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ABSTRACT
Due to growing concern for the environment and human health, searching for high-performance lead-free
piezoceramics has been a hot topic of scientific and industrial research. Despite the significant progress
achieved toward enhancing piezoelectricity, further efforts should be devoted to the synergistic
improvement of piezoelectricity and its thermal stability.This study provides new insight into these topics.
A new KNN-based lead-free ceramic material is presented, which features a large piezoelectric coefficient
(d33) exceeding 500 pC/N and a high Curie temperature (Tc) of ∼200◦C.The superior piezoelectric
response strongly relies on the increased composition-induced structural flexibility due to lattice softening
and decreased unit cell distortion. In contrast to piezoelectricity anomalies induced via polymorphic
transition, this piezoelectricity enhancement is effective within a broad temperature range rather than a
specific small range. In particular, a hierarchical domain architecture composed of nano-sized domains
along the submicron domains was detected in this material system, which further contributes to the high
piezoelectricity.

Keywords: piezoelectricity, lead-free, potassium–sodium niobite, structural flexibility, temperature
stability

INTRODUCTION
Piezoelectric materials are a unique medium for the
conversion between mechanical and electrical en-
ergy and play a vital role in a variety of applications
such as sensors, transducers, and actuators [1,2]. For
decades, the global piezoelectric materials market
was monopolized by lead zirconium titanate (PZT)
based materials. However, a strong increase in en-
vironmental concerns has driven tremendous ef-
forts toward lead-free substitutes [2–4]. Among the
various types of lead-free substitutes, their over-
all excellent performance highlights (Na,K)NbO3
(KNN)-based ceramics as one of the most promis-
ing candidates [3,5–7]. The breakthrough by Saito
et al. has manifested the promising potential of
KNN-based ceramics [5]. Over the last decade,
developing KNN-based ceramics with large piezo-
electricity has become a hot research topic in both

academic and industrial fields. Extensive studies
have concentrated on constructing phase transi-
tions near room temperature [5,8–11]. Forming a
rhombohedral–tetragonal R-T (or rhombohedral–
orthorhombic–tetragonal, R-O-T) phase boundary
has been considered to be an effective strategy to
achieve an ultrahigh d33 value in KNN-based ceram-
ics [4,9–12]. However, not all KNN-based piezo-
ceramics with the R-T (or R-O-T) phase bound-
ary exhibit such a large d33 [13–16]. Although
constructing a R-T (or R-O-T) phase boundary
is not difficult as long as appropriate dopants
are utilized, obtaining high piezoelectricity via this
method still remains very challenging [4,9–11].
Furthermore, the origins of superior piezoelectric-
ity in lead-free ceramics remain controversial, thus
obstructing the further development of lead-free
ceramics.
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Sufficient temperature stability of the piezoelec-
tricity is another essential requirement for practical
applications. Several novel approaches, such as
inducing electrically enhanced diffused polymor-
phic phase transition (EED-PPT) and introducing
diffused R-O-T phase transition, have been pro-
posed to develop temperature-insensitive lead-free
piezoelectric materials [14,17–19]. However, it
should be noted that the temperature-insensitive
piezoelectricity originating from the diffused poly-
morphic phase transition is essentially induced by
the degraded singularity of polymorphic phase tran-
sition (PPT) effects, which comes at the expense
of high piezoelectricity [19]. An ideal scenario to
achieve high and thermally stable piezoelectricity
would be that the property enhancement is only
related to the composition-induced free-energy
instability [20]. Recent studies have provided
evidence that the ultrahigh piezoelectricity of
relaxor systems could be the result of structural
instability associated with an interaction com-
petition between the static structure of bulk and
composition-induced local heterogeneities, i.e. local
polar clusters known as polar nanoregions (PNRs)
[20–25]. A further typical example of practical in-
terest is the morphotropic phase boundary (MPB),
in the vicinity of which high piezoelectric perfor-
mance might arise from the anomalous softening of
dielectric susceptibility and elastic moduli, resulting
from composition-induced structural instability
[20,26–29].Therefore, both local structural instabil-
ity and structure softening by chemical modification
could contribute to temperature-independent
property enhancement. This should be further
emphasized to achieve high and thermally stable
piezoelectricity. Consequently, the current study
has developed a new lead-free ceramic composition:
0.93(LixNa0.52K0.48-x)(Nb1-y,Sby)O3-0.05BaZrO3-
0.02(Bi0.5,Na0.5)HfO3 with 1 wt% MnO2 as a sin-
tering aid (abbreviated as LxKNNSy-5BZ-2BNH-
1Mn). The impacts of Li and Sb contents on the
piezoelectric response and its thermal stability were
investigated, the results of which clarified the piezo-
electricity enhancement mechanisms. Enhanced
thermal stability of piezoelectricity was observed in
the optimum compositions with a large d33 exceed-
ing 500 pC/N and a high Tc of ∼200◦C. This is
strongly associated with the increased composition-
induced structural flexibility, which benefits from
reduced unit cell distortion and lattice softening.

