Bioactive Cembranoids from the Soft Coral Sinularia crassa

Chih-Hua Chao ${ }^{1,2}$, Kuei-Ju Chou ${ }^{1}$, Chiung-Yao Huang ${ }^{1}$, Zhi-Hong Wen ${ }^{1,3}$, Chi-Hsin Hsu ${ }^{1,3}$, Yang-Chang Wu ${ }^{4}$, Chang-Feng Dai ${ }^{5}$ and Jyh-Horng Sheu ${ }^{1,3, *}$
${ }^{1}$ Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan; E-Mails: chaochihhua@hotmail.com (C.-H.C.); jzusmile@hotmail.com (K.-J.C.); betty8575@yahoo.com.tw (C.-Y.H.); wzh@mail.nsysu.edu.tw (Z.-H.W.); hsuch@mail.nsysu.edu.tw (C.-H.H.)
2 Chinese Medicinal Research and Development Center, China Medical University and Hospital, Taichung 404, Taiwan
${ }^{3}$ Asian Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan
${ }^{4}$ College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
E-Mail: yachwu@mail.cmu.edu.tw
5 Institute of Oceanography, National Taiwan University, Taipei, Taiwan; E-Mail: corallab@ntu.edu.tw

* Author to whom correspondence should be addressed; E-Mail: sheu@mail.nsysu.edu.tw; Tel.: +886-7-5252000 ext. 5030; Fax: +886-7-5255020.

Received: 18 August 2011; in revised form: 26 September 2011 / Accepted: 9 October 2011 / Published: 17 October 2011

Abstract

Eight new cembranoids, crassarines A-H (1-8) were isolated from the Formosan soft coral Sinularia crassa. Compounds 1-3 represent the rare cembranoids with a 1,12-oxa-bridged tetrahydrofuran ring, while $\mathbf{4}$ and $\mathbf{5}$ are the firstly discovered 1,11-oxa-bridged tetrahydropyranocembranoids. The absolute configuration of 6 was determined using the Mosher's method. Compounds $\mathbf{6}$ and $\mathbf{8}$ were found to significantly inhibit the expression of both pro-inflammatory iNOS and COX-2 proteins at $10 \mu \mathrm{M}$, respectively, while compounds $\mathbf{4}-\mathbf{8}$ were found to be non-cytotoxic toward the selected human liver cancer cells.

Keywords: Sinularia crassa; crassarines A-H; anti-inflammatory

1. Introduction

Soft corals were proven to be a rich source of terpenoids [1]. We previously have isolated a series of bioactive cembrane- [2-4] and norcembrane- [5-8] diterpenoids from the Formosan soft corals of the genus Sinularia. Although this genus has been well studied regarding bioactive constituents, previous investigations on an Indian soft coral Sinularia crassa (Tixier-Durivault, 1951) had resulted in the isolation of only a sphingosine and a steroid possessing anti-inflammatory $[9,10]$ and 5α-reductase inhibitiory activities [11], respectively. This prompted us to investigate the bioactive compounds from the Formosan soft coral S. crassa and the present study has led to the isolation of eight new cembranoids, crassarines A-H (1-8, see Chart 1) from the ethanolic extract of this organism. The structures of these compounds have been established by extensive spectroscopic analysis and chemical method. The anti-inflammatory activity of $\mathbf{1 - 8}$ to inhibit up-regulation of the pro-inflammatory iNOS (inducible nitric oxide synthase) and COX-2 (cyclooxygenase-2) proteins in LPS (lipopolysaccharide)-stimulated RAW264.7 macrophage cells and the cytotoxicity of compounds $\mathbf{4 - 8}$ against a panel of cancer cell lines including human liver carcinoma (HepG2 and HepG3), human breast carcinoma (MCF-7 and MDA-MB-231), and human lung carcinoma (A-549) were evaluated in order to discover bioactive natural products.

Chart 1. The structures of crassarines A-H (1-8).

$1 \mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}$
1a $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{Ac}$
$2 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{3}=\mathrm{Ac}$
$3 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{3}=\mathrm{CHO}$

$4 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{3}$
$5 \mathrm{R} 1=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{OH}$

$6 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$
$7 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$

8

2. Results and Discussion

The HRESIMS of crassarine A (1) exhibited a pseudomolecular ion peak at $m / z 361.2353[\mathrm{M}+\mathrm{Na}]^{+}$, consistent with a molecular formula of $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{4}$, appropriate for four degrees of unsaturation. The IR spectrum of 1 showed a broad absorption band at $3461 \mathrm{~cm}^{-1}$ and a strong absorption band at $1698 \mathrm{~cm}^{-1}$, implying the presence of hydroxy and carbonyl groups. The latter was identified as a ketone functionality from the carbon resonance at $\delta 211.8$ (Table 1). In addition, carbon resonances at $\delta 133.3(\mathrm{CH})$ and $134.3(\mathrm{CH})$ were attributed to the presence of an 1,2-disubstituted double bond. The above functionalities accounted for two of the four degrees of unsaturation, suggesting a bicyclic structure in 1. By interpretation of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations, it was possible to establish three partial structures from both $\mathrm{H}-7$ and $\mathrm{H}_{3}-19$ to $\mathrm{H}-8, \mathrm{H}-8$ to $\mathrm{H}-11, \mathrm{H}_{2}-13$ to $\mathrm{H}_{2}-14$, and both $\mathrm{H}_{3}-16$ and $\mathrm{H}_{3}-17$ to $\mathrm{H}-15$. Subsequently, these partial structures were connected by the HMBC correlations (Figure 1). According to the downfield-shifted carbon chemical shifts at $\delta 88.1$ (C-1, C), $75.0(\mathrm{C}-11, \mathrm{CH})$, and
85.7 (C-12, C) [12] as well as the HMBC correlations from $\mathrm{H}_{3}-20$ to $\mathrm{C}-11, \mathrm{C}-12$, and $\mathrm{C}-13$ and $\mathrm{H}_{3}-16$ (or $\mathrm{H}_{3}-17$) to $\mathrm{C}-17$ (or $\mathrm{C}-16$), $\mathrm{C}-15$, and $\mathrm{C}-1$, an ether linkage between $\mathrm{C}-1$ and $\mathrm{C}-12$ forming a tetrahydrofuran (THF) ring and a hydroxy group at C-11 were assigned for $\mathbf{1}$. The location of C-6 ketone was suggested from the carbon resonances of the adjacent methylenes at $\delta 53.3$ (C-5) and 51.6 (C-7). This was further confirmed by the HMBC correlations from both $\mathrm{H}_{2}-7$ and $\mathrm{H}_{2}-5$ to C-6. In addition, the HMBC correlations from $\mathrm{H}_{3}-18$ to $\mathrm{C}-3, \mathrm{C}-4$, and $\mathrm{C}-5$ helped to locate the $\mathrm{C}-2 / \mathrm{C}-3$ double bond and a hydroxy group at quaternary C-4 ($\delta 71.4$). Hence, the planar structure of $\mathbf{1}$, a cembranoid possessing a 1,12-bridged tetrahydrofuran ring, was established as shown in Figure 1.

Table 1. ${ }^{13} \mathrm{C}$ NMR spectroscopic data of compounds $\mathbf{1 - 8}$.

