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Computational strain-design prediction accuracy has been the focus for many recent efforts
through the selective integration of kinetic information into metabolic models. In general,
kinetic model prediction quality is determined by the range and scope of genetic and/or
environmental perturbations used during parameterization. In this effort, we apply the k-
OptForce procedure on a kinetic model of E. coli core metabolism constructed using the
Ensemble Modeling (EM) method and parameterized using multiple mutant strains data
under aerobic respiration with glucose as the carbon source. Minimal interventions are
identified that improve succinate yield under both aerobic and anaerobic conditions to
test the fidelity of model predictions under both genetic and environmental perturbations.
Under aerobic condition, k-OptForce identifies interventions that match existing experimen-
tal strategies while pointing at a number of unexplored flux re-directions such as routing
glyoxylate flux through the glycerate metabolism to improve succinate yield. Many of the
identified interventions rely on the kinetic descriptions that would not be discoverable by a
purely stoichiometric description. In contrast, under fermentative (anaerobic) condition, k-
OptForce fails to identify key interventions including up-regulation of anaplerotic reactions
and elimination of competitive fermentative products. This is due to the fact that the path-
ways activated under anaerobic condition were not properly parameterized as only aerobic
flux data were used in the model construction. This study shed light on the importance of
condition-specific model parameterization and provides insight on how to augment kinetic
models so as to correctly respond to multiple environmental perturbations.

Keywords: computational strain design, kinetic model, bilevel optimization, succinate overproduction, model
parameterization

INTRODUCTION
Engineered microorganisms are increasingly being used as cellular
factories for the bio-production of chemicals of interest (Curran
and Alper, 2012; Hong and Nielsen, 2012; Lee et al., 2012). Keep-
ing pace with genome editing techniques for strain design, several
computational tools have been developed to identify system-wide
genetic modification strategies that improve the yield of targeted
biochemicals (Pharkya et al., 2004; Kim et al., 2011; Xu et al., 2011;
Maia et al., 2012; Cotten and Reed, 2013a). In general, these tools
rely on a stoichiometric representation of a metabolic network and
solve bilevel optimization problems to suggest prioritized inter-
vention strategies that divert metabolic flux towards the chemical
of interest (Segre et al., 2002; Burgard et al., 2003; Kim and Reed,
2010; Rocha et al., 2010; Tepper and Shlomi, 2010). The method-
ology and comparative benefits of each procedure is discussed in
detail elsewhere (Zomorrodi et al., 2012). However, key method-
ological impediments of these approaches are the stoichiometry-
only representation of metabolism and the on–off representa-
tion of regulation. This may lead to a metabolite concentration,
enzymatic activity, and metabolic regulation-agnostic interven-
tion strategies. Therefore, identified flux re-direction predictions
(especially up/down flux modulation) are sometimes difficult to

translate into actionable genetic interventions. For example, it is
unclear if a desired metabolic flux up-regulation is achievable or
even consistent with enzyme kinetics or physiological metabolite
concentrations.

Some of the shortcomings of genome-scale stoichiometric
models in quantifying the effect of concentration and enzyme
levels on reaction throughput and regulation can be addressed by
kinetic models of metabolism (Mahadevan et al., 2002; Fleming
et al., 2010; Jamshidi and Palsson, 2010; Smallbone et al., 2010;
Feng et al., 2012). Kinetic models yield a system of ordinary dif-
ferential equations (ODEs) that describe the time evolution of
metabolite concentrations, enzyme activities, and reaction fluxes.
Several efforts have been made in recent years for improving
the accuracy of stoichiometry-based tools by partially integrating
kinetic information (Nikolaev, 2010; Song and Ramkrishna, 2012;
Angermayr and Hellingwerf,2013; Almquist et al., 2014). However,
most of these procedures are aimed towards improved metabolic
phenotype prediction through ad hoc constraints (Cotten and
Reed, 2013b) rather than strain design. The k-OptForce procedure
(Chowdhury et al., 2014) extends the previously developed strain-
design OptForce algorithm (Ranganathan et al., 2010) by inte-
grating all available mechanistic details afforded by kinetic models
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within a constraint-based optimization framework tractable even
for genome-scale models. Reactions with available kinetic descrip-
tions yield (generally unique) steady-state flux values while the
remaining reactions are only constrained by stoichiometric rela-
tions. Genetic intervention strategies consistent with restrictions
imposed by maximum enzyme activity,bounds on metabolite con-
centrations and kinetic expressions are identified using a bilevel
Mixed Integer Nonlinear Program (MINLP) optimization frame-
work (Chowdhury et al., 2014). Examples addressed in Chowd-
hury et al. (2014), however, accounted for only a handful of
reactions with kinetic expressions.