RESULTS AND DISCUSSION
TheLxKNNSy-5BZ-2BNZ-1Mn ceramics exhibited
a pure perovskite structure, and no evidence of
macroscopic impurity could be found.This indicates

that BZ and BNH had diffused into the LxKNNSy
lattices to form a stable solid solution (see Fig. S1,
Supporting Information). As shown in Fig. 1a, these
ceramics all featuredmultiphase coexistence accord-
ing to the apparent splitting of 002pc reflection peaks
around 2θ ≈ 45◦ [3,4,10,11,13–15,19,30–32].With
increasing Sb content, the feature of the R phase
became more prominent in the 002pc reflection
peaks. With increasing Li content, the 002pc reflec-
tion peaks of the ceramics exhibitedmore character-
istics of the T andO coexistent phases. Based on the
2θ interval between the leftmost 002pc peak and the
rightmost 002pc peak, as a function of compositional
change, the unit cell distortion (calculated by (c/a –
1)× 100%) of the global lattice decreased with in-
creasing Sb content. Furthermore, it showed a mild
increasing trend with increasing concentration of Li
as shown in Fig. 1b. The increased lattice distortion
can be interpreted as a lowering of symmetry, which
is believed to be associated with octahedral tilting
[33,34].The need for this octahedral tilting is deter-
mined by the volume matching degree between the
BO6 octahedron and the AO12 polyhedron.This can
be evaluated according to the tolerance factor t (de-
terminedby (RA +RO)/[

√
2(RB +RO)],whereRA,

RB, and RO are the radii of A, B, and O ions, respec-
tively) [33]. The increased tolerance factor from a
value below 1 indicates a better matching between
the BO6 octahedron and the AO12 polyhedron as
well as the reduced potential of octahedral tilting
to accommodate cations. The tolerance factor in-
creases with the B-site cation substitution by Sb5+

but decreaseswith theA-site substitution byLi+ due
to the smaller radii of Sb5+ and Li+ compared with
those of Nb5+ and K+, respectively [35]. Thus, Li
doping can increase the potential of octahedral tilt-
ingwhile the opposite effects are expected in Sbdop-
ing, which might account for the changing trend of
the lattice distortion.

Changes of short-range structures can be re-
vealed by the collected Raman spectra (see Fig. S2).
As shown in Fig. 1c, three broad bands were identi-
fied in all these ceramics, indicating the highly dis-
ordered lattice matrix [19]. As indicated in the in-
set of Fig. 1c, the A1g mode denotes the breath-type
stretching of the oxygen octahedron, which is natu-
rally influenced by A–O or B–O bonds.Thus, the in-
fluenceofLi andSb contents on theperovskite struc-
ture can be indirectly detected by investigating the
change of the A1g mode.TheA1g modewavenumber
showed a decreasing trend with increasing Sb con-
tent but an increasing trend with increasing Li con-
tent, as shown in Fig. 1d. The reduced wavenumber
could be attributed to the weakening of the bonding
strength, which in turn is associated with the lower
force constant [19,36]. The above changing trend
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Figure 1. (a) XRD patterns for representative LxKNNSy-5BZ-2BNZ-1Mn samples. (b) Unit cell distortion (calculated by (c/a – 1) × 100%) of the global
lattice for LxKNNSy-5BZ-2BNZ-1Mn samples. (c) Room-temperature Raman spectra of representative LxKNNSy-5BZ-2BNH-1Mn samples. The inset
shows a schematic illustration of the breath-type stretching A1g mode. (d) Raman v1 peak position of the LxKNNSy-5BZ-2BNH-1Mn samples.

is expected since the Sb–O bond energy is much
lower than the Nb–O bond energy, while the Li–O
bond energy is higher than the K–O bond energy
[37,38]. Given the lower force constant and the less
tight octahedral environment due to the smaller ra-
dius of Sb5+ compared with Nb5+, the matrix was
considered to be softened by the introduction of Sb.
More covalent KNN-based perovskite also occurred
due to themuch higher electronegativity of the Sb5+

compared with Nb5+. Collectively, these factors
make it easier for ferroelectric active B-site cations
to move between equivalent off-centering positions
in the oxygen octahedral. This can result in a lower
energy barrier between ferroelectric states [34].

