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Computational modeling of cardiac electrophysiology (EP) has recently transitioned

from a scientific research tool to clinical applications. To ensure reliability of clinical

or regulatory decisions made using cardiac EP models, it is vital to evaluate the

uncertainty in model predictions. Model predictions are uncertain because there is

typically substantial uncertainty in model input parameters, due to measurement error

or natural variability. While there has been much recent uncertainty quantification

(UQ) research for cardiac EP models, all previous work has been limited by either:

(i) considering uncertainty in only a subset of the full set of parameters; and/or (ii)

assigning arbitrary variation to parameters (e.g., ±10 or 50% around mean value) rather

than basing the parameter uncertainty on experimental data. In our recent work we

overcame the first limitation by performing UQ and sensitivity analysis using a novel

canine action potential model, allowing all parameters to be uncertain, but with arbitrary

variation. Here, we address the second limitation by extending our previous work to

use data-driven estimates of parameter uncertainty. Overall, we estimated uncertainty

due to population variability in all parameters in five currents active during repolarization:

inward potassium rectifier, transient outward potassium, L-type calcium, rapidly and

slowly activating delayed potassium rectifier; 25 parameters in total (all model parameters

except fast sodium current parameters). A variety of methods was used to estimate

the variability in these parameters. We then propagated the uncertainties through the

model to determine their impact on predictions of action potential shape, action potential

duration (APD) prolongation due to drug block, and spiral wave dynamics. Parameter

uncertainty had a significant effect on model predictions, especially L-type calcium

current parameters. Correlation between physiological parameters was determined to

play a role in physiological realism of action potentials. Surprisingly, even model outputs

that were relative differences, specifically drug-induced APD prolongation, were heavily
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impacted by the underlying uncertainty. This is the first data-driven end-to-end UQ

analysis in cardiac EP accounting for uncertainty in the vast majority of parameters,

including first in tissue, and demonstrates how future UQ could be used to ensure

model-based decisions are robust to all underlying parameter uncertainties.

Keywords: uncertainty quantification, sensitivity analysis, variability, electrophysiology, correlation

1. INTRODUCTION

Computational modeling of cardiac electrophysiology has long
been used to generate hypotheses for experimental verification
and investigate mechanisms underlying normal and pathological
cardiac physiology. In recent years computational cardiac
electrophysiological modeling has transitioned to clinical and
regulatory applications. These include clinical trials that evaluate
the ability of personalized whole-heart models to guide ablation
therapy1, and the Comprehensive in vitro Pro-arrhythmia Assay
(CiPA) program, which uses a computational model of the
action potential (AP) as part of a framework for assessing
drug cardiotoxicity (Strauss et al., 2018). These advances have
coincided with a dramatic rise in the use of physics-based and
physiological modeling in drug/device regulatory submissions
supporting safety and efficacy/effectiveness of medical products,
or in software within medical devices (Faris and Shuren,
2017; Morrison et al., 2018). In parallel, the medical devices
community and other healthcare communities have focused
attention on methods and best practices for ensuring the
reliability of computational modeling approaches (ASME V&V
40, 2018).

Understanding the uncertainty in model predictions is
acknowledged as a critical component of model credibility
assessment (Oberkampf et al., 2004; National Research Council,
2012; ASME V&V 40, 2018). Just as measurement error is
key to interpreting experimental measurements, supplementing
computational model predictions with an estimate of uncertainty
vastly improves the ability to make informed decisions.
Uncertainty quantification (UQ) is the science of characterizing
uncertainties in computational models. While this includes
uncertainty in the model form, i.e., uncertainty in the best
equations to model a system, the most common form of UQ
involves two stages. First, characterizing the uncertainty in
the model inputs—all the real-world measured quantities that
are used in the model, such as model parameters, boundary
conditions, and initial conditions. Second, “propagating” these
uncertainties through the model to obtain the uncertainty
in model outputs of interest. We refer to these two stages
as uncertainty characterization and uncertainty propagation,
respectively. With UQ inputs and outputs are generally
represented using probability distributions, rather than taking
fixed values.

For physiological models, the main reasons for input
uncertainty are experimental measurement error and natural
physiological variability. Both may be significant—typically
orders of magnitude greater than measurement error and natural

1https://clinicaltrials.gov/ct2/show/NCT03536052

variability within engineering systems. Physiological models are
typically non-linear, so the impact of input uncertainty on
model outputs is difficult to predict without simulation. Both
these challenges apply to cardiac electrophysiological modeling.
Accordingly, there has been a lot of recent interest in UQ
within the cardiac modeling community, and many groups
are overcoming the challenges. For a detailed discussion on
challenges and previous work see our previous discussion
in Pathmanathan et al. (2019) (introduction), and a recent
special edition devoted to cardiac model UQ (Mirams et al.,
2020); also see the Discussion section in the present paper
which will compare the approach used herein with other
prominent approaches.

Cardiac action potential models are typically sets of
ordinary differential equations (ODEs). Several hundred models
for different species have been developed (Noble et al.,
2012); it is not uncommon for a model to have dozens
of equations governing dynamic behavior of transmembrane
voltage, membrane gating variables and intra-cellular and extra-
cellular ionic concentrations, altogether involving hundreds of
parameters. For this reason, all previous cardiac AP model
UQ has been limited in one or both of the following: (i)
only considering uncertainty in a restricted subset of the
parameters, for example considering ionic current maximum
conductances as uncertain but keeping parameters for gating
dynamics fixed; and (ii) using arbitrarily chosen variation in
the inputs, for example letting a parameter vary in a range,
such as ±10 or 50% around its mean value, rather than
estimating true uncertainty in the input due to measurement
error or physiological variability. In our first work on this
topic (Pathmanathan et al., 2015), we estimated uncertainty
due to physiological variability in two parameters characterizing
steady-state inactivation of the fast sodium current, and
propagated this through the model to assess its impact on the
action potential. This was an end-to-end UQ analysis, but only
considered one component (steady-steady inactivation) of just
one ion channel, i.e., was heavily limited by (i)—uncertainty
in the vast majority of parameters was neglected. In our
previous paper (Pathmanathan et al., 2019), we developed a novel
canine action potential model which included representations
of six major currents (fast sodium, inward rectifier, transient
outward, L-type calcium, rapidly and slowly activating delayed
rectifier), but had just seven state variables and 33 parameters
(excluding environmental parameters). This allowed us to
overcome limitation (i) and perform a comprehensive analysis
where we accounted for uncertainty in all 33 parameters,
including all conductances, steady state activation/inactivation
parameters, and time constant parameters. This provided a
wealth of information on the general robustness of the model.

Frontiers in Physiology | www.frontiersin.org 2 November 2020 | Volume 11 | Article 585400

https://clinicaltrials.gov/ct2/show/NCT03536052
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Pathmanathan et al. Data-Driven Cardiac Model Uncertainty Quantification

However, it was still limited by (ii), because we prescribed
arbitrary input variation.