In this paper, we apply k-OptForce procedure for the recently
published large-scale kinetic model of E. coli core metabolism
(Khodayari et al., 2014). The kinetic model includes 138 reactions,
93 metabolites, and 60 substrate-level regulatory interactions and
accounts for glycolysis/gluconeogenesis, pentose phosphate (PP)
pathway, TCA cycle, major pyruvate metabolism, anaplerotic reac-
tions, glyoxylate shunt, Entner–Doudoroff (ED) pathway, and a
number of reactions in other parts of the metabolism. The model
was parameterized using the ensemble modeling (EM) formal-
ism (Tran et al., 2008) by simultaneously satisfying normalized
flux data per 100 mmol of glucose uptake (for approximately 25
reactions per mutant) for the wild-type and seven single gene
deletion mutants, under aerobic condition (Ishii et al., 2007).
The EM approach decomposes all reactions into elementary steps
bypassing the need of detail kinetic expressions. First, an ensem-
ble of kinetic models is generated by uniformly sampling reaction
reversibilities and enzyme fractions following different time tra-
jectories but all reaching the same steady-state flux values (Tan
and Liao, 2012). Next, a Genetic Algorithm (GA) implementa-
tion is used to “swap” kinetic parameterizations between models
in the ensemble so as to minimize the deviations from all set of
mutant network fluxes. Models constructed using flux data for
a single strain do not always perform well in predicting dele-
tion strain metabolic phenotypes (Jouhten, 2012; Villaverde et al.,
2014). Unlike stoichiometric models that could reveal physiologi-
cally relevant flux re-directions in response to perturbations by
re-optimizing biomass yield, kinetic models must be endowed
beforehand with all known substrate-level regulatory interactions
to capture metabolic responses to genetic/environmental pertur-
bations (Jouhten, 2012; Heijnen and Verheijen, 2013; Villaverde
et al., 2014). Note that while the EM based elementary mode
analysis was used for strain design in an earlier effort (Flowers
et al., 2013), the limited scope of the model may fail to capture
genome-scale flux re-directions.

The k-OptForce procedure (Chowdhury et al., 2014) was used
to identify the minimal interventions that maximize the yield of
succinate production using a hybrid kinetic (Khodayari et al.,
2014) and stoichiometric iAF1260 (Feist et al., 2007) description
of E. coli metabolism. Succinate was chosen as the target bio-
product as there exists numerous experimental strain-engineering
studies to compare the suggestions of k-OptForce procedure (Lee
et al., 2005; Cao et al., 2011; Tan et al., 2011). This study was car-
ried out under both aerobic and anaerobic conditions to assess
the fidelity of the kinetic model when used to make predic-
tions for a different environmental condition (i.e., anaerobic)
than the one parameterized for (i.e., aerobic). The goal was to

quantify the reduction in prediction quality moving from aero-
bic to anaerobic under glucose minimal condition and suggest
model modifications that remedy these shortcomings. k-OptForce
recapitulated existing strategies while also pointing at promising
but currently unexplored interventions. In addition, results under
anaerobic condition indicate that the kinetic model needs to be re-
parameterized with mutant flux information involving a reversed
TCA cycle routing flux towards succinate. A number of regulatory
modifications of the kinetic model are also found to be neces-
sary to better reflect metabolic fluxes associated with anaerobic
succinate production. These include activation of fermentation
pathways and pyruvate formate lyase (PFL) by key regulatory pro-
teins FNR (fumarate and nitrate reductase regulation) and ArcA
(aerobic respiratory control).

MATERIALS AND METHODS
Using k-OptForce, the genome-scale stoichiometry matrix is
divided into two parts: reactions with stoichiometric informa-
tion only (J stoic), and those having additional kinetic information
(J kin). A schematic representation of the framework is depicted in
Figure 1. The kinetic information was extracted from the kinetic
model of E. coli central metabolism developed in Khodayari et al.
(2014). The number of reactions in the kinetic representation is
a compromise between reduction of solution space using kinetic
data and run time for solving the non-linear expressions of mass
conservations. Upon exclusion of the exchange/transport reac-
tions and elimination of reactions not involved in succinate syn-
thesis (such as glycogen pathway), a subset of the kinetic model was
selected containing 36 reactions and 31 metabolites. The result-
ing model includes reactions from glycolysis/gluconeogenesis,
PP pathway, TCA cycle, anaplerotic reactions, glyoxylate shunt,
and ED pathway with available experimental data during model
parameterization. This model was finally supplemented with the
stoichiometric iAF1260 model of E. coli (Feist et al., 2007).