When investigating the temperature depen-
dences of the permittivity for the LxKNNSy-5BZ-
2BNZ-Mn unpoled samples (see Fig. S3), a relaxed
bump situated near room temperature signifying a
PPT was observed in the εr–T curves of all samples.

As shown in Fig. 2a, the εr level in the temperature
range above the PPT point showed an increasing
tendency as Sb content increased, while the oppo-
site effects were observed for Li. Figure 2b shows the
PPT points of the LxKNNSy-5BZ-2BNZ-Mn sam-
ples, which were extracted according to the method
illustrated in Fig. 2a. The PPT point showed a de-
creasing trend with increasing Li or Sb contents.
Similar phase transition points were observed in the
samples incorporatedwith a similar sumof Li and Sb
contents.

Piezoelectricity is closely related to not only fer-
roelectricity but also dielectricity. P–E loops were
measured to investigate the impacts of Li and Sb
contents on the ferroelectricity of the LxKNNSy-
5BZ-2BNZ-1Mn samples (see Fig. S4). As shown in
Fig. 2c, the P–E loop changed to be slimmer as Sb
content increased,while theopposite trendoccurred
as Li content increased. Clearly, increasing the Sb
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Figure 2. (a) Temperature dependence of the dielectric permittivity for representative LxKNNSy-5BZ-2BNZ-1Mn samples.
(b) The compositional dependence of the PPT point for LxKNNSy-5BZ-2BNH-1Mn samples. (c) Room-temperature P–E loops of
the representative LxKNNSy-5BZ-2BNZ-1Mn samples. (d) Pr extracted from the room-temperature P–E loops of the LxKNNSy-
5BZ-2BNZ-1Mn samples. (e) The room-temperature piezoelectric coefficient d33 of the LxKNNSy-BZ-BNH-1Mn samples.
(f) εr·Pr of the LxKNNSy-5BZ-2BNZ-1Mn samples.

content induced a lower Ec while increasing Li con-
tent resulted in a higher Ec. The compositional de-
pendence of the remanent polarization Pr extracted
from the P–E loops is summarized in Fig. 2d. Sig-
nificant reduction of Pr was observed when the Sb
content was increased. The decreased unit cell dis-
tortion can degrade the spontaneous polarization,
which then leads to a reduction of the macroscopic
remanent polarization. It should be noted that in-
creasing the Li content was found to help maintain

a relatively larger remanent polarization in the ce-
ramic samples modified with high Sb content.

Figure 2e shows the room-temperature piezo-
electric coefficient d33 of LxKNNSy-BZ-BNH-1Mn
ceramics. In general, Sb-modified samples exhibited
a larger d33 than Li-modified samples. d33 increased
as Li or Sb contents increased but extensive addition
of Sb or Li deteriorated d33. A similar trend could
alsobeobservedwith regard to theplanar electrome-
chanical coupling factor kp (see Fig. S5). A peak d33
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value ∼510 pC/N was attained in the x = 0.025,
y = 0.025 composition. This d33 ranks among the
largestd33 values reported in currentKNN-based ce-
ramics [4,9–11]. The relationship among the piezo-
electric coefficient d33, dielectric permittivity εr, and
remanent polarizationPr has been roughlydescribed
as d33 ∝ εr·Pr in the literature [4,9–11,19].The rela-
tionship d33 ∝ εr·Pr was also validated in this work,
as shown inFig. 2f.Theoptimal εr·Prwas achieved in
the composition around x = 0.025, y = 0.025, con-
sistent with the largest d33. As mentioned above, in-
troducing Li and Sb into the KNN matrix did not
enhance Pr. The enhancement of εr·Pr was mainly
due to the significant enhancement of εr, the origin
of which could be attributed to the following two
mechanisms. One is the dielectric abnormality ad-
justed by shifting the PPT point close to room tem-
perature by further introducing both Li and Sb. The
other is the dielectricity enhancement in the wide
temperature range (referred to asdielectricity ‘jump-
ing’), which can be clearly observed when increas-
ing the Sb content (see Fig. S5). The dielectricity
‘jumping’, induced by the various dopants, such as
BZ-BNH and Sb, constitutes the main source of the

dielectricity enhancementwhen comparedwith that
of the pristine KNN.This is deemed the cornerstone
of the piezoelectricity enhancement in this work.