In this paper we expand upon our previous
work (Pathmanathan et al., 2019) by using experimental
data to estimate the parameter uncertainty, and compute the
impact of the parameter uncertainty on the action potential
and spiral wave dynamics. Using our canine model developed
in Pathmanathan et al. (2019), uncertainty due to population
variability was estimated for all parameters in the five currents
active during repolarization (inward rectifier, transient outward,
L-type calcium, rapidly and slowly activating delayed rectifier
currents); 25 parameters in all. We did not attempt to estimate
uncertainty in fast sodium current parameters due to the known
challenges in obtaining high quality experimental data on this
current under physiological conditions which makes even
estimating average values of parameters challenging (Berecki
et al., 2010), let alone estimating population variability. We
used a variety of methods for estimating population variability.
Where relevant data was available, we estimated correlation
between parameters across the population. Overall, we generated
probabilistic representation of all 25 repolarization parameters
in the model. We then propagated this uncertainty through
the action potential model, to compute the impact on: (a) the
action potential shape; (b) action potential duration (APD)
prolongation following drug-induced partial block of the IKr
current; and (c) spiral wave dynamics. We also investigated the
role parameter correlation plays in governing AP shape. To our
knowledge this is the first time such a data-driven end-to-end
uncertainty quantification has been performed for more than a
handful of AP model parameters, let alone for the vast majority,
and the first such analysis in tissue. Our results provide for the
first time information on the expected uncertainty in cardiac AP
and spiral wave models given experimentally-derived parameter
uncertainty in all repolarization parameters, and demonstrates
how future UQ could be used to ensure cardiac model-based
decisions are robust to all underlying parameter uncertainties.

2. METHODS

2.1. Cell Model
The canine cell model of Pathmanathan et al. (2019) was used. In
this model transmembrane voltage is governed by

Cm
dV

dt
+ INa + IK1 + Ito + ICaL + IKr + IKs = Istim, (1)

where V is transmembrane voltage, Cm = 1µF cm−2 is the
specific membrane capacitance per unit area, and INa, IK1, Ito, ICaL,
IKr, and IKs are ionic currents (respectively: rapid sodium, inward
rectifier, transient outward, L-type calcium, rapidly and slowly
activating delayed rectifier), and Istim is a stimulus current. The
currents are formulated as

INa = gNa m
3 h2 (V − ENa) (2)

IK1 = gK1 z∞ (V − EK) (3)

Ito = gto r∞ s (V − EK) (4)

ICaL = gCaL d∞ f (V − ECa) (5)

IKr = gKr xr y∞ (V − EK) (6)

IKs = gKs xs (V − EK) (7)

where the gX are ion channelmaximal conductances,m, h, z∞(V),
r∞(V), s, d∞(V), f , xr , y∞(V), and xs are probability of gates
being open [activation gates: m, r∞, d∞, xr , xs; inactivation
gates: h, z∞(V), s, f , y∞(V)], and ENa,EK,ECa are the Nernst
potentials for sodium, potassium, and calcium, respectively. Per
Equations (2)–(7), gates z, r, d, and y are not state variables (not
governed by an ODE); these gates are taken to instantaneously
reach steady state. Gating variables,m, h, s, f , xr , xs have dynamics
governed by the ODE

τY (V)
dY

dt
= Y∞(V)− Y

where Y∞ is the steady-state function and τY is the time
“constant.” Steady state functions for all gates are sigmoidal

Y∞(V) =

(

1+ exp

(

±(V − EY )

kY

))−1

with− for activation gates and+ for inactivation gates, where EY
is the half-activation/inactivation voltage for that gating variable
and kY > 0 controls the slope of the sigmoid. For time constants,
voltage dependence was not modeled except for the h-gate:

τY (V) =

{

2τh0 exp(δh(V−Eh)/kh)
1+exp((V−Eh)/kh)

, for Y = h

τ ∗Y , for Y = m, s, f , xr , xs

where τh0, δh, τ
∗
m, τ

∗
s , τ

∗
f
, τ ∗xr , τ

∗
xs are positive constants. Overall,

this cell model has 33 parameters, excluding ENa, EK, and ECa.
In Pathmanathan et al. (2019), “nominal” values of each of these
parameters were defined, and the impact of arbitrarily chosen
variation was analyzed. In this present paper, we studied the
impact of data-driven uncertainty in all IK1, Ito, ICaL, IKr, and IKs
parameters (25 parameters in total). For the other parameters
(eight INa parameters, and ENa, EK, and ECa) nominal values
from Pathmanathan et al. (2019) were used. A CellML version of
this model [using mean values of repolarization parameters (see
Table 1 in section 3) and nominal values of INa parameters and
ENa, EK, and ECa (Pathmanathan et al., 2019)] is available upon
request.

2.2. Uncertainty Characterization
For the 25 repolarization parameters, our aim was to derive
a first-estimate of population variability based on available
data. Since this the first time such a UQ analysis has been
performed on this scale for cardiac models, we consider relatively
crude estimates acceptable for some parameters, as long as they
are derived from experimental data. We assumed the type of
distribution (normal or log-normal) and estimated distribution
scale parameters (e.g., means and variances). Parameters which
are physiologically constrained to be positive (conductances gX ,
slopes kX , time constants, τ ∗X) were assumed to follow log-normal
distributions. The other parameters (half activation/inactivation
voltages EX) were assumed to follow normal distributions.
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Different types of data was available for the different
repolarization currents, and accordingly a variety of different
methods was used to characterize the parameter uncertainty.
These are discussed in the following sections.

2.2.1. IK1 Parameter Uncertainty
The inward rectifier current IK1 has three parameters: maximum
conductance gK1, half-inactivation voltage Ez , and slope of steady-
state inactivation at half-inactivation voltage kz . Previously,
in Pathmanathan et al. (2019), we determined values for the three
IK1 parameters by fitting

F(gK1,E
exp
z , kz ,E

exp
K ) = gK1

(

1+ exp

(

(V − E
exp
z )

kz

))−1

(V − E
exp
K )

(8)
to averaged voltage clamp recordings from canine epicardial
cells (n = 12). Here, E

exp
K represents unknown effective EK in

the experiments, which is dependent on the unknown intra and
extracellular potassium ion concentrations. E

exp
z represents the

effective Ez in the experiments, and actual Ez was computed
by shifting E

exp
z to correspond to EK = −85 mV, i.e., Ez =

E
exp
z − (E

exp
K + 85). In essence, EK and Ez were both fit and Ez

shifted to correspond to EK = −85 mV.
In the present paper, to calibrate with uncertainty, we fitted

to recordings from the n = 12 individual cells. A “two-
stage approach” was used. Stage 1 was to apply the above
process using each cell’s I-V curve (rather than the averaged
data), to obtain parameters for each cell. Stage 2 was to fit a
multivariate probability distribution to the set of (gK1,Ez , kz)
values. Allowing for possible correlation between parameters
across the population, we assumed a multivariate normal
distribution and computed the mean vector and covariance
matrix from the 12 samples.

2.2.2. Ito Parameter Uncertainty
The transient outward current Ito has six parameters: maximum
conductance gto, half-activation voltage Er , activation slope
kr , half-inactivation voltage Es, inactivation slope ks, and
inactivation time constant τ ∗s .

Previously, in Pathmanathan et al. (2019), nominal values for
gto, Er and kr were determined by fitting

F(gto,Er , kr) = gto

(

1+ exp

(

−(V − Er)

kr

))−1

(V − EK) (9)

to averaged voltage clamp recordings from canine epicardial
cells (n = 16). EK was not identifiable from this dataset so
was set to be −85 mV. In the present paper, to calibrate with
uncertainty, the two stage approach was used as described in
section 2.2.1, which again allows for possible correlation between
these parameters.