Glucose minimal condition were simulated by restricting glu-
cose uptake flux (which serves as a basis for the fluxes in the
metabolic network) to −100 mmol gDW−1h−1. Oxygen uptake
was limited to −200 mmol gDW−1h−1 for aerobic condition and
set to zero for fermentative condition. Regulatory information for
both aerobic and anaerobic conditions was imported from the
supplementary material of iAF1260 model (Feist et al., 2007). The
minimum production levels of succinate was set at 90% of its theo-
retical maximum for each condition (i.e., 135 mmol gDW−1h−1 in
aerobic and 149 mmol gDW−1h−1 in anaerobic conditions) while
a minimum level of biomass production equal to 10% of its the-
oretical maximum was simultaneously imposed (i.e., 0.965 h−1 in
aerobic and 0.303 h−1 in anaerobic conditions). The k-OptForce
algorithm was implemented in the same stepwise procedure as
described previously [see Methods in Chowdhury et al. (2014) for
details]. At first, we identify all reactions that must depart (hence
called MUST sets) from the reference phenotype to realize the
targeted levels of overproduction of the desired chemicals under
stoichiometric and kinetic constraints. Subsequently, we solve a
bilevel optimization formulation (see Figure 1E) where we maxi-
mize the target flux by gradually increasing the total number (κ) of
enzymatic interventions (for reactions in J kin) and/or flux manip-
ulations (for reactions in J stoic) from the MUST sets. Starting from
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FIGURE 1 | A schematic representation of the framework.
(Continued)
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Khodayari et al. Kinetic model-driven strain design

FIGURE 1 | Continued
(A) The reactions with kinetic descriptions are shown in blue. (B) The
reactions are first decomposed into their elementary steps. (C) Elementary
kinetic parameters are expressed as a function of reaction reversibilities and
enzyme fractions. Reaction reversibilities and enzyme fractions are sampled
to construct an ensemble of models, for any given reaction. (D) A genetic

algorithm (GA) implementation identifies the optimal combination of the
sampled parameters by minimizing the deviation from experimentally
measured flux data for multiple mutant strains [see Methods of Khodayari
et al. (2014)]. (E) The k-OptForce procedure identifies a minimal set of
interventions that maximizes the yield of targeted product [see Methods of
Chowdhury et al. (2014)].

a single intervention, we stop this procedure when the target flux
does not improve appreciably with additional interventions. The
optimization formulations for the characterization of the overpro-
ducing network and identification of the FORCE sets were altered
from the original procedure to incorporate the kinetic information
of each reaction in J kin as a function of the decomposed expres-
sions of its elementary steps (see Figure 1) instead of directly
manipulating the reaction enzyme activities (vmax). Additional
constraints were imposed to express the flux of each reaction in
J kin as the difference of the forward and reverse reactions for each
elementary step. The sum of individual enzyme fractions e is rep-
resented by etot (i.e., normalized total enzyme concentration) that
is equal to one in the reference (wild-type) strain, but varies when
up/down-regulated in mutant strains. Here, we allowed the etot of
each reaction to vary between zero (i.e., removal of its activity) and
a 10-fold up-regulation in its expression to account for individ-
ual enzymatic perturbations in mutant strains. Likewise, the same
limits of variation were set for the individual enzyme fractions e
for each reaction.

The metabolite concentrations were allowed to vary within five-
fold from their steady-state values in the reference phenotype. The
FORCE set of interventions was identified in a two-step proce-
dure [see Methods of Chowdhury et al. (2014)]. The first step
identified the reactions in J kin (using binary variables ykin) whose
enzymatic activity (i.e., etot) must be altered from their reference
level to achieve the required flux re-distribution towards succi-
nate. The lower and upper bounds on etot (i.e., etot,lb and etot,ub)
are functions of ykin and the maximum fold-change z, as follows:

etot,lb
j
=

{
1, if j ∈ J kin

\MUSTL

1− ykin
j , if j ∈ J kin

∩MUSTL

etot,ub
j

=

{
1, if j ∈ J kin

\MUSTU

(z − 1) ykin
j + 1, if j ∈ J kin

∩MUSTU

If selected for down-regulation (i.e., when the reaction is part of
MUSTL), etot is allowed to vary from zero (etot,lb

= 0 for ykin
= 1)

to its reference expression. Otherwise, etot is set to one. Likewise,
if selected for up-regulation (i.e., when the reaction is part of
MUSTU), etot is allowed to vary from one to a z-fold overex-
pression (etot,ub

= z for ykin
= 1). The MINLP formulation for the

first-step was initially solved using a local solver [DICOPT (Gross-
mann et al., 2002)], and the results were used as inputs to find
the global optimum using the BARON solver (Sahinidis, 1996).
Subsequently, by fixing the fluxes in J kin, the second step identi-
fied additional flux manipulations in J stoic (using binary variables
y stoic) while assuming a worst-case scenario for the inner objective

function. The relation of the modified bounds
(

v lb
j , vub

j

)
on the

reaction fluxes in J stoic with y stoic is similar to that explained for

the first step of FORCE set identification for the implementation
of up/down-regulations and/or reaction removals [see Methods
of Chowdhury et al. (2014)].