Investigating the thermal stability of the piezo-
electric performance can help to unravel the ori-
gin of the property enhancement and also provides
valuable information for practical applications. Our
previous work showed that the thermal stability of
the piezoelectric response could be estimated by
measuring field-dependent piezoelectric coefficient
d33(E) curves at different temperatures [10,39]. Ac-
cording to this method, the in situ thermal stabil-
ity of the d33 of the representative compositions was
evaluated, and the results are shown in Figs 3a and
S6. As expected, all compositions exhibited the high-
est d33 around their phase transition temperatures,
and a monotonically decreasing trend was observed
when the temperature deviated from the phase
transition point. These results were consistent with
the temperature dependence of the εr·Pr–T curves
(see Fig. S7). It is worth noting that the present op-
timal materials in this study demonstrate higher d33
values and better temperature stability when com-
pared with recently reported KNN-based ceramics,
as shown in Fig. 3a [10,13,14,18,19,40–44]. Piezo-
electricity enhancement can be witnessed in a broad
temperature range (also see Fig. S8). Since piezo-
electric abnormality inducedbyPPT is naturally lim-
ited to a specific and small temperature range, the
PPT effect is not considered as the main piezoelec-
tricity enhancement mechanism in this study. In-
stead, we propose that composition-induced struc-
tural flexibility, the features of which will be de-
scribed below, is themain contributing factor for the
high piezoelectricity and the dielectricity ‘jumping’.
Comparing the results of the temperature depen-
dence of d33, composition-induced structural flexi-
bility accounts for amore than 300%piezoelectricity
increase in contrast to that of pristine KNN.

Thermal stability is significantly influenced by
the phase structure evolution; thus, temperature-
dependent neutron diffraction (ND) measure-
ments on two selected samples, x = y = 0 and
x= y= 0.025, were conducted. Figure 3b shows the
002pc reflection of the ND patterns at a temperature
range of 20–160◦C. The evolution of the 002pc
reflections with temperature increasing for the
x= y= 0 sample was more obvious than that of the
x = y = 0.025 sample. The latter almost stood still
in the temperature range between approximately
20◦C and 100◦C. The divided three different parts
of the temperature-dependent 002pc reflections for
the x = y = 0 corresponded to the temperature
dependence of the d33 (E = 0) and εr. These were
associated with two sudden temperature-induced
structural changes. In contrast, the phase structure
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of the x = y = 0.025 sample experienced a gradual
change over a broad temperature range. The dif-
fused thermally stable structure might be partially
responsible for the high thermal stability of the
piezoelectric performance.

The piezoelectric property is also intimately
associated with the domain morphology. The
micro-scale domain morphology was investigated
via piezoresponse force microscopy (PFM). In
situ observations of the domain morphologies of
the virgin state and the local poling state for the
x = y = 0.025 sample were investigated at differ-
ent temperatures. Figure 3c shows the amplified
domain morphologies, where no significant change
was observed as the temperature increased from
25◦C to 100◦C (full data can be found in Fig. S9).
The thermally stable micro-scale domain structure
might also contribute to the noteworthy thermal
stability of d33.

The underlying mechanisms of high piezoelec-
tricity of the x = y = 0.025 ceramics were further

