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Abstract: Both members of the aldo-keto reductases (AKRs) family, AKR1B1 and AKR1B10, are
over-expressed in various type of cancer, making them potential targets for inflammation-mediated
cancers such as colon, lung, breast, and prostate cancers. This is the first comprehensive study
which focused on the identification of phenylcarbamoylazinane-1, 2,4-triazole amides (7a–o) as the
inhibitors of aldo-keto reductases (AKR1B1, AKR1B10) via detailed computational analysis. Firstly,
the stability and reactivity of compounds were determined by using the Guassian09 programme in
which the density functional theory (DFT) calculations were performed by using the B3LYP/SVP level.
Among all the derivatives, the 7d, 7e, 7f, 7h, 7j, 7k, and 7m were found chemically reactive. Then
the binding interactions of the optimized compounds within the active pocket of the selected targets
were carried out by using molecular docking software: AutoDock tools and Molecular operation
environment (MOE) software, and during analysis, the Autodock (academic software) results were
found to be reproducible, suggesting this software is best over the MOE (commercial software). The
results were found in correlation with the DFT results, suggesting 7d as the best inhibitor of AKR1B1
with the energy value of −49.40 kJ/mol and 7f as the best inhibitor of AKR1B10 with the energy
value of −52.84 kJ/mol. The other potent compounds also showed comparable binding energies.
The best inhibitors of both targets were validated by the molecular dynamics simulation studies
where the root mean square value of <2 along with the other physicochemical properties, hydrogen
bond interactions, and binding energies were observed. Furthermore, the anticancer potential of the
potent compounds was confirmed by cell viability (MTT) assay. The studied compounds fall into
the category of drug-like properties and also supported by physicochemical and pharmacological
ADMET properties. It can be suggested that the further synthesis of derivatives of 7d and 7f may lead
to the potential drug-like molecules for the treatment of colon cancer associated with the aberrant
expression of either AKR1B1 or AKR1B10 and other associated malignancies.
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1. Introduction

Colon cancer is the third most prevalent type of cancer in the world [1], and is the
third most common cancer in the United States. Several factors, including familial and
hereditary factors, play a key role in colon carcinogenesis, which has a higher prevalence
in males than in women [2]. Cells that have sustained irreparable DNA damage as a
result of increased free radical production, a reduction in extracellular stimulation, which
regulates cell growth, and the transmission of cancer genes through autosomal dominant
inheritance are among the most important initiators of carcinogenesis. Despite the fact
that the relationship between inflammation and colon cancer is not completely understood,
data and already reported evidence strongly support its correlation [3].

The enzyme aldo-keto reductase (AKR), which is closely related to aldose reductase
(AR), is widely found in humans and is categorized into structural and functional families:
aldehyde reductase (AKR1A), the AR (AKR1B), the aldo-keto reductase family 1 member
B1 (AKR1B1), the aldo-keto reductase family 1 member B10 (AKR1B10), the aflatoxin
reductase (AKR7A), and the keto-steroid (oxosteroid) reductase (AKR1D) [4]. These aldo-
keto reductases are involved in various biochemical pathways such as steroid conversion,
fructose synthesis, osmoregulation, aldehyde detoxification, and catecholamine metabolism,
which are required for normal physiological functions [5].

Human aldo-keto reductase family 1 member B (AKR1B) is one of several subtypes of
aldo-keto reductase that can be found in several organ tissues, including the liver, lungs,
breast, pancreas, and small intestine [6]. AKR1B1 is also known as human aldose reductase,
whereas AKR1B10 is known as human small intestine reductase [7]. The former is produced
in the prostate, skeletal muscle, adrenal gland, and heart [8].

It has been established that aldose reductase (AKR1B1) functions as an essential
mediator of oxidative stress and inflammation caused by growth hormones, cytokines, and
carcinogens [1]. Cancer development and metastasis are both aided by the stimulation of
nuclear factor-kB signaling (NF-kB) by reactive oxygen species (ROS) [9]. AR (AKR1B1)
suppression has the potential to be a unique treatment strategy for the prevention of
colon cancer metastasis. It also modulates cancer cell adhesion, invasion, and migratory
processes, all of which are associated with metastasis. This requires the establishment of
adequate blood flow to the tumor cells in order for the malignancy to metastasize to other
organs [10,11].