$\#^{\boldsymbol{a}}$	$\mathbf{1}^{a}$	$\mathbf{1}^{b}$	$\mathbf{2}^{c}$	$\mathbf{3}^{a}$	$\mathbf{4}^{a}$	$\mathbf{5}^{a}$	$\mathbf{6}^{d}$	$\mathbf{7}^{d}$	$\mathbf{8}^{d}$
1	88.1	87.6	88.6	88.8	77.5	77.7	147.2	147.7	146.2
2	133.3	133.8	133.4	133.2	131.6	130.8	119.1	118.6	107.7
3	134.3	135.1	136.4	136.5	139.0	138.3	121.7	122.9	146.8
4	71.4	70.7	72.4	72.4	73.4	71.7	135.4	134.8	117.0
5	53.3	56.4	52.7	52.7	54.0	50.8	38.5	39.4	109.6
6	211.8	209.5	212.9	213.0	215.2	215.7	25.2	25.5	151.1
7	51.6	49.4	51.1	51.2	53.1	54.2	126.7	130.1	35.3
8	28.9	25.8	26.4	26.4	30.8	28.5	136.7	138.0	30.4
9	32.5	32.7	32.9	33.0	32.4	29.7	75.3	33.7	30.2
10	29.4	26.5	26.8	26.9	26.0	24.4	32.3	25.5	24.8
11	75.0	71.1	77.0	77.0	76.2	74.7	57.0	59.1	65.4
12	85.7	86.4	84.7	84.7	70.0	70.1	59.5	60.3	60.7
13	35.2	36.7	34.6	34.4	37.1	36.9	36.4	35.4	40.5
14	30.9	30.4	31.7	31.9	28.4	28.8	24.3	24.1	24.2
15	37.7	38.0	38.6	38.5	40.2	40.3	34.4	33.5	35.2
16	18.0	18.3	18.2	18.2	17.3	17.2	22.5	22.3	21.6
17	17.7	17.8	17.6	17.5	16.8	16.8	22.3	22.7	21.1
18	28.9	31.1	29.8	29.7	28.9	24.5	17.3	16.8	9.1
19	22.6	22.1	22.3	22.3	22.0	20.7	11.7	59.4	20.0
20	23.4	20.8	23.5	24.0	18.8	19.5	18.5	19.0	15.2
OAc			170.9						
			21.0						
CHO				160.9					

${ }^{a}$ Spectra were measured in $\mathrm{CDCl}_{3}(100 \mathrm{MHz}) ;{ }^{b}$ Spectra were measured in pyridine- $d_{5}(100 \mathrm{MHz})$;
${ }^{c}$ Spectra were measured in $\mathrm{CDCl}_{3}(125 \mathrm{MHz}) ;{ }^{d}$ Spectra were measured in $\mathrm{C}_{6} \mathrm{D}_{6}(100 \mathrm{MHz})$.

The E geometry for the C-2/C-3 double bond was deduced from a 16.0 Hz coupling constant (Table 1) between $\mathrm{H}-2$ and $\mathrm{H}-3$. The relative configuration of $\mathbf{1}$ was determined by the interpretation of NOE correlations (Figure 2). The NOE correlations between $\mathrm{H}_{3}-20 / \mathrm{H}_{3}-16$ (or $\mathrm{H}_{3}-17$), $\mathrm{H}-11 / \mathrm{H}-13 \mathrm{a}$ ($\delta_{\mathrm{H}} 2.61$), $\mathrm{H}-11 / \mathrm{H}-8$, and $\mathrm{H}_{3}-20 / \mathrm{H}_{2}-13$ suggested the $1 S^{*}, 8 S^{*}, 11 R^{*}, 12 S^{*}$ configuration as depicted in Figure 2. In addition, the NOE correlations observed for $\mathrm{H}-2$ with both $\mathrm{H}-15$ and $\mathrm{H}_{3}-18$ and for $\mathrm{H}_{3}-18$ with H-3 suggested the $4 S^{*}$ configuration. In order to understand the orientation of $4-\mathrm{OH}$ and $11-\mathrm{OH}$, the pyridine-induced solvent shifts were measured [13,14]. The significant differences of chemical shifts ($\Delta \delta=\delta \mathrm{CDCl}_{3}-\delta \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) due to pyridine-induced deshielding effect of hydroxy group were observed
for $\mathrm{H}-7 \mathrm{a}(\Delta \delta=-0.93 \mathrm{ppm}), \mathrm{H}_{3}-20(\Delta \delta=-0.24 \mathrm{ppm})$, and $\mathrm{H}-13 \mathrm{a}(\Delta \delta=-0.63 \mathrm{ppm})$ (Table 2), suggesting that 4-OH is close to $\mathrm{H}-7 \mathrm{a}$, and the $11-\mathrm{OH}$ is not only close to $\mathrm{H}-13$ a but also gauche-oriented to $\mathrm{H}_{3}-20$, as shown in Figure 2. To determine the absolute configuration, we applied the Mosher's method on $\mathbf{1}$. However, we were unable to prepare the corresponding Mosher esters of $\mathbf{1}$ by usual reaction conditions [3,4]. This might be due to the steric hindrance of THF ring adjacent to C-11.

Figure 1. Selected ${ }^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}(-)$ and $\mathrm{HMBC}(\rightarrow)$ correlations of 1-8.

$1 \mathrm{R}=\mathrm{H}$
$2 R=A c$
$3 \mathrm{R}=\mathrm{CHO}$

4 and 5

$6 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$
$7 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$

8

Figure 2. Selected NOE correlations for compounds 1, 4, 6, and $\mathbf{8}$.

1

Table 2. ${ }^{1} \mathrm{H}$ NMR Spectroscopic Data of Compounds $\mathbf{1 - 3}$ and 8.