RESULTS
EXAMINING THE PREDICTIVE PERFORMANCE OF THE KINETIC MODEL
The perturbed phenotype prediction accuracy of the parameter-
ized kinetic model was first assessed for five different engineered
strains under aerobic condition. The experimentally reported
product yield was compared against the kinetic model and FBA
predictions (see Table 1). A twofold up-regulation for small fold-
change, and 10-fold up-regulation for a high fold-change are used
to express enzyme up-regulation, whenever such information is
not available in the relevant literature. The enzyme level manip-
ulation in the kinetic model is achieved by changing etot for each
particular enzyme. Gene deletions are implemented by setting the
etot of the encoded enzyme to zero.

The kinetic model closely matches the succinate producing
strain while FBA over-estimates it because the former captures
the feed-forward inhibition on glyoxylate shunt by intermedi-
ates phosphoenolpyruvate (pep) (MacKintosh and Nimmo, 1988;
Ogawa et al., 2007) and isocitrate (icit) (Hoyt et al., 1988). For both
L-serine and L-threonine, FBA directs all carbon flux towards bio-
mass predicting little to no amount of product formation. The
kinetic model over-estimates L-serine yield as product inhibition
of the phosphoglycerate dehydrogenase (PGCD) (Grant, 2012; Li
et al., 2012; Wang et al., 2014) is not captured in the kinetic model
(see Figure 2A). In contrast, the kinetic model under-estimates
the yield of L-phenylalanine production. A possible reason is that
the feed-forward activation of pep on 5-enolpyruvylshikimate-3-
phospahte synthase (EPSPS) (Gruys et al., 1992) is absent in the
kinetic model (see Figure 2B). In addition, due to lack of exper-
imental data during parameterization, the model over-estimates
the inhibitory effect of phosphate on transaldolase (TALA) activ-
ity (Sprenger et al., 1995), which further restricts flux towards
l-phenylalanine production. The naringenin engineered strain
productivity is better reflected by the kinetic model as FBA does
not capture the feedback inhibition of acetyl-CoA on phosphoglu-
comutase (PGM) activity (Sanwal et al., 1972; Duckworth et al.,
1973) that limits flux towards the flavanone pathway.

OVERPRODUCTION OF SUCCINATE UNDER AEROBIC CONDITION
Both OptForce and k-OptForce adopt similar strategies for re-
directing flux towards succinate under aerobic condition by rout-
ing more flux through isocitrate lyase (ICL), increasing flux
through phosphoenolpyruvate carboxylase (PPC), and convert-
ing the intermediate glyoxylate back to glycerate 2-phosphate
(2pg) using glycerate metabolism (see Figure 3). However, the
number of required interventions varies. While OptForce sug-
gests that only three interventions are required to achieve a
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Khodayari et al. Kinetic model-driven strain design

Table 1 | A comparison between model predictions and experimental yields for five different products in E. coli under aerobic condition.

accoa

g3p

13dpg

3pg

2pg

pep

oaa

mal-L

pyr

g6p

f6p

x5p

ru5p

r5p

cit

acon-C

akg

fum

succ

dhap

fdp s7pg3p

f6pe4p

pyr

pepglc-D

icit

glx

coa

2ddg6p

g3p

L-Serine

naringenin 

L-threonine 

succinate

L-phenylalanine 

6pgl 6pgc

succoa

Target product Interventions with

enzyme-fold-change

Yield (mol product/mol glucose)

FBA Kinetic model Experimental data

Succinate ∆SUCD 0.99 0.52 0.6 (Lin et al., 2005b)

ICL 10↑

PPC 2↑

L-serine ∆PDH 0–0.01 0.81 0.48 (Lai et al., 2012)

PGCD 10↑

PGK 2↑

L-threonine PPC 2↑ 0–0.04 0.52 0.59 (Lee et al., 2007)

ICL 2↑

L-phenyl alanine ∆PYK 0.44 0.11 0.36 (Baez-Viveros et al., 2007)

DDPA 10↑

TKT1 10↑

Naringenin ∆SUCOAS 0.43 0.07 0.11 (Xu et al., 2011)

∆FUM

ACCOAC 10↑

PDH 10↑

GAPD 10↑

The engineering strains are simulated using both the kinetic model and FBA (max biomass).