Inactivation parameters, Es and ks were determined by fitting
F(Es, ks,α) = (1/(1+ exp((V − Es)/ks))+ α)/(1+ α) to voltage
clamp recordings from canine epicardial cells (n = 14). The
function is a sigmoid that decreases from 1 to α, and was chosen
because the data exhibited an experimental artifact where peak
current did not drop to zero at higher voltage. α was fit for each

cell (to obtain more accurate Es, ks) but not used in the model.
The two-stage approach was again used.

To assess variability in τ ∗s , we first defined τ ∗s more precisely
[than in our previous work (Pathmanathan et al., 2019)] to be
the average value of voltage-dependent τs(V) for voltages in the
range 10–50 mV. This is consistent with the value of τ ∗s used
in Pathmanathan et al. (2019), and is necessary to be able to
meaningfully ask what the population variability in this quantity
is (see Discussion in Pathmanathan et al., 2019). Using this
definition, τ ∗s was computed for eight canine epicardial cells (raw
data behind Figure 2 in Cordeiro et al., 2012). A log-normal
distribution was assumed, and scale parameters µ, σ estimated
from the eight samples.

2.2.3. ICaL Parameter Uncertainty
The L-type inward calcium current ICaL has six parameters:
maximum conductance gCaL, half-activation voltage Ed,
activation slope kd, half-inactivation voltage Ef , inactivation
slope kf , and inactivation time constant τ ∗

f
.

In Pathmanathan et al. (2019), nominal values for Ed, kd,
Ef , and kf , were taken directly from Iyer et al. (2012) (Table
2, normal, EPI). The same table in Iyer et al. (2012) reports
means and standard errors for each of these values, so here we
estimated uncertainty due to population variability by simply
calculating standard deviations from the standard errors. Ed
and Ef were assumed to be normally distributed with these
means and standard deviations. kd and kf were assumed to be

log-normally distributed, with parameters µ and σ 2 that were
computed by inverting the relationship between (mean,variance)
and (µ, σ ) for log-normal random variables. This provides
relatively crude (compared to methods used for IK1 and Ito) but
data-driven estimates of uncertainty for these four parameters,
although this approach provides no indication of any correlations
between them.

In Pathmanathan et al. (2019), the nominal value of gCaL
was determined by finding the value of gCaL such that (5)
with f = 1 and Ed, kd at nominal values matched the
experimental peak current of the I-V curve in Figure 3 (EPI)
of Iyer et al. (2012) (using digitized data). Here, we first
estimated experimental peak current standard deviation (n =

17 cells) from digitized peak current standard error in the
same figure. We then determined (µ, σ ) values for log-normally
distributed gCaL such that this variability in gCaL, together with
the above variability in Ed and kd, when propagated through (5),
gave rise to the experimental mean and standard deviation
of peak current. This approach was only possible because
the variability in Ed and kd was not sufficient to explain
the experimental variability in peak current. Specifically, peak
current was estimated to be −3.90 ± 1.40 mS/cm2 (mean ±

standard deviation) from Iyer et al. (2012) (Figure 3, EPI). With
constant gCaL = 0.115 (nominal value from Pathmanathan
et al., 2019), propagating the above uncertainty in Ed and kd
through (5) leads to simulated peak current of−4.12± 0.41, less
variability than in the experiments. Hence it is possible to match
the experimental mean and standard deviation by introducing
variability in gCaL.
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In Pathmanathan et al. (2019), the nominal value of τ ∗
f

was chosen based on Figure 8 of Xiao et al. (2006). Here, we
first re-defined τ ∗

f
as the average value of τf (V) over voltages

between 0 and 40 mV (to enable us to meaningfully ask what
is the population variability in τ ∗

f
). We then digitized the male

and female means and standard errors in Figure 8 of Xiao
et al. (2006), computed standard errors from standard errors,
computed grouped (both sexes) means and standard deviation
at each voltage, and then computed the mean and standard
deviation of τ ∗

f
using the above definition.

2.2.4. IKr Parameter Uncertainty
The rapidly activating delayed rectifier current IKr has six
parameters: maximum conductance gKr, half-activation voltage
Exr , activation slope kxr , activation time constant τ ∗xr , half-
inactivation voltage Ey, and inactivation slope ky.

In Pathmanathan et al. (2019) Exr , kxr , Ey, and Ey were taken
fromTable 1 of Berecki et al. (2005). Here we used standard errors
reported in that table to estimate uncertainty in these parameters,
using the same method as described above for ICaL parameters
in section 2.2.3.

The parameters gKr, τ ∗xr , together with IKs conductance gKs
(below), are fundamentally different to all other parameters in
this model. In Pathmanathan et al. (2019) all other parameters
had nominal values derived directly from voltage clamp data
or data in the literature. These three parameters however
were calibrated using the full action potential model, to match
experimental restitution data. Therefore, an appropriate method
for quantifying the variability in these parameters is not obvious.
In principle, we could estimate population variability in the
restitution curve, and determine probability distributions for
gKr, τ ∗xr , and gKs that give rise to that variability in restitution.
However, there are two problems with such an approach.
First, it is inconsistent with our aim of studying the impact
of parameter uncertainty on action potential characteristics,
since AP characteristics would be used to determine the
parameter uncertainty. More importantly, to be fully rigorous,
the quantified uncertainty in all the other parameters should
be accounted for (in the same way uncertainty in Ed and
kd was included when calibrating gCaL to variability in peak
ICaL in section 2.2.3). But we already know from the results
in Pathmanathan et al. (2019) that moderate levels of uncertainty
lead to very wide ranging APDs and action potentials that do not
repolarize, and therefore the uncertainty in simulated restitution
curve due to variability in the other parameters, will be greater
than the experimentally observed variability in restitution.

Therefore, we used the following approach. In Table 1 (see
below), σ̂LN is defined as the ratio of standard deviation to mean,
for log-normally distributed parameters. Noting that the other
conductances and time constants have σ̂LN values of 28, 39, 13,
35, 31, and 22%, we set mean values for these three parameters
to be their nominal value (from Pathmanathan et al., 2019)
and chose standard deviations corresponding to σ̂LN = 40%, a
conservatively wide-ranging distribution. Thus, these parameters
have distributions that are not arbitrarily chosen, but only based
on information regarding other parameters.

2.2.5. IKs Parameter Uncertainty
The slowly activating delayed rectifier current IKs has four
parameters: maximum conductance gKs, half-activation voltage
Exs, activation slope kxs, and activation time constant τ ∗xs.
In Pathmanathan et al. (2019) nominal values of Exs, kxs, and τ ∗xs
uncertainty were taken from Liu and Antzelevitch (1995) (text);
here we set mean values as the nominal values and computed
standard deviations from reported standard errors using values
in Liu and Antzelevitch (1995). For gKs, see section 2.2.4.

2.2.6. Comparing Parameter Uncertainty
Once uncertainty in model parameters has been quantified, and
before the impact of that uncertainty on model outputs was
investigated, we wished to directly compare the uncertainty in
parameters. To do so, we introduced two relative measures of
uncertainty. For half activation/inactivation voltages (normally-
distributed), we defined σ̂N as standard deviation divided by
a representative range of 100mV. For all other parameters (all
constrained to be positive, all log-normally distributed), we
defined σ̂LN as standard deviation divided by mean. Both σ̂N and
σ̂LN are analogous to σ̂ in Pathmanathan et al. (2019).