\#	1, $\delta_{\mathrm{H}}\left(J\right.$ in Hz) ${ }^{\text {a }}$	1, $\delta_{\mathrm{H}}\left(\boldsymbol{J}\right.$ in Hz) ${ }^{\text {b }}$	2, $\delta_{\mathrm{H}}\left(\boldsymbol{J}\right.$ in Hz) ${ }^{\text {c }}$	3, $\boldsymbol{\delta}_{\mathrm{H}}\left(J\right.$ in Hz) ${ }^{\text {a }}$	8, $\delta_{\mathrm{H}}\left(J\right.$ in Hz) ${ }^{\text {d }}$
2	5.73, s	$6.28, \mathrm{~d}(16.0)$	5.75, s	5.74, s	5.95, s
3	5.73, s	$6.04, \mathrm{~d}$ (16.0)	5.75, s	5.74, s	
5	a: 2.79, d (15.6)	a: 2.98 , d (13.0)	a: 2.89, d (15.0)	a: $2.89, \mathrm{~d}$ (15.0)	5.73,s
	b: 2.61, d (15.6)	b: 2.87, d (13.0)	b: 2.48, d (15.0)	b: 2.48, d (15.0)	
7	$\begin{aligned} & \mathrm{a}: 2.45, \mathrm{dd} \\ & (15.6,8.4) \end{aligned}$	$\begin{aligned} & \text { a: } 3.38 \text {, dd } \\ & (16.0,4.0) \end{aligned}$	$\begin{aligned} & \text { a: } 2.52 \text {, dd } \\ & (18.0,8.5) \end{aligned}$	$\begin{aligned} & \text { a: } 2.49 \text {, dd } \\ & (18.0,8.5) \end{aligned}$	a: 2.44, br d (12.4)
	$\text { b: } 2.23 \text {, dd }$	$\mathrm{b}: 2.04, \mathrm{dd}$	$\text { b: } 2.16 \text {, dd }$	$\text { b: } 2.18 \text {, dd }$	b: $2.02, \mathrm{~m}$
8	(15.6, 5.2$)$ $2.02, \mathrm{~m}$	(16.0, 9.6) $2.41, \mathrm{~m}$	(18.0, 4.0$)$ $2.29, \mathrm{~m}$	(18.0, 4.0$)$ $2.29, \mathrm{~m}$	1.96, m
9	1.46, m	1.30, m	1.37, m	1.38, m	1.30, m
			0.97, m	0.99, m	0.93, m
10	a: $1.56, \mathrm{~m}$	a: $2.18, \mathrm{~m}$	a: $1.44, \mathrm{~m}$	a: $1.48, \mathrm{~m}$	a: $1.82, \mathrm{~m}$
	b: $1.25, \mathrm{~m}$	$\mathrm{b}: 1.63, \mathrm{~m}$	b: $1.38, \mathrm{~m}$	b: 1.37 , m	b: $1.20, \mathrm{~m}$
11	3.24, br d (9.6)	3.76, d (10.4)	4.80, br d (10.5)	4.90, br d (8.4)	$\begin{aligned} & 2.36, \mathrm{dd} \\ & (10.0,2.0) \end{aligned}$
13	a: $1.98, \mathrm{~m}$	$\begin{aligned} & \text { a: } 2.61, \text { ddd } \\ & (12.4,8.4,2.4) \end{aligned}$	a: $1.80, \mathrm{~m}$	a: $1.84, \mathrm{~m}$	a: $2.40, \mathrm{~m}$
	b: $1.68, \mathrm{~m}$	b: $1.75, \mathrm{~m}$	b: $1.60, \mathrm{~m}$	b: $1.64, \mathrm{~m}$	b: $1.04, \mathrm{~m}$
14	a: $1.96, \mathrm{~m}$	a: $2.12, \mathrm{~m}$	a: $1.98, \mathrm{~m}$	a: $2.01, \mathrm{~m}$	$\begin{aligned} & \text { a: } 3.55, \mathrm{dd} \\ & (12.4,9.2) \end{aligned}$
	b: $1.89, \mathrm{~m}$	b: $1.88, \mathrm{~m}$	b: 1.87 , m	b: $1.86, \mathrm{~m}$	b: 2.02, m
15	1.76, m	1.81, m	1.75, m	1.75, m	2.22, m
16	0.87, d (6.8)	0.92, d (6.8)	0.86, d (6.8)	0.86, d (6.8)	1.00, d (6.0)
17	0.86, d (6.8)	0.92, d (6.8)	0.84, d (6.8)	0.84, d (6.8)	1.04, d (6.0)
18	1.37, s	1.61, s	1.25, s	1.25 , s	1.88, s
19	0.98, d (6.4)	0.94, d (6.8)	0.91, d (6.4)	0.92, d (6.8)	0.82, d (6.4)
20	$1.25, \mathrm{~s}$	1.49, s	1.15, s	1.18, s	1.23 , s
OAc			2.09, s		
CHO				8.18,s	
4-OH			4.45, s	4.47, s	

${ }^{a}$ Spectra were measured in $\mathrm{CDCl}_{3}(400 \mathrm{MHz}) ;{ }^{b}$ Spectra were measured in pyridine- $d_{5}(400 \mathrm{MHz})$;
${ }^{c}$ Spectra were measured in $\mathrm{CDCl}_{3}(500 \mathrm{MHz}) ;{ }^{d}$ Spectra were measured in $\mathrm{C}_{6} \mathrm{D}_{6}(400 \mathrm{MHz})$.
HRESIMS analysis of crassarine $\mathrm{B}(\mathbf{2})$ provided a molecular formula of $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$ m / z 403.2463). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data of $\mathbf{2}$ were close to those of $\mathbf{1}$. A comparison of NMR spectroscopic data of $\mathbf{2}$ with those of $\mathbf{1}$ indicated that $\mathbf{2}$ possesses an acetoxy group [$\delta_{\mathrm{C}} 170.9(\mathrm{C})$, $\left.\delta_{\mathrm{C}} 21.0\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{H}} 2.09\right]$, which was suggested to be attached at $\mathrm{C}-11$ due to the downfield-shifted proton resonance at $\delta_{\mathrm{H}} 4.08(1 \mathrm{H}$, br d, $J=10.5 \mathrm{~Hz}, \mathrm{H}-11)$ in comparison with the relevant case of $11-\mathrm{OH}$ analogue $\mathbf{1}\left(\delta_{\mathrm{H}} 3.24,1 \mathrm{H}, \mathrm{brd}, J=9.6 \mathrm{~Hz}, \mathrm{H}-11\right)$. The structure elucidation of $\mathbf{2}$ was accomplished by an extensive analysis of its 2D NMR correlations, which led to the establishment of its planar structure, as shown in Figure 1. Except for the C-11 substituent and the THF ring in both compounds $\mathbf{1}$ and $\mathbf{2}$, the differences were observed for the chemical shifts of protons and carbons around the C-4 asymmetric center, in particular those of $\mathrm{H}_{3}-18$ ($\delta_{\mathrm{H}} 1.37$ and $\delta_{\mathrm{C}} 28.9$ for $\mathbf{1} ; \delta_{\mathrm{H}} 1.25$ and $\delta_{\mathrm{C}} 29.8$ for $\mathbf{2}$). These
observations suggested that the configuration at $\mathrm{C}-4$ in $\mathbf{2}$ should be opposite to that in $\mathbf{1}$. Moreover, $\mathbf{1}$ and 2 shared the same NOE correlations around asymmetric centers C-1, C-8, C-11, and C-12. To confirm the above elucidation, $\mathbf{1}$ was acetylated to obtain $\mathbf{1 a}$, which displayed different ${ }^{1} \mathrm{H}$ NMR spectrum to that of $\mathbf{2}$ (see Experimental). Consequently, $\mathbf{2}$ was determined to be the 4-epi-11-O-acetyl derivative of $\mathbf{1}$. The ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectral data of $\mathbf{3}$ are very similar to that of $\mathbf{2}$ (Tables 1 and 2); however, ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ showed a singlet at $\delta 8.18$ which correlates with carbon signal at $\delta 160.9$ in the HSQC spectrum, indicating the presence of a formyloxy group at $\mathrm{C}-11 \mathrm{in} \mathbf{3}$. On the basis of the above data, 3 was identified as the 11-O-formyl derivative of $\mathbf{2}$. Literature review showed that this is the first cembranoid with a formyloxy group.