explored via transmission electron microscopy
(TEM). Substructural twinning was observed at
the nanoscale, as shown in Fig. 4a, c, d. Stripe
sub-micron domains were well arranged and
composed by lamellar nanodomains, and both
domains exhibited strict alternation. The average
width of the lamellar nanodomains was approx-
imately 5–10 nm, which is much smaller than
nanotwinned structures that have been extensively
reported in other lead-based and lead-free materials
[4,10,11,14,19,45–51]. As shown in Fig. 4b, the
corresponding electron diffraction pattern demon-
strated streaking and elongating of the reflection
spots, whichwas attributed to the slim nanodomains
[46]. Clearly, the current material possessed a hi-
erarchical nanodomain architecture as outlined in
Fig. 4e [49]. It is worth noting that the domain con-
figuration is a 3D architecture; however, the domain
morphology observed using TEM only shows a 2D
projection.This can be influenced by various factors
such as the viewing direction, the thickness of the
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specimen, and boundary conditions [47,48,51]. It
is common to observe utterly different morpholo-
gies in the TEM investigations; however, useful
structural information can still be verified. Domain
patterns featured with irregular fringe contrast or
fibrous structures were observed as illustrated in
Figs 4f–h and S10. Interestingly, traces of numerous
nanodomains within sub-micron domains could be
found in these domain patterns, which also possess
a hierarchical characteristic. Recently, it has been
reported that the fragmentation of local structure
can contribute to the enhancement of the piezoelec-
tric response [24,25]. An in situ TEM investigation
of the electric-field-driven evolution of the domain
structure showed that the existence of nanodomains
is closely related to the extrinsic piezoelectric effect.
This is because the real-time response occurred in
nanodomains rather than the visibly unchanged
micro-domain structures [47]. The facilitation of

polarization reorientation under external stimu-
lation enabled the miniaturization of the domain
structure due to the drastic decrease of the domain
wall energy [20,46,50]. The transformation stress
between two polarization states of different phases
can also be alleviated by the nanotwinned structure,
which induces lattice softening [46,47,52]. Conse-
quently, a hierarchical domain configuration that
consists of nanodomains and nanotwins can lead
to both a nearly vanishing polarization anisotropy
and elastic softening. This ultimately results in the
enhancement of the piezoelectric response [53].

Based on these investigations, a phenomeno-
logical analysis of the piezoelectricity enhancement
mechanism was conducted. In this study, the unit
cell distortion of the global lattice decreased with in-
creasing Sb content and increased with increasing
Li content. The reduction of the unit cell distortion
indicates a decrease in crystalline anisotropy, which
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can result in a smaller free energy barrier among the
ferroelectric/paraelectric phases. Furthermore, the
presence of lattice softening can alleviate transfor-
mation stress during lattice deformation.This favors
a lower energy barrier during the polarization vari-
ation between ferroelectric states. Structural flexi-
bility can arise from all these factors, leading to an
ease of polarization variation and thus ‘soft’ behav-
ior, expressed as low Ec and high dielectricity (see
Fig. S4). However, the decreased unit cell distor-
tion can also exert negative effects. It can decrease
the spontaneous polarization, which then leads to
the reduction of the macroscopic remanent polar-
ization. The lowered polarization value might coun-
teract the positive effect of the easier polarization
variation when the unit cell distortion becomes too
small.Thus, the lower unit cell distortion ratiomight
contribute to the piezoelectric response; however,
an optimum value exists. The obtained experimen-
tal results indicate that introducing both Sb and
Li elements into the ceramics was verified to be
an effective way to achieve both the ‘soft’ behavior
and maintaining the macroscopic remanent polar-
ization. Possible energy landscapes can be generated
by the suitable arrangement of parameters, while
fully considering the above factors in the frame-
work of the Landau–Ginzburg–Devonshire model
[20,54]. This might help to understand the prop-
erty enhancement due to increased structural flex-
ibility. Figure 5 depicts the dissimilarity of energy
landscapes for one polarization variation path be-
tween the following two scenarios: with andwithout
increased structural flexibility. For the consistence
of experimental results in this study, the tetrago-
nal phase is considered as the initial and most sta-
ble phase in both cases. To aid an intuitive under-
standing, the energy landscapes are presented in
a colorful 3D surface, as shown in Fig. 5a and b.
This exhibits the change of free energy via the po-
larization variation path under the condition of po-
larization components Px = Py. Moreover, the en-
ergy landscapes of two typical polarization variation
paths, namely, constriction/extension and rotation
[55,56], are extracted from the3Dsurfaces and com-
pared, as shown in Fig. 5c and d, respectively. De-
creased anisotropy of the free energy with polar-
ization can be perceived when the energy barrier
between various ferroelectric/paraelectric states de-
creases. A more ‘flattened’ energy profile can be es-
tablished by cautiously increasing the composition-
induced structural flexibility, which can result from
lattice softening [46,53] and reduced unit cell
distortion. The induced ‘flattened’ energy profile
contributes to the facilitation of the polarization
variation, thus accounting for thepiezoelectricity en-
hancement of Li and Sb co-modified ceramics.