2.3. Single Cell and Tissue Simulations
Single cell simulations were run using Chaste, a general purpose
package for physiological simulations (Mirams et al., 2013).
ODEs were solved in Chaste using the CVODE adaptive
ODE solver (Hindmarsh et al., 2005). Initial conditions were
dependent on parameter values (see Pathmanathan et al.,
2019). Electrical activity in tissue was simulated using the
monodomain equations

χ

(

Cm
∂V

∂t
+ INa + IK1 + Ito + IKr + IKs + ICaL

)

= ∇ · (σ∇V)

coupled to (2)–(7), where χ = 1, 400cm−1 is the surface-
area-to-volume ratio, and σ = 1.4 mS/cm is the bulk
conductivity. Tissue simulations were performed with a
GPU-based finite difference solver implemented in WebGL
2.0 using the Abubu.js library (Kaboudian et al., 2019a,b).
The WebGL 2.0 implementation of cardiac models provide
significant speedup and better performance compared to
other GPU implementations, such as NVIDIA CUDA or
OpenACC (Kaboudian et al., 2019c). Simulations were
performed on a 16 by 16 cm square domain, with initial
conditions that were the same as single cell simulations except a
gradient in V was prescribed in the x-direction (linear, −85 mV
to −5 mV) and a gradient in h was prescribed in the y-direction
(linear, ranging from h = 0.1 to 0.6).With these initial conditions
a spiral wave spontaneously forms at t = 0, consistently across
the majority of the parameter values used. We quantified the
impact of the parameter uncertainty on two quantities of interest:
(i) number of phase singularities [PSs; centers of reentrant waves,
computed as described previously (Pathmanathan and Gray,
2015; Galappaththige et al., 2019)] at times t = 1, 000, 1, 500,
and 2, 000 ms; and (ii) for the node at the center of the
domain, average cycle length for all full beats in the window
t = 1, 000 to t = 2, 000 ms. (Note that this is an average
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over time for a single parameter set, not an average over
parameter space).

2.4. Uncertainty Propagation, Sensitivity
Analysis, Non-behavioral Analysis
The same analytic methods as in our previous paper were
used; see Pathmanathan et al. (2019) for a full description.
Briefly, simple Monte Carlo sampling was used for uncertainty
propagation. For single cell simulations we used N = 100, 000
and for tissue simulations we used N = 1, 000 due to increased
computational cost. All simulation results are used for computing
histograms, but when plotting representative simulations we
plotted 1,000 random selected action potential traces for single
cell simulations and 10 for tissue, and 100 randomly selected
snapshots of activity in tissue. For global sensitivity analysis
(determining how much the uncertainty in an output can be
apportioned to the underlying uncertainties in each input),
variance-based sensitivity indices were computed using the
Saltelli sampling method and the SALib library (Herman
and Usher, 2017) (N = 10, 000 per uncertain parameter).
Non-behavioral analysis was used to identify which parameters
were responsible for different classes of behavior observed
(e.g., determining which parameters where highly influential
in AP repolarization failure, when this occurred). Cumulative
distribution functions (CDFs) of “parameter value given
behavior occurred” and “parameter value given behavior
did not occur” were computed and the Kolmogorov-
Smirnov test was used to test if the CDFs were statistically
different, which indicates that the parameter is influential
in whether the behavior occurs or not. Highly influential
parameters were defined as those for which the test statistic
was >0.2.

3. RESULTS

3.1. Uncertainty in Parameters
Figure 1 plots the individualized fits of (8) to IK1 voltage clamp
data recorded from 12 cells. Each color represents a different cell.
Each point in parameter space represents the fitted values for that
cell. Also plotted as ellipses are 90% confidence regions for each
fitted parameter, using the variance-covariance matrix σ̂ (JTT)−1,
where σ̂ is the estimated residual variance and J is the Jacobian

matrix with entries Jj =
∂f
∂pj

. For most cells the calibration

uncertainty (the ellipses) is small, but somewhat surprisingly for
a few cells the calibration uncertainty was similar in size to the
population variability across the cells (range of points). Note that
confidence regions are presented here for illustration and not
included in subsequent analysis. See discussion of limitations in
section 4. See Supplementary Figures 1, 2, for the corresponding
results for Ito activation and inactivation parameters. Some
correlation was observed between IK1 parameters, between
Ito activation parameters, and to a lesser extent between Ito
inactivation parameters (see trends in fitted parameter values in
Figure 1C, Supplementary Figures 1, 2).

The final probability distributions that were derived for each
parameter are provided in the Appendix, and summarized in

Table 1. The non-zero off-diagonal elements of the covariance
matrices for IK1 and Ito parameters (Appendix) indicate the
observed correlation. Looking first at σ̂N, it is remarkable that all
half-activation/inactivation values except Exs have similar levels
of uncertainty: each has σ̂N in the 4–8% range. This is despite a
variety of methods and data sources being used to obtain these
values. Uncertainty in Exs is much larger (σ̂N = 34%). This value
was derived directly from the large standard error for Exs reported
in Liu and Antzelevitch (1995), and potentially dominated by
measurement error rather than true variability. Although the
experimental data on IKs activation in canine epicardial cells
are sparse, a more recent study (Obreztchikova et al., 2006)
exhibited variation less than (Liu and Antzelevitch, 1995) and
more comparable with the other parameters. Uncertainty in the
five conductances gX was in the σ̂LN = 28–40% range (two chosen
to be 40%). Different data and methods were used to determine
the variability of gK1, gto, and gCaL; it is interesting that the results
are similar in magnitude. There was less uncertainty in slopes kX ,
all but one around 15%. Time constant uncertainty was in the
20–40% range. All values are considerably higher than the 1, 3,
and 5% we prescribed in our previous work (Pathmanathan et al.,
2019).

3.2. Impact of Parameter Uncertainty on
Action Potential
Figure 2 illustrates the impact of the quantified parameter
uncertainty on the predicted action potential. Figure 2A

plots 1,000 sample APs, with all 25 parameters sampled
from the probability distributions provided in the Appendix.
Unsurprisingly, given the wide range of APs observed in our
previous work with just σ̂ = 5%, a very wide range of
APs was observed. Figures 2B–F plot sample APs with all
parameters in each current uncertain but all other parameters
fixed at mean values, with APD histograms (N = 100, 000,
requiring about 45s of computational time on a desktop using
20 CPUs) and sensitivity indices in insets. Sensitivity indices
were not computed for the IK1 and Ito results because for these
currents there is parameter correlation, and methodology for
calculating sensitivity indices given correlated parameters is not
well-established (Most, 2012). The uncertainty in ICaL parameters
has the greatest impact on the action potential, with early-after
depolarizations (EADs) and repolarization failure occurring in
some cases. No such behavior is observed for any other current.
Uncertainty in IKr and IKs significantly affects APD. For IKs
the sensitivity analysis shows that this is almost entirely due
to the uncertainty in Exs, which as discussed in section 3.1 is
most likely dominated by measurement error. Surprisingly, the
distribution of APD in the IKs results is bi-modal. To investigate
why, we plotted APD as a function of Exs, both with other
parameters held fixed and with other parameters varying (see
Supplementary Figure 3). The figure shows that Exs takes values
in the range −75 to 150 mV (perhaps wider-ranging than that
which occurs in reality as discussed above). There is a non-linear
relationship between APD and Exs, but at greater values of Exs
(e.g., >75 mV) the relationship is nearly flat (APD always near
450 ms), which is expected because at these values of Exs IKs will
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FIGURE 1 | Individualized fits of IK1 parameters. (A) Experiment voltage clamp data (stars) and fitted model (line) for n = 12 cells. (B) Corresponding residuals

(difference between experiment and fitted model). (C) Cell-specific parameters (solid diamonds) and cell-specific 90% confidence regions (ellipses) for the four fitted

parameters, gK1, E
exp
z , kz , and E

exp
K , for each of the cells. See text for definitions of parameters.

not activate and therefore changes in Exs will not impact APD.
This explains the clustering of APD values near this value, hence
the second peak in the histogram in Figure 2F.