Crassarine D (4) possesses the same molecular formula as that of $\mathbf{1}$. The ${ }^{13} \mathrm{C}$ NMR data (Table 1) of 4 were mostly similar to those of $\mathbf{1}$, except for those of sp^{3} oxygenated carbons, suggesting that they vary mainly in the heterocyclic ring. The upfield shift for $\mathrm{H}-11$ from $\delta 3.24(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=9.6 \mathrm{~Hz})$ in $\mathbf{1}$ to $\delta 3.02(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz})$ in 4 indicates that an ether linkage should be located between $\mathrm{C}-1$ and $\mathrm{C}-11$ to form a tetrahydropyran (THP) ring. The HMBC correlation from $\mathrm{H}-11$ to $\mathrm{C}-1(\delta 77.5, \mathrm{C})$ confirmed the presence of this THP ring in $\mathbf{4}$, rather than the THF ring in $\mathbf{1}$. The detailed analysis of the correlations observed in the COSY, HMBC, and HSQC spectra further assigned all the spectroscopic data and established the planar structure of 4 (Figure 1). The E geometry of C-2/C-3 double bond was also deduced from the coupling constant (16.0 Hz) between $\mathrm{H}-2$ and $\mathrm{H}-3$. NOE correlations between $\mathrm{H}_{3}-20 / \mathrm{H}-14 \mathrm{a}, \mathrm{H}_{3}-17 / \mathrm{H}-14 \mathrm{a}, \mathrm{H}_{3}-20 / \mathrm{H}-13 \mathrm{a}$, and $\mathrm{H}-11 / \mathrm{H}-13 \mathrm{~b}$ suggested that $\mathrm{H}-11$ is an axial proton and oriented oppositely to $\mathrm{H}_{3}-20$. Both $\mathrm{H}-11$ and $\mathrm{H}-8$ were suggested to be positioned on the same face based on the observation of NOE correlations between $\mathrm{H}-11 / \mathrm{H}-8, \mathrm{H}-8 / \mathrm{H}-10 \mathrm{a}$, and $\mathrm{H}-10 \mathrm{a} / \mathrm{H}-11$. In addition, $\mathrm{H}-3$ showed NOE correlations with both $\mathrm{H}_{3}-18$ and $\mathrm{H}-15$ (Figure 2), revealing that $\mathrm{H}_{3}-18$ should be pointed toward the same orientation as that of the isopropyl group. Consequently, the $1 S^{*}, 4 R^{*}, 8 S^{*}, 11 S^{*}, 12 R^{*}$ configuration was suggested for 4. Crassarine E (5) has the same molecular formula as that of 4 . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data as well as the proton coupling patterns of $\mathbf{5}$ are similar to those of $\mathbf{4}$. A comparison of NMR spectroscopic data of $\mathbf{5}$ with those of $\mathbf{4}$ showed some differences in chemical shifts for protons and carbons neighboring C-4 and $\mathrm{C}-8$, suggesting that they are epimeric at either C-4 or C-8. The NOE correlation between $\mathrm{H}_{3}-18$ and $\mathrm{H}-2$ in $\mathbf{5}$, instead of $\mathrm{H}_{3}-18$ and $\mathrm{H}-3$ in $\mathbf{4}$ (Figure 2) suggested that compound 5 is a 4-epimer of 4.

Crassarine F (6) was assigned a molecular formula of $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}$, according to the HRESIMS and NMR spectroscopic data (Tables 1 and 3). The IR absorption band at $3300 \mathrm{~cm}^{-1}$ revealed the presence of hydroxy group. A tetrasubstituted 1,3-butadiene $\left[\delta_{\mathrm{H}} 6.06(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz})\right.$ and $5.90(1 \mathrm{H}, \mathrm{dd}$, $J=10.4,1.2 \mathrm{~Hz}) ; \delta_{\mathrm{C}} 147.2(\mathrm{C}), 135.4(\mathrm{C}), 121.7(\mathrm{CH})$, and $119.1(\mathrm{CH})$], a trisubstituted double bond [$\delta_{\mathrm{H}} 5.50(1 \mathrm{H}, \mathrm{dd}, J=7.2,6.0 \mathrm{~Hz}) ; \delta_{\mathrm{C}} 136.7(\mathrm{C})$, and $126.7(\mathrm{CH})$], and a trisubstituted epoxide [$\delta_{\mathrm{H}} 2.87$ $(1 \mathrm{H}, \mathrm{dd}, J=7.6,6.0 \mathrm{~Hz}) ; \delta_{\mathrm{C}} 59.5(\mathrm{C})$ and $57.0(\mathrm{CH})$] were also evident. Above NMR signals suggested 6 to be the 1,3 -diene cembranoid with an epoxy group [15]. The 11,12-epoxy group was assigned by the HMBC correlations from $\mathrm{H}_{3}-20$ to $\mathrm{C}-11, \mathrm{C}-12$, and $\mathrm{C}-13$ and $\mathrm{H}_{2}-14$ to $\mathrm{C}-1, \mathrm{C}-2$, and $\mathrm{C}-13$ (Figure 1). The COSY cross peaks of $\mathrm{H}_{2}-10 / \mathrm{H}-11$ and $\mathrm{H}_{2}-10 / \mathrm{H}-9$ as well as the HMBC correlations from $\mathrm{H}_{3}-19$ to C-7, C-8, and C-9 assigned the hydroxy group at C-9 ($\delta_{\mathrm{C}} 75.3, \mathrm{CH}$). These findings and the detailed COSY and HMBC correlations established the planar structure of 6, as shown in Figure 1. The relative configuration of $\mathbf{6}$ was determined by the interpretation of NOESY spectrum. The crucial NOE correlations (Figure 2) between $\mathrm{H}-2 / \mathrm{H}_{3}-18, \mathrm{H}-2 / \mathrm{H}-15$, and $\mathrm{H}-9 / \mathrm{H}-7$ indicated the E geometry for
all double bonds and suggested a s-trans geometry for the 1,3-diene. NOE correlations between $\mathrm{H}-11 / \mathrm{H}-3, \mathrm{H}-11 / \mathrm{H}-14 \mathrm{a}$, and $\mathrm{H}-3 / \mathrm{H}-14 \mathrm{a}$ showed that these protons should be pointed toward the core of 14-membered ring. Furthermore, the absence of NOE correlation between $\mathrm{H}-11$ and $\mathrm{H}_{3}-20$ and the presence of correlation between $\mathrm{H}-9$ and $\mathrm{H}_{3}-20$ suggested the $9 S^{*}, 11 S^{*}, 12 S^{*}$ configuration, as depicted in Figure 2. The absolute configuration of $\mathbf{6}$ was determined by the application of Mosher's method $[16,17]$. The (S) - and (R)-MTPA esters of $\mathbf{6}$ ($\mathbf{6 a}$ and $\mathbf{6 b}$, respectively) were prepared using the corresponding (R) - and (S)-MTPA chloride, respectively. The determination of chemical shift differences for the protons neighboring C-9 led to the assignment of the $9 S$ configuration in 6 (Figure 3). Thus, the absolute configuration of $\mathbf{6}$ was determined as $9 S, 11 S, 12 S$.

Table 3. ${ }^{1} \mathrm{H}$ NMR Spectroscopic Data of Compounds 4-7.