SUCD, succinate dehydrogenase; ICL, isocitrate lyase; PPC, phosphoenolpyruvate carboxylase; PDH, pyruvate dehydrogenase; PGCD, phosphoglycerate dehydroge-

nase; PGK, phosphoglycerate kinase; PPC, phosphoenolpyruvate carboxylase; PYK, pyruvate kinase; DDPA, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase;

TKT, transketolase; SUCOAS, succinyl-CoA synthetase; FUM, fumarase; ACCOAC, acetyl-CoA carboxylase; GAPD, glyceraldehyde-3-phosphate dehydrogenase.

FIGURE 2 | Biosynthesis pathways for (A) L-serine and (B) L-phenylalanine. The suggested up-regulations and knock-outs are shown with green color
and red crosses, respectively. The reactions absent in the current kinetic model are shown in gray. Missing regulatory interactions (i.e., activation and
inhibition) are shown with dashed lines.

succinate yield of 90% of its theoretical maximum, k-OptForce
suggests that additional direct up-regulations in the glycolysis
and TCA cycle are necessary. For example, k-OptForce suggests
at least ninefold up-regulation of ICL enzyme activity to pull TCA
cycle flux from icit towards succinate. Likewise, up-regulation
of enolase (ENO) enzyme by twofold of its reference activity is

required to push more glycolytic flux towards succinate precur-
sors oxaloacetate (oaa) and acetyl-CoA. Regular OptForce suggests
that up-regulation of aconitase (ACONT) and down-regulation
of isocitrate dehydrogenase (ICDH) are sufficient to indirectly
increase flux through PPC and ICL. In contrast, k-OptForce sug-
gests that PPC and ICL must be directly up-regulated to improve
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Khodayari et al. Kinetic model-driven strain design

FIGURE 3 | Comparison of intervention strategies predicted by
(A) regular OptForce and (B) k-OptForce for overproduction of
succinate under aerobic condition in E. coli. The values within
parentheses indicate the metabolic flux in mmol gDW−1 h−1 per

100 mmol gDW−1 h−1 glucose uptake. The values without
parentheses in (A) show steady-state flux distribution of the
reference (wild-type) strain used for kinetic model parameterization
(Ishii et al., 2007).

succinate yield. In addition, up-regulation of ENO pulls glyoxy-
late flux towards 2pg through the glycerate pathway to compensate
for the pep depletion. OptForce does not require any enzymatic
intervention to route metabolic flux towards acetyl-CoA send-
ing a significant portion (58 mmol gDW−1h−1) from oaa towards
acetyl-CoA using the threonine pathway. k-OptForce reveals that
such a high flux cannot be routed through the threonine path-
way. Even with maximum (i.e., 10-fold) up-regulation of the
aspartate transaminase (ASPTA) only 20 mmol gDW−1h−1 can
be diverted towards threonine. In addition, k-OptForce suggests
up-regulation of PPC enzyme activity (by 50% of its reference
activity) to ensure availability of equal amounts of acetyl-CoA and
oaa for the production of citrate thus preventing the accumulation
of intermediates.

The abovementioned interventions suggested by k-OptForce
are geared towards circumventing upper bounds on max enzyme
activities (i.e., no more than 10-fold). However, limits on metabo-
lite concentrations also play a significant role in restricting flux
towards succinate. The maximum yield of succinate suggested
by k-OptForce (1.2 mol/mol glucose, 80% of theoretical maxi-
mum) is less than the one suggested by OptForce (1.3 mol/mol
glucose, 90% of theoretical maximum). This is because as ICL

is up-regulated, the concentration of intermediates pep and icit
increase reaching twice their reference values. As these metabolites
are competitive inhibitors of ICL, the maximum flux through the
pathway towards succinate is restricted. In addition, to alleviate
the regulatory effect of malate (mal) on the activity of PPC, k-
OptForce also proposed a 10-fold down-regulation of the enzymes
that catalyze mal production, fumarase (FUM), or succinate dehy-
drogenase (SUCD). Likewise, k-OptForce suggests removal of
transketolase (TKT2) to alleviate the inhibition of 6-phospho-
D-gluconate (6pgc) on glucose-6-phosphate isomerase (PGI) to
improve the glycolytic flux towards succinate, which also reduces
the production of biomass precursors.