Uncertainty in IK1 parameters has the least impact on AP
shape. Uncertainty in Ito parameters has significant effect on
phase 1 of the AP, but with large probability (p = 0.97) does not
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TABLE 1 | Estimated mean and standard deviations for all repolarization

parameters.

Current Param Distribution∗ Co-variates† Mean Std dev σ̂N (%) σ̂ LN (%)

IK1 gK1 Lognormal Ez , kz 0.772 0.217 28

Ez Normal gK1, kz −92.1 5.01 5

kz Lognormal gK1, Ez 12.4 1.73 14

Ito gto Lognormal Er , kr 0.172 0.0676 39

Er Normal gto, kr 14.4 5.78 6

kr Lognormal gto, Er 11.8 1.63 14

Es Normal ks −48.1 6.12 6

ks Lognormal Es 3.29 0.755 23

τ ∗
s Lognormal 9.91 1.28 13

ICaL gCaL Lognormal 0.108 0.0378 35

Ed Normal 0.7 3.71 4

kd Lognormal 4.3 0.742 17

Ef Normal −15.7 7.01 7

kf Lognormal 4.6 0.62 13

τ ∗
f Lognormal 30.4 9.45 31

IKr gKr Lognormal 0.056 0.0224‡ 40‡

Exr Normal −26.6 4.43 4

kxr Lognormal 6.5 0.949 15

τ ∗
xr Lognormal 334 133.6‡ 40‡

Ey Normal −49.6 7.8 8

ky Lognormal 23.5 1.5 6

IKs gKs Lognormal 0.008 0.0032‡ 40‡

Exs Normal 24.6 33.94 34

kxs Lognormal 12.1 1.70 14

τ ∗
xs Lognormal 628 140 22

See Appendix for actual distributions. Units: gX in mS/cm2, EX in mV, kX mV, τ ∗X in ms.
∗Type of distributions was prescribed, not inferred. †Co-variates based on availability of

data, not inferred. ‡Standard deviation chosen so σ̂LN = 40%; see text. σ̂N and σ̂LN are

relative measures of uncertainty; see text for precise definitions. INa parameters and EK,

ENa, ECa were fixed at nominal values from Pathmanathan et al. (2019).

heavily affect APD. There is a small probability (p = 0.03) of AP
shortening (APD < 200 ms).

Non-behavioral analysis (see section 2.4) was performed to
determine parameters responsible for different behaviors. ICaL
APs (N = 100, 000) were generated and categorized as being
either: normal; exhibiting loss of dome morphology; exhibiting
EADs; or repolarization failure. Ito APs were categorized as either
being normal or exhibiting reduced AP, delineated based on
whether the AP exhibited spike-and-dome morphology or not
(see Figure 2C). The results are provided in Table 2.

3.3. Impact of Parameter Correlation
Table 2 shows that variability in Ed and Ef (steady state half-
activation and half-inactivation voltages for the d and f gates
in the ICaL current) are influential in determining EADs or
repolarization failure. Previously in Pathmanathan et al. (2019),
we came to the same conclusion using arbitrary variation, and
we hypothesized that these parameters may be correlated in
reality. The probability distributions derived for Ed and Ef (see
Appendix) assume no correlation, because we had no data

allowing us to infer any correlation (section 2.2.3). In other
words, the covariance matrix for (Ed,Ef ) is diagonal. To assess if
missing parameter correlation could be responsible for the wide
range of APs observed under ICaL uncertainty, we introduced
correlation between Ed and Ef at a range of different levels, and
computed the probability of loss of dome morphology, EADs, or
repolarization failure. Different values of correlation coefficient
r were chosen, spanning r = 0 (no correlation, i.e., above
results) to r = 1 (perfect correlation). Off-diagonal elements
of the (Ed,Ef ) covariance matrix were set to covariance values
corresponding to the chosen r. The results are plotted in Figure 3.
All behaviors became less likely with increasing Ed-Ef correlation,
and the probability of EADs or repolarization failure approaches
zero at perfect correlation. EADs and repolarization failure are
likely related to the ICaL window current, which is directly
impacted by the values of Ed and Ef . This raises the question of
whether correlation between Ed and Ef impacts the magnitude
of the window current, or location, or both. We computed
the distribution of window current magnitude and location, for
different values of r, and determined that correlation does not
affect ICaL window current location but it does affect window
current magnitude (see Supplementary Figure 4). Specifically,
correlation between Ed and Ef reduces the probability of the
window current having larger magnitude, and through this
reduces the probability of EADs.

For IK1 and Ito, our probability distributions include parameter
correlation (see covariance matrices in Appendix). To further
investigate the importance of parameter correlation, we removed
these correlations (i.e., made the covariance matrices diagonal),
and re-computed APs. Results are shown in Figure 4A for IK1 and
Supplementary Figure 5 for Ito. Loss of correlation led to slightly
wider-ranging APs; interestingly loss of IK1 parameter correlation
led to some non-physiological APs (see arrow in Figure 4A). To
understand why, we visualized the parameters values that led to
the non-physiological APs in parameter space (see Figure 4B).
The non-physiological APs were associated with the region of
parameter space where Ez and kz both took low values, and
additionally gK1 was in the lower half of its set of values. In the
original probability distribution, before correlation was removed,
Ez and kz were somewhat negatively correlated, which meant
there was very small probability of sampling the region where
Ez and kz both took low values. When correlation was removed,
the probability of sampling this region became non-negligible.
Ez and kz both taking low values, together with smaller gK1,
corresponds to a small or near-zero IK1 current which gives rise
to the non-physiological APs.

Overall, both correlation experiments (Figures 3, 4)
suggest parameter correlation could play an important
role in ensuring simulated APs are physiological when
parameter variability is modeled.