\#	$4^{a}, \delta_{\text {H }}(\boldsymbol{J}$ in Hz)	5^{a}, $\delta_{\text {H }}(\boldsymbol{J}$ in Hz$)$	$\mathbf{6}^{\boldsymbol{b}}, \boldsymbol{\delta}_{\mathrm{H}}(\boldsymbol{J}$ in Hz)	$7^{\boldsymbol{b}}, \delta_{\text {H }}(\boldsymbol{J}$ in Hz $)$
2	5.81, d (16.0)	5.58, d (16.0)	6.06, d (10.4)	6.08, d (10.8)
3	5.89, d (16.0)	6.07, d (16.0)	5.90 , dd (10.4, 1.2)	6.02, d (10.8)
5	a: $2.80, \mathrm{~d}$ (16.0)	a: 3.01, d (16.6)	2.04, m	$2.00, \mathrm{~m}$
	b: 2.72, d (16.0)	b: 2.41, d (16.6)		
7	a: 2.39 , dd ($13.6,11.2)$	a: 2.46 , dd (11.6, 2.8)	2.10, m	a: $2.13, \mathrm{~m}$
	b: 2.16, dd ($13.6,2.4$)	b: 2.07 , dd (12.0, 11.6)		b: $2.00, \mathrm{~m}$
8	1.92, m	1.96, m	5.50, dd (7.2, 6.0)	5.26, dd (9.2, 5.2)
9	a: $1.32, \mathrm{~m}$	a: $1.56, \mathrm{~m}$	4.00 , dd (8.0, 3.2)	a: $2.36, \mathrm{~m}$
	b: $1.18, \mathrm{~m}$	b: $0.99, \mathrm{~m}$		b: $2.29, \mathrm{~m}$
10	a: $1.49, \mathrm{~m}$	a: $1.57, \mathrm{~m}$	a: $1.99, \mathrm{~m}$	a: $1.72, \mathrm{~m}$
	b: $1.19, \mathrm{~m}$	b: $1.26, \mathrm{~m}$	b: 1.67, m	b: $1.64, \mathrm{~m}$
11	3.02, d (8.8)	3.19, d (10.4)	2.87 , dd (7.6, 6.0)	3.00, dd (6.8, 5.2)
13	a: $1.74, \mathrm{~m}$	a: $1.72, \mathrm{~m}$	a: $1.85, \mathrm{~m}$	a: $1.91, \mathrm{~m}$
	b: 1.57 , m	b: $1.51, \mathrm{~m}$	b: $1.52, \mathrm{~m}$	b: 1.62 , m
14	a: $1.68, \mathrm{~m}$	a: $1.65, \mathrm{~m}$	a: $2.23, \mathrm{~m}$	a: $2.40, \mathrm{~m}$
	b: $1.59, \mathrm{~m}$	b: $1.59, \mathrm{~m}$	b: 1.92, m	b: 1.90 , m
15	1.77, m	1.80, m	2.16, m	2.21, m
16	0.78, d (6.8)	0.80, d (7.0)	$0.99, \mathrm{~d}$ (6.8)	1.00, d (6.8)
17	0.91, d (6.8)	0.90, d (7.0)	0.99, d (6.8)	0.99, d (6.8)
\#	$4^{a}, \delta_{\mathrm{H}}(J$ in Hz)	$5^{a}, \delta_{\mathrm{H}}(J$ in Hz)	$\mathbf{6}^{b}, \delta_{\mathrm{H}}(J$ in Hz)	$7{ }^{\text {b }}, \delta_{\mathrm{H}}(J$ in Hz)
18	1.37, s	$1.38, \mathrm{~s}$	1.65 , s	1.63 , s
19	0.98, d (6.4)	$1.00, \mathrm{~d}$ (6.4)	1.40, s	$3.93, \mathrm{~d}$ (12.0)
				3.89, d (12.0)
20	1.11, s	1.15, s	1.12, s	1.15, s

${ }^{a}$ Spectra were measured in $\mathrm{CDCl}_{3}(400 \mathrm{MHz}){ }^{b}$ Spectra were measured in $\mathrm{C}_{6} \mathrm{D}_{6}(400 \mathrm{MHz})$.
The HRESIMS data of crassarine $\mathrm{G}(7)$ revealed a molecular formula of $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}$, the same as that of 6 . The IR spectrum of 7 disclosed the presence of hydroxy group ($v_{\max } 3434 \mathrm{~cm}^{-1}$). A comparison of the NMR spectroscopic data of 7 (Tables 1 and 2) with those of $\mathbf{6}$ revealed that the hydroxy-containing methine (C-9) in $\mathbf{6}$ was replaced by a sp ${ }^{3}$ methylene in 7. It was also found that resonances appropriate for $\mathrm{H}_{3}-19$ in 6 were absent from the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 7 and replaced by signals for a hydroxymethyl group [$\delta_{\mathrm{H}} 3.93$ and 3.89 (each $1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}$); $\delta_{\mathrm{C}} 59.4\left(\mathrm{CH}_{2}\right)$]. Careful inspection of the 2D NMR spectra of 7 confirmed the above elucidation.

Figure 3. ${ }^{1} \mathrm{H}$ NMR chemical shift differences of MTPA esters of $\mathbf{6}$.

The HRESIMS and ${ }^{13} \mathrm{C}$ NMR spectroscopic data of crassarine H (8) established a molecular formula of $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2}$ and six degrees of unsaturation. The ${ }^{13} \mathrm{C}$ NMR spectrum showed the presence of a trisubstituted double bond [$\delta_{\mathrm{C}} 146.2(\mathrm{C})$ and $107.7(\mathrm{CH})$] and a trisubstituted epoxide $\left[\delta_{\mathrm{C}} 65.4(\mathrm{CH})\right.$ and $60.7(\mathrm{C})]$. In addition, the carbon resonances at $\delta_{\mathrm{C}} 9.1\left(\mathrm{CH}_{3}, \mathrm{C}-18\right), 151.1(\mathrm{C}, \mathrm{C}-6), 146.8(\mathrm{C}, \mathrm{C}-3)$, $109.6(\mathrm{CH}, \mathrm{C}-5)$, and $117.0(\mathrm{C}, \mathrm{C}-4)$ are attributed to the presence of a 2,5-dialkyl-3-methylfuran [18]. This furan moiety and the trisubstituted double bond were found to be conjugated according to the downfield-shifted proton resonance of $\mathrm{H}-2$ at $\delta 5.95(1 \mathrm{H}, \mathrm{s})$ [18]. This was further confirmed by the HMBC correlations from $\mathrm{H}-2$ to $\mathrm{C}-1, \mathrm{C}-3, \mathrm{C}-14$, and $\mathrm{C}-15, \mathrm{H}_{3}-18$ to $\mathrm{C}-3, \mathrm{C}-4$, and $\mathrm{C}-5$, and $\mathrm{H}-5$ to $\mathrm{C}-3$, $\mathrm{C}-4$, and $\mathrm{C}-6$. The above data together with the detailed inspection of the COSY and HMBC correlations of $\mathbf{8}$ established its planar structure (Figure 1). The relative configuration of $\mathbf{8}$ was determined mainly by the assistance of the NOESY experiment. The key NOE correlations between H-2 and both H-15 and $\mathrm{H}_{3}-18$ indicated an E geometry of $\mathrm{C}-1 / \mathrm{C}-2$ double bond (Figure 2). The trans epoxy group was deduced by the NOE correlations between $\mathrm{H}-11 / \mathrm{H}-13 \mathrm{~b}$ and $\mathrm{H}_{3}-20 / \mathrm{H}-13 \mathrm{a}$. In addition, $\mathrm{H}-8$ showed an NOE correlation with $\mathrm{H}_{3}-20$, instead of $\mathrm{H}-11$, suggesting the $8 S^{*}, 11 S^{*}, 12 S^{*}$ configuration for $\mathbf{8}$.