Most of the k-OptForce interventions were consistent with
engineering efforts aimed at improving succinate production
under aerobic condition. For example, up-regulation of ICL and
removal of SUCD and ICDH activities improved succinate yield in
E. coli to 0.5 mol/mol glucose (Lin et al., 2005b). Further improve-
ments in succinate production (up to 0.7 mol/mol glucose) have
been achieved by up-regulation of PPC (Lin et al., 2005a). Notably,
the same interventions improved aerobic succinate production
in C. glutamicum to 0.5 mol/mol glucose (Litsanov et al., 2012).
Similar to proportional up-regulation of ENO and PPC that fixes
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the branching ratio of the metabolic flux at pep, regulation of pep
to pyruvate in the phosphotransferase system (PTS) reaction for
glucose uptake was suggested to reduce the accumulation of inter-
mediates (pyruvate and acetate) and improve succinate yield (Lin
et al., 2005a). k-OptForce, however, fails to capture the accumu-
lation of acetate upon up-regulation of PPC and glyoxylate shunt
(Lin et al., 2005a; Zhu et al., 2013). This may be due to the fact that
no fluxomic data for mutant strains with anaplerotic/glyoxylate
shunt up-regulations was included during kinetic model para-
meterization. As a result, the kinetic model is unaware of the
up-regulation that leads towards increased acetate production.
Interestingly, k-OptForce routes glyoxylate (formed by the ICL
reaction) back to 2pg using the glycerate pathway instead of the
malate synthase (MALS) reaction. This pathway improves the yield
of succinate since it reduces the overall loss of carbon flux to car-
bon dioxide. This pathway was engineered by E. coli (Hubbard
et al., 1998; Osterhout et al., 2011) for the production of ethylene
glycol and glucarate consumption, respectively, but remains to be
explored for succinate overproduction.

OVERPRODUCTION OF SUCCINATE UNDER ANAEROBIC CONDITION
Under fermentative condition the electron transport chain is not
active, thus preventing the oxidation of cofactor NADH generated
primarily in glyceraldehyde 3-phosphate dehydrogenase (GAPD)
reaction in glycolysis back to NAD. Without an adequate NADH
sink, significant amount of metabolic flux is routed towards fer-
mentative products such as ethanol, acetate, lactate, formate, etc.
to restore redox balance and cellular growth. Therefore, the general

strategy for succinate overproduction is to eliminate all com-
petitive fermentative pathways while pushing more flux towards
succinate through the glyoxylate shunt and reversing the reduc-
tive branch of TCA cycle (see Figure 4). This flux re-direction
also regenerates NAD, thus simultaneously coupling succinate
production with biomass generation.

In contrast to the aerobic case, k-OptForce suggestions for the
anaerobic overproduction of succinate are less accurate compared
to OptForce predictions. OptForce requires only five interventions
to achieve a succinate yield of 1.42 mol/mol glucose. However,
k-OptForce suggests a maximum yield of only 1.08 mol/mol glu-
cose even after nine interventions. While k-OptForce recapitulates
some of the interventions identified by OptForce (e.g., threefold
up-regulation of the glyoxylate pathway enzymes ICL and MALS),
the remaining suggestions deviate from OptForce and proven engi-
neering strategies. The sources of these discrepancies can be traced
back to incompatible parameterization of the kinetic model for
the anaerobic case. First, due to absence of sufficient flux data
in the parameterization procedure, the kinetic model was not
tuned to capture reversal of the reductive branch of the TCA cycle
necessary for succinate overproduction. k-OptForce suggests up-
regulation of all three enzymes of the reductive branch [i.e., malate
dehydrogenase (MDH), FUM, and fumarate reductase (FRD)].
However, even after a 6.5-fold up-regulation in MDH activity and
10-fold up-regulation in FUM only 80% of the anaplerotic flux
(57 mmol gDW−1 h−1) goes towards succinate, while the remain-
ing amount (11 mmol gDW−1 h−1) uses the aspartate metabolism
to bypasses MDH and FUM (see Figure 4B).