3.4. Impact of Parameter Uncertainty on
Drug-Induced Action Potential Duration
Prolongation
Often, cardiac models are not used to predict absolute quantities.
Many times users are only interested in relative differences,
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FIGURE 2 | Impact on action potential of uncertainty (due to population variability, derived from experimental data) in all (A) or individual currents (B–F). Each figure

displays 1,000 sample action potentials, together with APD histograms (N = 100, 000). Pie charts show first-order Sobol sensitivity indices.

for example changes in simulation results under drug block or
when a proposed therapy is applied. While we observed large
variability in predicted APs in Figure 2, we hypothesized that
relative differences would be much more robust (less variable)
to the underlying parameter uncertainty. To test this hypothesis,
we computed the uncertainty in APD prolongation to partial
block of the IKr current. Figure 5A illustrates the control action
potential (no block) and the action potential under 50% block
of IKr, without including impact of parameter uncertainty. APD
prolongation was 70.3 ms. Figure 5B then demonstrates the
impact of IK1 variability (only). The control uncertainty is the
same as shown in Figure 2B. Surprisingly, 1APD, a relative
quantity, is heavily affected by underlying uncertainty, and
its total uncertainty is similar in magnitude to the control
uncertainty. This is because the APDs under partial IKr block
(red traces/histogram) are very wide ranging. Figure 6 repeats
this analysis for the full range of IKr block (0–100%), and with
variability in all five currents. Parameter uncertainty always has a
significant affect on results, especially at greater levels of block.

3.5. Impact of Parameter Uncertainty on
Spiral Wave Dynamics
Finally, we investigated the impact of the parameter uncertainty
on reentrant spiral wave simulations in tissue (2D, 16 by 16
cm square domain). The results of the baseline simulations are
shown in Figure 7, which uses mean values of all parameters.
Two seconds of activity were simulated, taking about 40 s of
computation using a desktop with a GeForce GTX 960 graphics
card with 1,024 CUDA cores (typical utilization: 50–70%). We
then considered each current in turn, randomly sampling N =

1, 000 parameters for each, with parameters in other currents kept
at mean values. Results are presented in Figures 8–10. Figure 8
presents 100 snapshots of the activity at t = 1, 000 ms, for 100
of the 1,000 randomly chosen Ito parameter sets. Figure 9 is the
equivalent figure for ICaL parameter uncertainty. Corresponding
figures for IK1, IKr, and IKs, and for all currents at t = 2, 000ms, are
provided in the Supplementary Material. Figure 10 presents the
distributions of number of phase singularities (PSs) and average
cycle length for the node at the center of the domain. This figure
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TABLE 2 | Results from non-behavioral analysis to determine which parameters

are highly influential in different behaviors that occur in simulated action potentials

under ICaL and Ito parameter uncertainty.

Current of interest Behavior observed Influential parameters

ICaL Loss of dome gCaL, Ed, τ ∗
f

Early-after depolarizations Ed, Ef

Repolarization failure gCaL, Ed, Ef

Ito Action potential shortening gto, Er , kr , τ ∗
s

FIGURE 3 | Effect of introducing correlation between half-activation voltage Ed
and half-inactivation voltage Ef on ICaL variability results. Probabilities of

repolarization failure, early-after depolarizations (EADs) and loss of dome

morphology all decreased with increasing correlation.

also includes 10 random traces for the center node, as a simple
visual indication of the output variability.

First, it is interesting that across all the 5,000 simulations,
it was possible to induce reentrant activity lasting at least
1,000 ms in about 80% of the simulations, all using the same
induction protocol. This observation is based on the number
of simulations with one or more phase singularities at t =

1, 000 ms, given that zero phase singularities implies no activity
(blue subplots in Figures 8, 9) or activity about to die out. This
demonstrates that spiral wave inducibility is reasonably robust
to the underlying parameter uncertainty, perhaps more so than
might have been expected.

Considering first IK1 and Ito, uncertainty in these parameters
had very little impact on inducibility, and limited impact
on average cycle length. Figure 8 shows that most of the Ito
simulations had a similar voltage profile after 1,000 ms as the
baseline simulation, though there was a small probability of
low wavelength circular spirals. We observed in Figure 2C that
some random Ito parameters led to shortened action potentials—
it is these parameters which lead to the circular spirals in
the 2D simulations. For both IK1 and Ito the distributions
of average cycle length were similar to the single cell APD
distributions (Figures 2B,C), though for IK1 less skewed and for
Ito more wide-ranging.

ICaL uncertainty had the greatest impact on the tissue results,
with near 50% of simulations not inducing or dying out by
1,000 ms, and with a bimodal wide-ranging distribution of
average cycle length for the remaining simulations. As with Ito,
parameters corresponding to shortened action potentials led to
circular low-wavelength spirals. Interestingly, highly complex
behavior occurred more often under ICaL uncertainty than for
the other currents: 3% of ICaL simulations had >10 PSs at
t = 2, 000 ms, in contrast to <1% for the other currents
(results not plotted). Overall, ICaL parameter uncertainty appears
to strongly affect the type of reentrant behavior; the results again
emphasize the importance of this current on model results and
the need to reduce or at least better characterize uncertainty in
its parameters. Finally, IKr and IKs had a moderate impact on the
tissue simulations: uncertainty in these parameters had less of an
effect than ICaL parameters but more of an effect than IK1 and Ito
parameters, for example activity had died out after 2 s in about
half IKr and IKs simulations.

4. DISCUSSION

4.1. Summary of Results
In general data-driven, comprehensive (in the sense of
considering all parameters) UQ in cardiac modeling has
been considered infeasible, due to the complexity of cardiac
cellular models. All previous work in this domain has either
limited the uncertain parameters to a subset (usually minority
subset) of the total number of parameters, and/or (usually and)
prescribed the parameter uncertainty rather than estimating it
from experimental data. The aim of this work was to quantify
the uncertainty, due to population variability, in repolarization
parameters of a canine cardiac action potential model, and to
understand the subsequent uncertainty in model predictions.
Model outputs that were studied included the action potential,
relative effects on action potential duration of drug-induced
current block, and “biomarkers” of reentrant behavior in tissue
simulations. Our results demonstrate for the first time the
feasibility of comprehensive data-driven cardiac UQ (though we
only accounted for uncertainty in repolarization parameters; INa
parameters were left fixed).

A variety of approaches were used to characterize uncertainty
in the repolarization model parameters: (i) fitting parameters
to data derived from a number of individual cells; (ii)
back-calculating standard deviations from reported parameter
standard errors; (iii) fitting parameters with uncertainty, to
observable data (e.g., peak current) given or after back-
calculating uncertainty in those observables; and (iv) specifying
a conservative estimate of uncertainty based on uncertainty in
related parameters for other currents. Interestingly, the different
methods (i)–(iii) provided similar estimates of uncertainty
for related parameters (i.e., steady-state activation/inactivation
voltages; time constants; conductances). The same is true of
method (iv) by definition. The ensuing parameter uncertainty
was substantial, and greater than that typically prescribed
when arbitrary variation is used [including our previous
work (Pathmanathan et al., 2019)]. When the parameter
uncertainty was propagated through the AP model, there was
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FIGURE 4 | Effect of neglecting inferred correlations in IK1 parameters. (A) 1,000 sample action potentials with histograms of APD (N = 100, 000) in inset. Red arrow

indicates some non-physiological behavior that arises upon neglecting the correlation between IK1 parameters. (B) Corresponding sampled parameters gK1, Ez, kz .

Blue dots: sampling from original distribution which included parameter correlation. Red dots and black diamonds: samples from distribution where correlation was

removed. Black diamonds: parameter values which led to non-physiological action potentials.