Another member of the family AKR, i.e., AKR1B10, is known as the antineoplastic
target. It has been used as a cancer biomarker, as it reduces retinal to retinol, which leads to
lower levels of retinoic acid because retinal is the source of retinoic acid, which ultimately
effects the proliferation and differentiation involved in carcinogenesis [8]. AKR1B10 shows
great similarity (71% amino acid sequence) in structure with AKR1B1. That is why for the
identification of selective inhibitors, both enzymes are emergent targets [12,13]. Although
there is a wealth of literature available on anticancer drugs [14–17], no drug has yet been
identified for the selected targeted proteins. Therefore, searching for selective inhibitors for
these two targets is a great challenge. Figure 1 below illustrates the correlation between
inflammation mechanism and aldo-keto reductases (AKR1B1, AKR1B10).



Molecules 2022, 27, 3981 3 of 22Molecules 2022, 26, x  3 of 23 
 

 
Figure 1. Correlation between inflammation mechanism and aldo-keto reductases (AKR1B1, 
AKR1B10) [18]. (A): HNE (Hydroxynonenal); GS-HNE:glutathionyl-HNE; GS-DHN:glutathionyl-
1,4-dihydroxynonene; PGH2 (Prostaglandin H2); PGF2α (Prostaglandin F2α); FP receptor (Prosta-
glandin F receptor); MAPK (Mitogen-activated protein kinases). (B): RDHs (Retinol Dehydrogen-
ases); RALDHs (Retinal dehydrogenase); RAR (Retinoic acid receptor); RXR (Retinoid x receptor). 

Many research groups have predicted the inhibitory effect of various classes of het-
erocyclic compounds on the other isoforms of aldose reductase that are involved in dia-
betes [19,20] and cardiac complications [21,22], i.e., ALR-1 and ALR-2, but none of them 
have been discussed against the selected targeted proteins, i.e., AKR1B1 and AKR1B10, 
which are specifically involved in colon cancer. 

Numerous studies have endorsed the promising fact that inhibition of aldose reduc-
tase plays a vital role in treating colon cancer [1,8,23], as well as diabetic and cardiovascu-
lar complications [24,25]. 

Figure 2 illustrates the selected examples of aldose reductase inhibitors: (a) Acetic 
acid derivatives (epalrestat), (b) spiro hydantoins (cyclic imides; sorbinil), and (c) fi-
darestat. 

  

Figure 1. Correlation between inflammation mechanism and aldo-keto reductases (AKR1B1,
AKR1B10) [18]. (A): HNE (Hydroxynonenal); GS-HNE:glutathionyl-HNE; GS-DHN:glutathionyl-1,4-
dihydroxynonene; PGH2 (Prostaglandin H2); PGF2α (Prostaglandin F2α); FP receptor (Prostaglandin
F receptor); MAPK (Mitogen-activated protein kinases). (B): RDHs (Retinol Dehydrogenases);
RALDHs (Retinal dehydrogenase); RAR (Retinoic acid receptor); RXR (Retinoid x receptor).

Many research groups have predicted the inhibitory effect of various classes of het-
erocyclic compounds on the other isoforms of aldose reductase that are involved in dia-
betes [19,20] and cardiac complications [21,22], i.e., ALR-1 and ALR-2, but none of them
have been discussed against the selected targeted proteins, i.e., AKR1B1 and AKR1B10,
which are specifically involved in colon cancer.

Numerous studies have endorsed the promising fact that inhibition of aldose reductase
plays a vital role in treating colon cancer [1,8,23], as well as diabetic and cardiovascular
complications [24,25].

Figure 2 illustrates the selected examples of aldose reductase inhibitors: (a) Acetic acid
derivatives (epalrestat), (b) spiro hydantoins (cyclic imides; sorbinil), and (c) fidarestat.
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Figure 2. Epalrestat (a), Sorbinil (b), and Fidarestat (c) as the selected examples of aldose reductase 
inhibitors [26]. 

Moreover, the previous enzyme inhibition study by our group [27] was performed 
only using 15-lipoxygenase enzyme, from soybean source, indicating compounds have 
anti-inflammatory potential. The current findings aim to discover the new and small mol-
ecules as potent human aldose reductase inhibitors that may help to synthesize more ef-
fective molecules with drug-like properties for the treatment of colon cancer that specifi-
cally occurs from the aberrant expression of either protein (Scheme 1) To extend our find-
ings, in current research study, we considered the previously synthesized phenylcar-
bamoylazinane-1,2,4-triazole amides derivatives (7a–o) with anti-inflammatory activity 
by our group [27], against two enzymes of aldo-keto reductase, i.e., AKR1B1 and 
AKR1B10 via in silico studies. 