The anti-inflammatory activity of diterpenoids $\mathbf{1 - 8}$ against the accumulation of pro-inflammatory iNOS and COX-2 proteins in RAW264.7 macrophage cells stimulated with LPS was evaluated using immunoblot analysis. At a concentration of $10 \mu \mathrm{M}$ (Figure 4), $\mathbf{8}$ was found to significantly reduce the levels of iNOS protein ($35.8 \pm 10.7 \%$), compared with the control cells stimulated with LPS only. At the same concentration, 6 could reduce COX-2 expression ($65.6 \pm 6.2 \%$) by LPS treatment. Cytotoxicity of diterpenoids $\mathbf{4 - 8}$ against HepG2, HepG3, MCF-7, MDA-MB-231, and A-549 cancer cell lines was also evaluated. The results showed that the tested compounds were found to be inactive $\left(\mathrm{IC}_{50}>20 \mu \mathrm{M}\right)$ toward the above cancer cell lines after 72 h exposure.

Figure 4. Effect of compounds $1-\mathbf{8}$ at $10 \mu \mathrm{M}$ on the LPS-induced pro-inflammatory iNOS and on COX-2 protein expression of RAW264.7 macrophage cells by immunoblot analysis. (A) Immunoblots for iNOS and β-actin, and relative density of iNOS; (B) Immunoblots for COX-2 and β-actin, and relative density of COX-2. The values are means $\pm \operatorname{SEM}(n=6)$. The relative intensity of the LPS alone stimulated group was taken as 100%. Under the same experimental conditions, $10 \mu \mathrm{M}$ CAPE (caffeic acid phenethyl ester; Sigma Chemical Company, St. Louis, MO, USA) reduced the levels of the iNOS and COX-2 protein to $0.8 \pm 4.5 \%$ and $75.6 \pm 12.2 \%$, respectively, relative to the control cells stimulated with LPS.

* Significantly different from lipopolysaccharide (LPS) alone stimulated group ($P<0.05$).

(A)

(B)

3. Experimental Section

3.1. General Experimental Procedures

The melting point was determined using a Fisher-Johns melting point apparatus. Optical rotations were determined with a JASCO P1020 digital polarimeter. IR spectrum was obtained on a JASCO FT/IR-4100 spectrophotometer. The NMR spectra were recorded on a Bruker AVANCE 300 FT-NMR (or Varian 400 MR NMR/Varian Unity INOVA 500 FT-NMR) instrument at 300 MHz (or $400 / 500 \mathrm{MHz}$) for ${ }^{1} \mathrm{H}$ (referenced to TMS, $\delta_{\mathrm{H}} 0.00 \mathrm{ppm}$, for both CDCl_{3} and $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ and 7.15 ppm for $\mathrm{C}_{6} \mathrm{D}_{6}$) and 75 MHz (or $100 / 125 \mathrm{MHz}$) for ${ }^{13} \mathrm{C}$ (referenced to $\delta_{\mathrm{C}} 77.0$ for CDCl_{3}, to 128.0 ppm for $\mathrm{C}_{6} \mathrm{D}_{6}$, and to internal TMS at $\delta_{\mathrm{C}} 0.0 \mathrm{ppm}$ for $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$). ESIMS were recorded by ESI FT-MS on a Bruker APEX II mass spectrometer. Silica gel 60 (Merck, 230-400 mesh) and LiChroprep RP-18 (Merck, 40-63 $\mu \mathrm{m}$) were used for column chromatography. Precoated silica gel plates (Merck, Kieselgel 60 F254, 0.25 mm) and precoated RP-18 F254S plates (Merck, 1.05560) were used for TLC analyses. High-performance liquid chromatography (HPLC) was performed on a Hitachi L-7100 pump equipped with a Hitachi L-7400 UV detector at 210 nm and a semi-preparative reversed-phase column (Merck, Hibar Purospher RP-18e, $5 \mu \mathrm{~m}$, $250 \times 10 \mathrm{~mm}$).

3.2. Animal Material

The soft coral Sinularia crassa was collected by hand using scuba off the coast of Sansiantai, Taitung county, Taiwan, in July 2008, at a depth of 10 m , and was stored in a freezer $\left(-20^{\circ} \mathrm{C}\right)$. This soft coral was identified by one of the authors (C.-F.D.). A voucher specimen (Specimen No. SST-03) was deposited in the Department of Marine Biotechnology and Resources, National Sun Yat-sen University.

3.3. Extraction and Isolation

The frozen bodies of S. crassa (1.1 kg fresh wt) were minced and extracted with EtOH ($3 \times 2 \mathrm{~L}$, each for 1 day) at room temperature. The organic extract was concentrated to an aqueous suspension and was further partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The EtOAc extract (17.0 g) was fractionated by open column chromatography on silica gel using n-hexane-EtOAc and EtOAc-MeOH mixtures of increasing polarity to yield 32 fractions. Fraction 19, eluting with n-hexane-EtOAc (5:1), was further separated by silica gel column chromatography with gradient elution (n-hexane-EtOAc, $24: 1$ to $0: 1$) and followed by RP-18 open column $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 50 \%\right.$ to $\left.100 \%\right)$ to yield three subfractions (19A-19C). Subfraction 19A was subjected to RP-18 HPLC (MeOH- $\mathrm{H}_{2} \mathrm{O}, 90 \%$) to obtain compound $8(2.2 \mathrm{mg})$. Similarly, compounds $2(1.1 \mathrm{mg})$ and $\mathbf{3}(1.0 \mathrm{mg})$ were obtained from subfraction 19C using RP-18 HPLC (MeOH-H2O, 75\%). Subfraction 19B was fractionated over silica gel using gradient elution (n-hexane-EtOAc, $24: 1$ to $0: 1$) to yield three subfractions (19B-1-19B-3). Compounds 4 (3.4 mg) and 5 (2.3 mg) were obtained from subfractions 19B-1 and 19B-2, respectively, using RP-18 HPLC (MeOH- $\mathrm{H}_{2} \mathrm{O}, 66 \%$). Subfraction 19B-3 was subjected to normal phase HPLC (n-hexane-EtOAc, $2: 1$) to obtain $1(2.3 \mathrm{mg})$. Fractions 22 to 24 , eluting with n-hexane-EtOAc (1:1), were combined and further separated over silica gel column chromatography (n-hexane-EtOAc, gradient elution, 18:1 to $0: 1$) to give a residue containing terpenoids. This residue was separated over RP-18 column chromatography using gradient elution ($\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 50 \%$ to 100%) to obtain two subfractions (23 A and 23B). Subfraction 23A was further purified by RP-18 HPLC $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 75 \%\right)$ to yield compound $\mathbf{6}(1.8 \mathrm{mg})$. In the same manner, compound $7(8.7 \mathrm{mg})$ was obtained from subfraction 23B using RP-18 HPLC ($\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 80 \%$).

Crassarine A (1): colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}-93\left(c 0.20, \mathrm{CHCl}_{3}\right.$); IR (KBr) $v_{\max } 3461,2963,2928,2873$, 1698, 1455, $1380 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 2; ESIMS $m / z 361[\mathrm{M}+\mathrm{Na}]^{+}$; HRESIMS $m / z 361.2353[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na}, 361.2355$).