FIGURE 5 | Impact of parameter variability on predictions of APD prolongation under 50% block of IKr. (A) APD prolongation under 50% IKr block, with no parameter

variability. (B) corresponding action potentials (1,000 samples) when IK1 variability is included, with histograms of the control APs, blocked APs, and 1APD in inset.

substantial uncertainty in predicted action potentials, which was
not surprising given our previous results in Pathmanathan et al.
(2019) where even moderate prescribed parameter uncertainty
led to significant output uncertainty. IK1 parameter uncertainty
had least impact on the AP; followed by IKr. For both
these currents, AP shape was relatively robust (invariant)
to the underlying uncertainty and no anomalous APs arose.
IKs parameter uncertainty led to surprisingly large output
uncertainty, although this was caused by large uncertainty in
one parameter that was most likely dominated by experimental
measurement error rather than genuine population variability
(see section 3.1).When considering uncertainty in Ito parameters,
there was a large probability of little impact on AP shape,
and a small probability of loss of spike and dome morphology
and shortened APs. Uncertainty in ICaL parameters strongly
affected APs, including loss of spike and dome morphology and
shortened APs, early-after-depolarizations and repolarization
failure (Figure 2D). These results suggest that when experimental
resources are limited, focused experiments to better characterize
ICaL parameter variability may be the best use of resources.

We expected that relative differences, such as change in APD
under drug-induced current block, would be more robust to

the underlying uncertainty, even if absolute values of model
outputs, such as APD, exhibited large uncertainty. Surprisingly,
this was not the case; the former exhibited similar magnitudes
of uncertainty as the latter. While this is an unfortunate
result, analyses such as that performed in Figure 6 could be
used to identify level of block at which response is relatively
robust to underlying uncertainty. For example, 50% appears
a reasonable choice based on Figure 6. Additionally, Figure 6
reveals the currents (ICaL and Ito) that it may be important to
focus experimental investigation when attempting to minimize
output uncertainty.

We had limited data available for building parameter
correlation into our statistical model; covariance was included
for IK1 and some Ito parameters only. However, we investigated
the importance of correlation, by removing correlation from
IK1 or Ito, and by artificially introducing it to two ICaL
parameters. We observed a clear impact of the correlation: IK1
correlation was responsible for the model exhibiting realistic
AP shape, and the introduction of hypothesized ICaL correlation
reduced the probability of anomalous APs occurring. This
strongly supports the expectation that parameter correlation
exists in reality. Moreover, the results suggest correlation will
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FIGURE 6 | Impact of parameter variability on predictions of APD prolongation under block of IKr. (A) APD prolongation as a function of IKr block, with no variability

accounted for. (B–F) Corresponding results considered variability in specific current, with parameters in other currents held fixed. Black lines are means, error bars are

±1 standard deviation, histograms show distribution of (1APD | APD computable). In some cases APD was not computable (“failure”), because either control or block

AP did not repolarize. pF represents probability of such failures. All histograms use 20 bins.

often need to be accounted for in cardiac electrophysiological
modeling if population variability is modeled. Note that we
only considered intra-current parameter correlation, but there is
also evidence of inter-current parameter correlation, especially
in maximal conductances due to co-expression of currents.
For example, Milstein et al. (2012) shows potential correlation
between gNa and gK1 in rat, Rees et al. (2018) presents evidence
for correlation between gCaL and potassium current conductances
in mouse, and recently Ballouz et al. (2019) analyzed RNA-Seq
datasets to identify correlation between gCaL and gKr in human.
Fully characterizing such relationships will likely be one of the
biggest challenges in cardiac AP model UQ.

Note that our ability to draw direct conclusions about human
AP models based on these results is limited. While canine is

frequently used as an experimental model for human, there
are known differences which limit the ability to extrapolate
even average behaviors from canine to human, for example
related to Ito characteristics (Akar et al., 2004) or smaller
IK1, IKr, and IKs in human vs. dog which results in a lower
repolarization reserve (Jost et al., 2013). Species differences
in regards to variability are even more uncertain, and it is
difficult to estimate the extent to which the conclusions in
this work (importance of ICaL variability on action potential,
potential importance of parameter correlation for physiological
behavior, and uncertainty in relative model outputs) will apply
to human action potential models. Further research is needed
to verify if the findings apply to human models, but the
methods and workflow presented in this paper provide a
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FIGURE 7 | Baseline spiral wave simulation using mean values of all parameters. A rotating spiral wave was induced on a square two-dimensional sheet by setting

gradients in voltage and h at t = 0. (Top) Progression of the spiral wave at selected times (color represents transmembrane voltage). Number of phase singularities in

snapshots: 40 ms: one; 350 ms: one; 670 ms: one; 1,000 ms: three; 1,500 ms: one; 2,000 ms: three. (Bottom) Transmembrane voltage as a function of time for the

node at the center of the tissue.

pathway to begin such research. Our results do suggest that
appealing to the fact that a quantity of interest is only a
relative difference is not a particularly strong justification for not
performing UQ (including for human models), in the absence of
other evidence.

4.2. Comparison With Other Work
It is worth comparing our approach with related cardiac UQ
efforts. In this sub-section we focus on the method used to
to characterize parameter variability; see Pathmanathan et al.
(2019) for a comparison with other publications in regards to
the number of parameters varied. As stated earlier, it is common
to introduce arbitrarily-chosen uncertainty in parameters when
studying impact of parameter uncertainty on cardiac AP model
predictions (e.g., Sadrieh et al., 2014; Chang et al., 2015; Hu
et al., 2018; Ballouz et al., 2019). We are not aware of other

analyses that propagate entirely data-driven (not arbitrarily-
chosen) independently-derived parameter uncertainty though a
cardiac AP model, apart from our initial work on this subject
for INa inactivation (Pathmanathan et al., 2015), and articles
that consider uncertainty in non-endogenous parameters [e.g.,
drug-response parameters (Chang et al., 2017; Costabal et al.,
2019)]. There are also methods that use the full action potential
model for parameter uncertainty estimation, such as traditional
Bayesian calibration methods (Houston et al., 2020), history-
matching approaches (Coveney and Clayton, 2018), and the
recent population of models (POM) approach (Britton et al.,
2013; Gong et al., 2020), all of which are related (Whittaker
et al., 2020). Bayesian calibration methods compute a posterior
distribution for parameter values. The interpretation of this
distribution depends on the type of data the model is fit to. If the
model is fit to single values of an output quantity (e.g., APD90),
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FIGURE 8 | Snapshots of activity at t = 1, 000 ms for 100 random parameters, under Ito parameter uncertainty.

the posterior distribution represents calibration uncertainty
(similar to the ellipses in Figure 1C) (see e.g., Houston et al.,
2020). If the model is fit to a distribution of the output
quantity, based on information on how the quantity varies across
a population, the posterior distribution represents parameter
variability (and calibration uncertainty). The POM approach is
similar, and involves specifying bounds on quantities of interest
that are considered physiologically reasonable, and retaining
points in parameter space, from a pre-selected region, for which
the model output falls within the pre-specified range. This
has recently been extended to specifying output distributions
instead of just bounds, and computing a multivariate parameter
distribution (Lawson et al., 2018), which could be considered
analogous to the parameter distributions we derived (Appendix).
The key difference between the POM approach and our
approach used here is that we aimed to avoid using the
action potential model to quantify parameter uncertainty—all
parameter uncertainty estimates were based on independent
data or comparison to related parameters (section 2.2.4). This
was because our focus was model evaluation, rather than model

application; specifically we wanted to understand the impact of
parameter uncertainty on themodel, which would not be possible
had we used to the model to compute parameter uncertainty. The
POM approach does not test the model, and in fact the reliability
of the parameter distributions obtained is founded upon the
reliability of the model. Our approach is especially a “bottom-
up” forward UQ analysis, whereas the Bayesian calibration/POM
approach is a backward UQ which has the potential for
inferring true parameter distributions (especially for parameters
which are difficult to measure experimentally) and correlations
between parameters (especially inter-current correlations), but is
heavily reliant on confidence in the model equations. Ultimately,
both approaches have value in different stages of the model
development and application workflow. One possibility is
using the bottom-up forward UQ approach in iterative model
development and experimental resource allocation, with the
resultant probability distributions used to inform the region of
parameter space to be considered in a subsequent backward
UQ stage.
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FIGURE 9 | Snapshots of activity at t = 1, 000 ms for 100 random parameters, under ICaL parameter uncertainty.