FIGURE 4 | Comparison of intervention strategies predicted by (A) regular OptForce and (B) k-OptForce for over production of succinate under
anaerobic condition in E. coli. The values within parentheses indicate the metabolic flux in mmol gDW−1 h−1 per 100 mmol gDW−1 h−1 glucose uptake.
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The kinetic model also fails to capture the metabolic transition
of E. coli central metabolism from aerobic to anaerobic condition
due to lack of regulatory information (Salmon et al., 2003, 2005).
Under anaerobic condition, PP pathway, PPC, and TCA cycle are
repressed, while glycolysis and, in particular, fermentative path-
ways are up-regulated (Perrenoud and Sauer, 2005; Cho et al.,
2006). In addition, pyruvate dehydrogenase (PDH) is deactivated
while PFL carries most of the flux from pyruvate to acetyl-CoA
(Partridge et al., 2006). Even though the kinetic model captures
down-regulation of TCA cycle upon removal of oxygen it cannot
capture the remaining changes. Unable to capture the repression
of PPC [anaerobic PPC flux is one-tenth of aerobic flux (Choud-
hary et al., 2011)], k-OptForce does not suggest any up-regulation
in its activity to push more flux from pep towards oaa, contrary
to OptForce suggestion of a minimum 15-fold up-regulation in
PPC flux (8.4–133.3 mmol gDW−1 h−1). In contrast, failing to
recognize the regulatory activation of PFL under anaerobic con-
dition, k-OptForce suggests a minimum eightfold up-regulation
in its activity, while OptForce requires no such intervention.
Unable to recognize the up-regulation of the enzyme activities
in the fermentative pathways in the reference (non-engineered)
strain, k-OptForce does not suggest any down-regulations since
the parameterization of the enzymes does not allow a significant
amount of flux towards ethanol, acetate, and lactate. In contrast,
OptForce requires the removal of lactate dehydrogenase (LDH),
alcohol dehydrogenase (ALCD), and acetaldehyde dehydrogenase
(ACALD) to prevent diverting pyruvate flux away from succi-
nate. Surprisingly, k-OptForce suggests a fivefold up-regulation
in ACALD activity to maintain NAD/NADH redox balance. A
large fraction of the produced acetaldehyde is reduced to ethanol
(46 mmol gDW−1 h−1), while the rest is exported out of the cell
(3 mmol gDW−1 h−1). However, we note that as no information
capturing the effect of acetaldehyde on cell fitness was included
in the kinetic model, it is unable to capture the chemical’s toxic-
ity. k-OptForce also suggests a minimum 1.5-fold up-regulation
in triose phosphate isomerase (TPI) activity and a twofold up-
regulation in GAPD or phosphoglycerate kinase (PGK) activity to
route additional PP pathway flux through glycolysis, even though
the PP pathway is negligibly active in anaerobic condition (Choud-
hary et al., 2011). It is to be noted here that down-regulation of
TKT2 for aerobic overproduction of succinate and up-regulation
of GAPD for anaerobic case are not equivalent interventions even
though both strategies do increase glycolytic flux. This is because,
the flux distribution in the pay-off phase of glycolysis, which is
different in both cases, affects the metabolite concentrations of
the preparatory phase of glycolysis. Up-regulation of ENO in aer-
obic overproduction study pulls additional metabolic flux down
from upper glycolysis in addition to TKT2 removal. In absence of
ENO up-regulation, removal of TKT2 cannot reroute the entire
amount of PP flux towards glycolysis. As a result, up-regulation of
both GAPD and PGK (and TPI) is necessary. It is also to be noted
that the inactivation of PDH (and the subsequent activation of
PFL) in anaerobic condition affects the reactions preceding it.

Comparison with experimental studies shows that unlike in
the aerobic case, most of the verified engineering strategies are
consistent with OptForce suggestions. k-OptForce overlooks key
interventions such as up-regulation of PPC and removal of

fermentative pathways, that were identified to have the largest
impact in enhancing succinate yield (Millard et al., 1996; Zhang
et al., 2009). In addition, even in cases where k-OptForce correctly
identifies interventions, such as of MDH, FUM, and FRD up-
regulation, inaccurate parameterization result in yield predictions
far below experimentally observed succinate yield [1.08 vs. 1.2–
1.6 mol/mol glucose with fewer interventions (Cao et al., 2013)].
In other cases, untested interventions such as up-regulation of PFL
most likely will not improve succinate yield, considering that the
deletion of pflB was found to improve succinate yield (Sanchez
et al., 2005; Wu et al., 2007).

DISCUSSION
In this study, we compared the performance of k-OptForce in pre-
dicting interventions for overproduction of succinate in E. coli
under both aerobic and anaerobic conditions. k-OptForce predic-
tions under aerobic condition was found to be much more consis-
tent with experimental strain-design strategies as compared with
the stoichiometry-only OptForce predictions. In contrast, inter-
ventions for succinate overproduction under anaerobic condition
by k-OptForce led to significantly less promising strategies largely
inconsistent with experimental observations. This indicates that
kinetic models have the potential to substantially over-perform
FBA predictions when parameterized under the same (or similar)
conditions but they may perform worse than FBA when asked to
predict a significantly different metabolic phenotype. Note that
the two-step strategy of the k-OptForce procedure does not affect
the optimality of the results for the aerobic case as all interventions
were identified from the kinetic part of the model. The flux distrib-
ution in the stoichiometric part of the model, which is determined
by the worst-case inner problem, was effectively locked by the
kinetic expressions. In general, however, we may miss better inter-
vention strategies (for example in the anaerobic case study) when
implementing the two-step approach as a tradeoff for improving
computational performance.

