying and flat areas such as roads (zone I,

Figure 9) or houses surrounded by vegetation (zone II, Figure 9)

are mapped as inundated based on the deterministic bathtub map

but appear as uncertain areas with lower probability (,30%) of

becoming inundated based on the probabilistic mapping. Con-

versely, areas with houses on complex terrain (zone III, Figure 9)

that appear safe from inundation based on the deterministic

mapping can have a large probability (60–90%) of getting

inundated when considering the propagation of uncertainty

through the spatial analysis. Being able to quantify the probability

of inundation at any location is of great interest from a risk

management perspective.

Discussion

The geostatistical approach presented in this study accounted

for the spatially variable and spatially correlated elevation errors

inherent to high-resolution DEMs. The use of SGS dealt

effectively with the complexities of analysing uncertainty propa-

gation through the spatial analysis process (e.g. bathtub model-

ling). Hence, this approach is suitable for the mapping of complex

and dynamic phenomena such as inundation due to future SLR,

storm surge or a combination of these.

The main limitation of applying this method is related to data

constraints. Acquiring the required datasets simultaneously or

within a short temporal span is very challenging and therefore

uncommon. In this study, LiDAR data were acquired in 2009

while ground control data were acquired three years later. Further,

ground control data were surveyed in two separate occasions

almost one year apart. Based on visual interpretation of the very

high resolution orthophoto mosaics from 2009 and 2012, we can

safely assume that most sites surveyed within the study area did not

undergo considerable change. Areas that were observed to change

considerably, such as the motorway around the bridge, were

avoided during the RTK GPS survey. However, even though

planform changes on the low-energy sandy beaches were not

observed, it is probable that changes in profile shape occurred,

resulting in the larger elevation errors obtained for that land cover

category. This is important to note, particularly on dynamics

coastlines, as SLR vulnerability assessments are rarely based on

up-to-date LiDAR elevation datasets.

The quality of datasets is also important for the correct

application of the proposed method. The fitting of the regression

model and the variogram are essential to the quality of the

geostatistical model. These rely on both the quality and

distribution of ground control data in the spatial and feature

space domains of the explanatory datasets. Highly accurate

datasets (e.g. RTK GPS survey) covering large areas are seldom

available but are required to assess the spatial variability of DEM

errors. This is a challenge for the transferability of this and other

empirical statistical approaches. However, based on the findings of

this and other studies [16,23], terrain variables and/or land cover

maps could be incorporated in a quantitative analysis of the error

in elevation data when ground control data are not available.

Geostatistical simulations have not been widely adopted in

geoscience or spatial data analysis applications due to other factors

such as computational challenges [61]. The exponential increase

in computational power and recent software development [54] will

probably change this trend. Furthermore, geostatistical simulations

produce DEMs with additional noise by incorporating the
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complete variability of elevation error, as opposed to the smoother

DEMs sought by geomorphologists or specialists performing

terrain analysis. However, incorporating additional explanatory

datasets within the regression-kriging model produces more

realistic DEMs.

It is important to note that geostatistical methods take the

spatial correlation in elevation errors into account. This has a

great impact on analyses that include spatial interactions such as

inundation mapping. For instance, if errors were assumed spatially

uncorrelated, then simulations would be very noisy and there

would be many ‘barriers’ against flow, resulting in underestimated

inundation areas.

The novel application of this technique to the mapping of

coastal inundation has two further advantages over the more

traditional deterministic mapping. First, it is visually intuitive.

Experts and non-experts can equally interpret the probability of

some event occurring (e.g. house being inundated), especially as

people are increasingly used to dealing with probabilities (chance

of rain, sporting bets, elections, etc.). By visualizing the different

probabilities of risk to inundation, stakeholders and decision-

makers can further visualize adaptation options that can improve

communication of policy and public engagement [62].

Second, it explicitly provides information about the reliability of

the final inundation maps. This can avoid potential misinterpre-

tation when assessing vulnerabilities due to SLR or storm surge.

The line on a deterministic bathtub-derived inundation map

delimits an area with approximately 50% chance of being

inundated. It is commonly assumed that areas above the line will

be safe and those below will not be, despite the various limitations

in the vulnerability assessment, hence potentially creating a false

sense of security or fear amongst the stakeholders and general

public. The substitution of the more traditional deterministic ‘‘line

on a map’’ by a probabilistic area explicitly incorporates

uncertainties of the final map and can be easily incorporated into

risk management and decision-making processes. For example, a

risk-aversive decision making approach can be taken by planning

for scenarios where the probability of inundation exceeds 1%,

hence considering a larger area at risk than results from the

deterministic approach. This could have very important implica-

tions in the context of insurance, liability and litigation [63]. By

taking this approach, adaptation is not limited by the uncertainty

around future scenarios of risk [64]. However, the question of how

much uncertainty people are willing to accept remains unsolved

and warrants further research on perceptions of risk and decision

making.

In order to improve SLR vulnerability assessments and facilitate

their effective implementation for adaptation policies, we suggest

further research into extending the presented probabilistic

framework approach by incorporating uncertainties in other

components of SLR vulnerability assessments, such as sea-level

forecasts [28], determination of water levels or estimates of

population at-risk. Additionally, in areas where coastal systems are

more dynamic, such as high-energy sandy beaches or rapidly

accreting mangroves or salt marshes, vulnerability assessments can

be improved by replacing the static bathtub mapping by process-

based modelling that better incorporates the physics of hydrody-

namics and coastal erosion/accretion [65].

Conclusions

N Uncertainty is inherent to spatial data and spatial analysis and

therefore it is of paramount importance to effectively

communicate it, particularly when dealing with decision-

making in a changing climate.

N The spatially variable and spatially correlated elevation error

in LiDAR-derived DEMs can be partially explained by land

cover and terrain variables.

N Geostatistical modelling of DEM error takes the spatial

correlation in these errors into account, which has a great

impact on analyses that include spatial interactions such as

bathtub inundation modelling

N Sequential Gaussian simulation allows dealing effectively with

the complexities of analysing uncertainty propagation through

the spatial analysis process and hence is suitable for the

mapping of complex and dynamic phenomena such as

inundation due to future SLR, storm surge or a combination

of these.

N The presented probabilistic approach can be used in a risk-

aversive decision making process by planning for scenarios

with different probabilities of occurrence. Being able to

quantify the probability of inundation at any location is of

great interest from a risk management perspective.

N In this study, results showed that when considering a 1%

probability exceedance, the inundated area was approximately

11% larger than the mapped using the deterministic bathtub

approach.

N Further research is suggested to address the question of how

much uncertainty people are willing to accept and the

perceptions of risk on decision making.

N SLR vulnerability assessments can be improved by extending

the presented probabilistic framework to including uncertain-

ties in sea-level forecasts, determination of water levels and

estimates of population at-risk.
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