Crassarine B (2): colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}-13$ (c 0.11, CHCl_{3}); IR (KBr) $v_{\max } 3288$, 2957, 2925, 2855, 1732, 1698, 1453, 1372, $1237 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, Tables 1 and 2; ESIMS $m / z 403$ $[\mathrm{M}+\mathrm{Na}]^{+} ;$HRESIMS $m / z 403.2463[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Na}, 403.2460\right)$.

Crassarine C (3): colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}-45$ (c 0.10, CHCl_{3}); IR (KBr) $v_{\max } 3483,2955,2925,2855$, 1725, 1698, 1455, 1375, $1171 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, Tables 1 and 2; ESIMS $m / z 389$ $[\mathrm{M}+\mathrm{Na}]^{+}$; HRESIMS $m / z 389.2302[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Na}, 389.2304$).

Crassarine D (4): colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}-48\left(c \quad 0.34, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\max } 3386,2955,2925,2855$, 1716, 1458, 1268, $1036 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, Tables 1 and 3; ESIMS $m / z 361[\mathrm{M}+\mathrm{Na}]^{+}$; HRESIMS $m / z 361.2354[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na}, 361.2355$).

Crassarine E (5): colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}-27\left(c 0.23, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\max } 3453,2957,2925,2855$, 1713, 1458, 1261, $1044 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, Tables 1 and 3; ESIMS $m / z 361[\mathrm{M}+\mathrm{Na}]^{+}$; HRESIMS $m / z 361.2357[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na}, 361.2355$).

Crassarine F (6): colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}-63\left(c 0.18, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\max } 3300,2960$, 2926, 2857, 1668, 1458, 1380, 1255, $1036 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, Tables 1 and 3; ESIMS m/z 327 $[\mathrm{M}+\mathrm{Na}]^{+} ;$HRESIMS $m / z 327.2302[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Na}, 327.2300$).

Crassarine G (7): colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}-41\left(c 0.73, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\max } 3434,2959,2928,2872$, 1671, 1459, 1383, $1011 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, Tables 1 and 3; ESIMS m/z $327[\mathrm{M}+\mathrm{Na}]^{+}$; HRESIMS $m / z 327.2302[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Na}, 327.2300$).

Crassarine $\mathrm{H}(\mathbf{8})$: colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}-12\left(c \quad 0.22, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\max }$ 2955, 2922, 2855, 1458, $1380 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, Tables 1 and 2; ESIMS $m / z 325[\mathrm{M}+\mathrm{Na}]^{+}$; HRESIMS $m / z 325.2145[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}, 325.2143$).

3.4. Acetylation of $\mathbf{1}$

To a stirring solution of compound $1(0.1 \mathrm{mg})$ in pyridine (1 mL) was successively added excess acetic acid anhydrous $(0.2 \mathrm{~mL})$. After the mixture was stirred over night at room temperature, $\mathrm{H}_{2} \mathrm{O}$ $(0.3 \mathrm{~mL})$ was added, and this mixture was subsequently extracted with EtOAc $(5 \times 6 \mathrm{~mL})$. The combined EtOAc extract was successively washed with saturated aqueous NaHCO_{3} and brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a residue, which was chromatographed on silica gel with n-hexane-EtOAc (2:1) as eluent to afford $\mathbf{1 a}(0.1 \mathrm{mg})$ which showed a $[\mathrm{M}+\mathrm{Na}]^{+}$peak at $m / z 403$ in ESIMS spectrum. Selected ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ spectrum of $\mathbf{1 a}: \delta 5.89(1 \mathrm{H}, \mathrm{d}$, $J=15.9 \mathrm{~Hz}, \mathrm{H}-2$ or H-3), $5.77(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, \mathrm{H}-2$ or H-3 $), 4.83(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{H}-11), 2.95$ $(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}), 2.46-2.56(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{~b}, \mathrm{H}-7 \mathrm{a}), 2.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}\right), 1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right)$, $1.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 0.85-0.89\left(9 \mathrm{H}\right.$, overlapped, $\mathrm{H}_{3}-19, \mathrm{H}_{3}-16$, and $\left.\mathrm{H}_{3}-17\right)$.

3.5. Preparation of (S)- and (R)-MTPA Esters of $\mathbf{6}$

To a solution of $6(0.5 \mathrm{mg})$ in pyridine $(0.4 \mathrm{~mL})$ was added (R)-MTPA chloride ($25 \mu \mathrm{~L}$), and the mixture was allowed to stand for 3 h at room temperature. The reaction was quenched by the addition of 1.0 mL of $\mathrm{H}_{2} \mathrm{O}$, and the mixture was subsequently extracted with EtOAc $(3 \times 1.0 \mathrm{~mL})$. The EtOAc layers were combined, dried over anhydrous MgSO_{4}, and evaporated. The residue was subjected to short silica gel column chromatography using n-hexane-EtOAc (8:1) to yield the (S)-MTPA ester, $\mathbf{6 a}(0.3 \mathrm{mg})$. The same procedure was used to prepare the (R)-MTPA ester, $\mathbf{6 b}(0.4 \mathrm{mg}$ from 0.5 mg of $\mathbf{1})$, with (S)-MTPA chloride. Selected ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of $\mathbf{6 a}: \delta 7.38-7.50(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.14(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}$, $\mathrm{H}-2), 6.00(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{H}-3), 5.61-5.71(2 \mathrm{H}$, overlapped, $\mathrm{H}-7$ and $\mathrm{H}-9), 3.69(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}$, $\mathrm{H}-11), 3.56(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 1.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-19\right), 1.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-20\right), 1.07(3 \mathrm{H}, \mathrm{d}$, $J=6.9 \mathrm{~Hz}, \mathrm{H}_{3}-16$ or $\left.\mathrm{H}_{3}-17\right), 1.03\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{3}-16\right.$ or $\left.\mathrm{H}_{3}-17\right)$; selected ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz})$ of $\mathbf{6 b}: \delta 7.38-7.50(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.13(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{H}-2), 5.98(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{H}-3)$, 5.67-5.78 (2 H , overlapped, H-7 and H-9), $3.70(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{H}-11), 3.52(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) 1.78$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 1.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-19\right), 1.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-20\right), 1.12\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{3}-16\right.$ or $\left.\mathrm{H}_{3}-17\right), 1.03$ ($3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{H}_{3}-16$ or $\mathrm{H}_{3}-17$).

3.6. Cytotoxicity Testing

Compounds were assayed for cytotoxicity against human liver carcinoma (HepG2 and HepG3), human breast carcinoma (MCF-7 and MDA-MB-231), and human lung carcinoma (A-549) cells using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] method [19]. Freshly trypsinized cell suspensions were seeded in 96-well microtiter plates at densities of 5000-10,000 cells per well with tested compounds added from DMSO-diluted stock. After 3 days in culture, attached cells were incubated with MTT $(0.5 \mathrm{mg} / \mathrm{mL}, 1 \mathrm{~h})$ and subsequently dissolved in DMSO. The absorbency at 550 nm was then measured using a microplate reader. $\mathrm{The}^{\mathrm{IC}}{ }_{50}$ is the concentration of agent that reduced cell growth by 50% under the experimental conditions.