The kinetic model was successful in capturing the underlying
kinetic regulation when the flux re-distribution was consistent
with the mutant flux information used for parameterizing the
kinetic model. For example, the effect of enzymatic interventions
around glycolysis and TCA cycle were identified with reason-
able accuracy in both anaerobic and aerobic cases. Under aerobic
condition, the kinetic model successfully captures the need for
equimolar amounts of acetyl-CoA and oaa to supply the TCA
cycle while preventing accumulation of intermediates (Lin et al.,
2005a). Even when the kinetic model failed to correctly quan-
tify fluxes, it provided a qualitative basis for making the right
interventions. For example, k-OptForce correctly identifies that
up-regulation of MDH, FUM, and FRD improves succinate pro-
duction under anaerobic condition, even though it over-estimates
the kinetic bottleneck towards such a flux-reversal resulting in
poorer yields than experimental observations. Note that the devel-
oped kinetic model cannot capture changes in glucose uptake
rate for different environmental and/or genetic backgrounds as
all mutant fluxes used to train the model were scaled with the
corresponding glucose uptake. Shortcomings in the model could
be rectified by re-parameterizing the model using additional flux-
omic information of mutant strains that allow for pathway reversal
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[e.g., using metabolic flux analysis information of a ∆SUCD strain
(Li et al., 2006)]. In general, the re-parameterization is a compro-
mise between model scope and accuracy. The observations showed
that parameterizing the kinetic model by making use of mutant
data located in the proximity of a target product provides a more
accurate flux distribution predictions by the model and conse-
quently results to the identification of more targeted interventions
using the k-OptForce procedure. In contrast, integration of a wide-
range of conditions with limited experimental data for model
training may provide a better global qualitative agreement. While
one could use separate kinetic models for aerobic and anaerobic
conditions, ideally we would like a single model parameterization
that could reproduce both aerobic and anaerobic responses. By
creating two separate aerobic and anaerobic models it becomes
unclear what model to use under micro/partial aerobic condition
(Partridge et al., 2007).

This study shows that the model does not retain fidelity of
predictions when growth is switched from aerobic to anaerobic
condition. Aerobic to anaerobic metabolic transition is mainly
controlled at the transcriptional level (Kochanowski et al., 2013)
by the activities of global regulatory proteins FNR and ArcA
(see Table 2). In absence of such regulatory interactions, the
kinetic model could not capture the activation of PFL and
fermentative pathways, and the deactivation of PPC and (to
a small extent) PP Pathway. As a result, k-OptForce failed to
identify key down-regulations (e.g., LDH, ALCD) in the for-
mer case, while suggested unnecessary up-regulations for the
latter. These shortcomings are harder to address and require
the incorporation of adequate regulatory information into the
model (see Table 2 for details) to capture the aerobic to anaerobic
transition.

Table 2 | Regulatory systems under anaerobic condition in E. coli

(Partridge et al., 2006).

Regulator Type Target gene Target reaction

ArcA Repression sucABCD SUCOAS

sdhABCD SUCD

fumA FUM

mdh MDH

aceEF PDH

acnAB ACONT

gltA CS

icdA ICDH

Activation pfl PFL

FNR Repression acnA ACONT

icdA ICDH

sdhABCD SUCD

fumAC FUM

ndh NDH

SUCOAS, succinyl-CoA synthetase; SUCD, succinate dehydrogenase; FUM,

fumarase; MDH, malate dehydrogenase; PDH, pyruvate dehydrogenase; ACONT,

aconitase; CS, citrate synthase; ICDH, isocitrate dehydrogenase; PFL, pyruvate

formate lyase; NDH, nadh dehydrogenase.

In general, this study revealed some of the strengths and limi-
tations of kinetic model-driven strain design. It demonstrated the
need to carry out model parameterization for a diverse range of
genetic/environmental perturbations (Khodayari et al., 2014) and
the tight integration of transcriptional level along with substrate-
level regulatory interactions. At a fundamental level, kinetic mod-
els must be a priori provided with the quantitative description
of as many as possible regulatory switches that become active in
response to genetic or environmental perturbations. This rich-
ness in mechanistic information enables a detailed description
of metabolism that captures dynamics, enzyme activities, and
metabolite concentrations but can lead to erroneous predictions
due to missing and/or incorrect modeling assumptions. Never-
theless, by studying failure modes of kinetic models, valuable
information can be uncovered for restoring prediction consistency
for new phenotypes.
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