4.3. Limitations
There are various limitations to the methods applied in this
paper. First, we used relatively crude methods to estimate
population variability for several parameters, such as back-
calculating standard deviation from reported standard errors,
and we assumed the distribution shape (normal or log-normal)
rather than inferring from the data, or treating the uncertainty
as epistemic and using interval analysis (Oberkampf et al.,
2004). We consider these reasonable choices given the scarcity of
relevant data, because this paper is the first time such an analysis
has been attempted and there were dozens of parameters that
needed to be considered. It is plausible however that many of
distributions we provided in the Appendix are wider-ranging
than in reality, and there is considerable potential for refinement
with focused experimentation and more sophisticated analysis.
Moreover, we neglected the impact of experimental bias and
measurement error. Experimental variability may be responsible
for some or much of the observed variability (Lei et al., 2020a). A
second limitation is the simple two-step method used to estimate

the population mean and covariance matrices, for currents (IK1
and Ito) where cell-wise data was available. This approach does
not account for calibration uncertainty (ellipses in Figure 1C.
A better approach is to use a hierarchical method, such as
non-linear mixed effects which would essentially down-weight
cells for which there is substantial calibration uncertainty (large
ellipses) when inferring the population mean and variance.
Another limitation is the fact that we considered each current in
isolation when propagating the uncertainty through the model.
This is at odds with the global sensitivity analysis paradigm in
which the full parameter space given the specified probability
distributions should be explored. We could have performed a
global sensitivity analysis of the results of Figure 2A (where all
parameters were varied), and then assessed the contributions
of each of the different currents to the range of APs observed
(non-behavioral analysis would also have been needed, since
repolarization failure occurred; see Pathmanathan et al., 2019).
However, we believe it is more intuitive and useful in an initial
analysis (and therefore appropriate for this paper) to consider
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FIGURE 10 | Impact of parameter uncertainty on the spiral wave results. Left column of figures: 10 sample traces of transmembrane voltage for the center node,

using random parameters for the current under consideration. Middle column: distribution of number of phase singularities (0, 1, >1) at t = 1, 000, 1, 500, and 2, 000

ms (labeled “1s” etc), given the parameter uncertainty. Right column: distribution of average cycle length in the t = 1, 000 to t = 2, 000 ms window, conditional on at

least 1 cycle in this window.

each of the currents in isolation. Finally, it should be noted
that the simplicity of the model impacts the type of variability
observed, for example there was little possibility of significant
variability in resting membrane potential because the model did
not include any exchanger or background currents and because
we did not allow environmental parameters (EK, ENa, ECa) to
vary.

4.4. Outlook
The ultimate goal of this line of research is the development
of AP models with parameter uncertainty quantified in the
form of probability distributions, rather than parameters taking
fixed values, ideally together with the model and parameter
distributions being such that the resultant output uncertainty
matches that observed in reality–a very strong level of validation.
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Achieving this admittedly ambitious goal will require refinement
of simplified models, such as that used here, and more accurate
characterizations of parameter uncertainty (see limitations above;
our initial estimates of parameter uncertainty are quite crude).
It is also likely that “model discrepancy”–the difference between
model equations and reality due from limitations in (or incorrect)
model form–will need to be characterized using formal model
discrepancy techniques (Lei et al., 2020b), since simplifiedmodels
for which comprehensive UQ is feasible generally exhibit greater
discrepancy (Huberts et al., 2018). It is worth noting that
these approaches are relevant to patient-specific models too.
With rare exceptions, patient-specific models contain parameters
that are not personalized to patient data, in addition to the
personalized parameters (Gray and Pathmanathan, 2018). The
non-personalized parameters are usually fixed to population
average values, but in principle it is better, and more aligned
to the UQ paradigm, to characterize them using probability
distributions that account for population variability (ideally,
probability distributions conditional upon the available patient
data, such as sex or age or covariates that are personalized).
Statistical representations of population variability will be useful
even for parameters that will be personalized to patients,
because those distributions can serve as informative priors in
Bayesian calibration.

4.5. Conclusion
Overall, our results provide for the first time information
on the expected uncertainty in cardiac AP and spiral wave
models, given experimentally-derived parameter uncertainty
in all repolarization parameters. We have demonstrated that
robustness of model outputs to parameter uncertainty should
not be assumed, even for model outputs that are relative
differences. Our results begin to reveal the role of correlation
between parameters in the cardiac action potential. We have
demonstrated that it is feasible to perform data-driven forward
uncertainty quantification in cell model parameters considering
uncertainty in the vast majority of parameters, including
assessment of the impact of uncertainty in computationally-
demanding tissue simulations. We believe that use of the
methods and approaches presented here will lead to improved
models and ultimately more reliable decision-making, when

cardiac models are used in clinical, regulatory, or product
development applications.
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APPENDIX

In the below conductances gX have units mS/cm2, half
(in)activation voltages EX have units mV, slopes kX have units
mV, and time constants τ ∗X have units ms.

For IK1:





log(gK1)
Ez

log(kz)



 ∼ N(µ,6) with µ =





−0.296
−92.1
2.51



 ,

6 =





0.0758 −0.694 −0.00653
−0.694 25.1 −0.362
−0.00653 −0.362 0.0192



 (A1)

For Ito:





log(gto)
Er

log(kr)



 ∼ N(µ,6) with µ =





−1.83
14.4
2.46



 ,

6 =





0.143 0.377 −0.0257
0.377 33.4 0.493

−0.0257 0.493 0.0191





[

Es
log(ks)

]

∼N(µ,6) with µ =

[

−48.1
1.16

]

,

6 =

[

37.4 0.262
0.262 0.0515

]

τ ∗s ∼ lognormal(µ, σ 2) µ = 2.29, σ = 0.129

For ICaL:

gCaL ∼ lognormal(−2.29, 0.3412)

Ed ∼ N(0.7, 3.712)

kd ∼ lognormal(1.44, 0.1712)

Ef ∼ N(−15.7, 7.012)

kf ∼ lognormal(1.52, 0.1342)

τ ∗f ∼ lognormal(3.37, 0.3032)

For IKr:

Exr ∼ N(−26.6, 4.432)

kxr ∼ lognormal(1.86, 0.1452)

Ey ∼ N(−49.6, 7.802)

ky ∼ lognormal(3.15, 0.06382)

For IKs:

Exs ∼ N(24.6, 33.92)

kxs ∼ lognormal(2.48, 0.1402)

τ ∗xs ∼ lognormal(6.42, 0.2202)
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