3.7. In Vitro Anti-Inflammatory Assay

Macrophage (RAW264.7) cell line was purchased from ATCC. In vitro anti-inflammatory activities of tested compounds were measured by examining the inhibition of LPS induced upregulation of iNOS and COX-2 proteins in macrophage cells using western blotting analysis [20,21].

4. Conclusions

Cembranoids with a 1,12-oxa-bridged THF ring, such as compounds $\mathbf{1 - 3}$, are rare in natural products. Incensole [22], incensole oxide [23], and incensole acetate [24] are the cembranoids of this class which were isolated from frankincense, the resin produced by the plant Boswellia carteri. It is also noteworthy that the formyloxyl cembranoid, such as $\mathbf{3}$, and the 1,11 -oxa-bridged tetrahydropyranocembranoids, such as $\mathbf{4}$ and $\mathbf{5}$, were discovered for the first time.

Acknowledgments

This work was supported by grants from the National Science Council of Taiwan (NSC98-2113-M-110-002-MY3) and Ministry of Education (98C031702) awarded to J.-H. S.

References

1. Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2011, 28, 196-268.
2. Su, J.-H.; Ahmed, A.F.; Sung, P.-J.; Chao, C.-H.; Kuo, Y.-H.; Sheu, J.-H. Manaarenolides A-I, diterpenoids from the soft coral Sinularia manaarensis. J. Nat. Prod. 2006, 69, 1134-1139.
3. Chao, C.-H.; Wen, Z.-H.; Wu, Y.-C.; Yeh, H.-C.; Sheu, J.-H. Cytotoxic and anti-inflammatory cembranoids from the soft coral Lobophytum crassum. J. Nat. Prod. 2008, 71, 1819-1824.
4. Lu, Y.; Huang, C.-Y.; Lin, Y.-F.; Wen, Z.-H.; Su, J.-H.; Kuo, Y.-H.; Chiang, M.Y.; Sheu, J.-H. Anti-inflammatory cembranoids from the soft corals Sinularia querciformis and Sinularia granosa. J. Nat. Prod. 2008, 71, 1754-1759.
5. Tseng, Y.-J.; Ahmed, A.F.; Dai, C.-F.; Chiang, M.Y.; Sheu, J.-H. Sinulochmodins A-C, three novel terpenoids from the soft coral Sinularia lochmodes. Org. Lett. 2005, 7, 3813-3816.
6. Ahmed, A.F.; Su, J.-H.; Kuo, Y.-H.; Sheu, J.-H. Scabrolides E-G, three new norditerpenoids from the soft coral Sinularia scabra. J. Nat. Prod. 2004, 67, 2079-2082.
7. Ahmed, A.F.; Shiue, R.-T.; Wang, G.-H.; Dai, C.-F.; Kuo, Y.-H.; Sheu, J.-H. Five novel norcembranoids from Sinularia leptoclados and S. parva. Tetrahedron 2003, 59, 7337-7344.
8. Sheu, J.-H.; Ahmed, A.F.; Shiue, R.-T.; Dai, C.-F.; Kuo, Y.-H. Scabrolides A-D, four new norditerpenoids isolated from the soft coral Sinularia scabra. J. Nat. Prod. 2002, 65, 1904-1908.
9. Radhika, P.; Rao, P.R.; Archana, J.; Rao, N.K. Anti-inflammatory activity of a new sphingosine derivative and cembrenoid diterpene (lobohedleolide) isolated from marine soft corals of Sinularia crassa Tixier-Durivault and Lobophytum species of the Andaman and Nicobar Islands. Biol. Pharm. Bull. 2005, 28, 1311-1313.
10. Anjaneyulu, V.; Radhika, P. Two new sphingosine derivatives from Sinularia crassa Tixier-Durivault of the Andaman and Nicobar Islands. Indian J. Chem. 1999, 38B, 457-460.
11. Radhika, P.; Cabeza, M.; Bratoeff, E.; García, G. 5α-Reductase inhibition activity of steroids isolated from marine soft corals. Steroids 2004, 69, 439-444.
12. König, G.M.; Wright, A.D. New cembranoid diterpenes from the soft coral Sarcophyton ehrenbergi. J. Nat. Prod. 1998, 61, 494-496.
13. Demarco, P.V.; Farkas, E.; Doddrell, D.; Mylari, B.L.; Wenkert, E. Pyridine-induced solvent shifts in the nuclear magnetic resonance spectra of hydroxylic compounds. J. Am. Chem. Soc. 1968, 90, 5480-5486.
14. Ahmed, A.F.; Wu, M.-H.; Wang, G.-H.; Wu, Y.-C.; Sheu, J.-H. Eunicellin-based diterpenoids, australins A-D, isolated from the soft coral Cladiella australis. J. Nat. Prod. 2005, 68, 1051-1055.
15. Ahmed, A.F.; Wen, Z.-H.; Su, J.-H.; Hsieh, Y.-T.; Wu, Y.-C.; Hu, W.-P.; Sheu, J.-H. Oxygenated cembranoids from a Formosan soft coral Sinularia gibberosa. J. Nat. Prod. 2008, 71, 179-185.
16. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. High-field FT NMR application of Mosher's method. The absolute configurations of marine terpenoids. J. Am. Chem. Soc. 1991, 113, 4092-4096.
17. Randazzo, A.; Bifulco, G.; Giannini, C.; Bucci, M.; Debitus, C.; Cirino, G.; Gomez-Paloma, L. Halipeptins A and B: two novel potent anti-inflammatory cyclic depsipeptides from the vanuatu marine sponge Haliclona species. J. Am. Chem. Soc. 2001, 123, 10870-10876.
18. Williams, D.; Andersen, R.J. Cembrane and pseudopterane diterpenes from the soft coral Gersemia rubiformis. J. Org. Chem. 1987, 52, 332-335.
19. Alley, M.C.; Scudiero, D.A.; Monks, A.; Hursey, M.L.; Czerwinski, M.J.; Fine, D.L.; Abbott, B.J.; Mayo, J.G.; Shoemaker, R.H.; Boyd, M.R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988, 48, 589-601.
20. Jean, Y.-H.; Chen, W.-F.; Sung, C.-S.; Duh, C.-Y.; Huang, S.-Y.; Lin, C.-S.; Tai, M.-H.; Tzeng, S.-F.; Wen, Z.-H. Capnellene, a natural marine compound derived from soft coral, attenuates chronic constriction injury-induced neuropathic pain in rats. Br. J. Pharmacol. 2009, 158, 713-725.
21. Jean, Y.-H.; Chen, W.-F.; Duh, C.-Y.; Huang, S.-Y.; Hsu, C.-H.; Lin, C.-S.; Sung, C.-S.; Chen, I.-M.; Wen, Z.-H. Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory and analgesic effects of the natural marine compound lemnalol from Formosan soft coral Lemnalia cervicorni. Eur. J. Pharmacol. 2008, 578, 323-331.
22. Corsano, S.; Nicoletti, R. The structure of incensole. Tetrahedron 1967, 23, 1977-1984.
23. Nicoletti, R.; Forcellese, M.L. The structure of incensole-oxide. Tetrahedron 1968, 24, 6519-6525.
24. Boscarelli, A.; Giglio, E.; Quagliata, C. Structure and conformation of incensole oxide. Acta Cryst. 1981, B37, 744-746.

Samples Availability: Not available.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