CONCLUSION
In summary, enhanced piezoelectricity with im-
proved thermal stability was achieved in LxKNNSy-
BZ-BNH-1Mn ceramics, and its physical origins
were systematically studied via comparative analy-
ses. The softening effect and the optimum unit cell
distortion are indispensable for large d33 exceed-
ing 500 pC/N, achieved in this work. The pres-
ence of a hierarchical domain structure played a
vital role in synergistically achieving reduced po-
larization anisotropy and elastic softening. This re-
sults in enhancements in the piezoelectric prop-
erties and thermal stability. We believe that this
work can pave the way for the exploration of high-
performance piezoceramics with excellent thermal
reliability.

METHODS
Sample preparation
Lead-free ceramic samples of the nominal com-
position 0.93(LixNa0.52K0.48-x)(Nb1-y,Sby)O3-
0.05BaZrO3-0.02(Bi0.5,Na0.5)HfO3 with 1 wt%
MnO2 as a sintering aid [39] (abbreviated as
LxKNNSy-5BZ-2BNH-1Mn, 0 ≤ x ≤ 0.03,
0 ≤ y ≤ 0.03) were synthesized via conventional
ceramic processing. Firstly, the precursor oxides
powders, including Li2CO3 (99%), Na2CO3
(99.8%), K2CO3 (99%), Nb2O5 (99.99%), Sb2O3
(99.99%), BaCO3 (99.95%), ZrO2 (99.9%), HfO2
(99.99%), and Bi2O3 (99.99%), were weighed
according to their stoichiometric ratio and were
then homogeneously mixed in ethanol using a
planetary ball mill for 24 h. Calcination of the dried
mixture was performed at 950◦C for 4 h, and then
the resultant powders were subjected to ball milling
again with 1.0 wt%MnO2 as a sintering aid for 24 h.
After drying, the powder mixtures were pressed
into compacted disks of 10 mm in diameter, which
was followed by cold isostatic pressing at 200 MPa
for 2 min. The green pellets were sintered in the
temperature range between 1080◦C and 1180◦C
for 6 h.

Crystal structure and microstructure
analysis
The crystal structure was determined by an X-ray
diffractometer (XRD, D/Max 2500; Rigaku, Tokyo,
Japan) with a Cu Kα1 (λ = 1.5405 Å) monochro-
mator. The Raman spectra were collected by a Ra-
man spectrophotometer (LabRAM HR, HoRIBA
Jobin Yvon, France) with a 633 nm laser. Piezore-
sponse force microscope (PFM) observations were
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conducted using a commercial atomic force mi-
croscope (MFP-3D, Asylum Research, USA) with
the functionality of a PFM. Additionally, to obtain
TEM specimen, the as-sintered disks were first me-
chanically polished to around 20 μm in thickness.
Lamellar sampleswere further reduced to reach elec-
tron transparency by using argon-ion beam milling
(Gatan PIPS 695, Gatan Inc., USA) with an ac-
celeration voltage of 0.1–6 kV. A high-resolution
TEM (JEOL 2100, JEOL, Japan), which operated
at 200 kV, was used to conduct TEM investigations.
Neutron diffraction measurements were conducted
using ahigh-intensity powderdiffractometer (Wom-
bat) at the Australian Nuclear Science and Technol-
ogy Organisation (ANSTO). A CaAlNaF3 standard
sample was used to determine the wavelength of the
neutron beam, which was refined to 2.41962(6) Å.
The dimension of the samples was 3.5 × 3.5 ×
30 mm [3].

Electrical property measurements
The as-sintered pellets were first ground to 1 mm
thickness. Two surfaces of the samples, which
were polished by using silicon carbide papers, were
painted with silver pastes burnt in afterwards at
600◦C for 30 min.The measurement of the temper-
ature dependence of permittivity was conducted un-
der 1 kHz during the heating process (2◦C/min) us-
ing a precision LCR meter (TH2827C, Changzhou
Tonghui ElectronicCo., China)with a temperature-
regulated chamber.The quasistatic piezoelectric co-
efficient d33 was measured by a Berlincourt meter
(ZJ-3A, Institute of Acoustics, Chinese Academy
of Sciences, China). Other ferroelectric and piezo-
electric parameters including the piezoelectric co-
efficient d33(E), the unipolar strain S(E), and po-
larization P(E) hysteresis loops were measured by
the same apparatus and method used previously
[19,57].
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