Figure 2. Epalrestat (a), Sorbinil (b), and Fidarestat (c) as the selected examples of aldose reductase
inhibitors [26].

Moreover, the previous enzyme inhibition study by our group [27] was performed
only using 15-lipoxygenase enzyme, from soybean source, indicating compounds have anti-
inflammatory potential. The current findings aim to discover the new and small molecules
as potent human aldose reductase inhibitors that may help to synthesize more effective
molecules with drug-like properties for the treatment of colon cancer that specifically
occurs from the aberrant expression of either protein (Scheme 1) To extend our findings, in
current research study, we considered the previously synthesized phenylcarbamoylazinane-
1,2,4-triazole amides derivatives (7a–o) with anti-inflammatory activity by our group [27],
against two enzymes of aldo-keto reductase, i.e., AKR1B1 and AKR1B10 via in silico studies.
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Scheme 1. Representation of previous work [27] and current work.

The binding interactions of all these derivatives were determined by using two molec-
ular docking programs; one was academic, i.e., AutoDock (version 1.5.6), and one was
commercial, i.e., Molecular Operating Environment (MOE Dock version 2015.10). The pur-
pose of using two software was to validate the results of binding interactions. The results
were further validated by detailed quantum chemistry calculations, i.e., density functional
theory calculations (DFTs) in which frontier molecular orbitals (FMOs), global and local
reactivity descriptors, and molecular electrostatic potential (MEP) were calculated. The
detailed drug-like properties, i.e., ADMET properties of the compounds, were performed to
support the above studies. This is the first comprehensive computational-based study that
may lead to the findings and discovery of potent and selective inhibitors of either human
aldose reductase (AKR1B1) or human small intestine reductase (AKR1B10), suggesting
these derivatives for further exploration at the molecular level as ideal candidates for colon
cancer and other associated malignancies.

2. Experimental
2.1. Instrumentation and Methods

The chemicals and solvents were purchased from Sigma, Aldrich, and Alfa Aesar. To
get 1H and 13C NMR spectra, tetramethylsilane was used as an internal reference, and
the experiment was performed on a Bruker instrument. KBr pellets were IR spectra on a
Shimadzu 460 FTIR spectrometer. Mass spectra were achieved using a data system and
a JMSA 500 mass spectrometer. Melting points were determined by using Gallen Kemp
electrothermal apparatus.
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2.2. Chemistry
Synthesis of Phenylcarbamoylazinane-1,2,4-Triazole Amides Derivatives

A general procedure of the synthesis has been reported in our previous work [27].

2.3. Density Functional Theory (DFT)

The most efficient and popular method, density functional theory (DFT), in quan-
tum chemistry was implemented to have a better insight of molecular properties of the
compounds. It was performed for computing number of information following; geometry
optimization, FMO, global and local reactivity descriptors, MEP. All the calculations were
carried out using the Guassian09 program [28] where Becke-3-Parameter-Lee-Yang-Parr
(B3LYP) in SVP basis set [29] was used. At the end, the output check files were visualized
and interpreted via Gauss View version 5 [30–32].

2.4. Molecular Docking
2.4.1. Preparation of Ligands

Ligands were prepared by using AutoDock (version 1.5.6); one was commercial, i.e.,
Molecular Operating Environment (MOE Dock version 2015.10). The structures of a total
of 15 compounds were drawn in ChemDraw 12 ultra [33]. The compounds (7a–7o) were
converted to 3D structure (.pdb) and (.sdf) files by using Chem3D pro 12 [34]. These com-
pounds were saved into pdb and sdf formats by Chem3D pro 12 after energy minimization.

2.4.2. Preparation of Target

The targeted proteins, AKR1B1 and AKR1B10, which were redeemed from the RCSB
Protein Data Bank [35], AKR1B1 (PDB ID: 6f7r) and AKR1B10 (PDB ID: 4gqg), helped as
docking receptors. In preparing the protein, all the hetatoms and water molecules were
removed from the protein both in the Autodock [36] and Molecular Operation Environ-
ment (MOE) [37]. Polar hydrogen atoms and Kollman charges were added while using
both software.

2.4.3. Molecular Docking Protocol

The compounds (7a–7o) were docked using AutoDock using the standard procedure
within the active site of proteins AKR1B1 and AKR1B10. In AutoDock, the grid box was
built using a size 60 × 60 × 60 Å, pointing in x, y, and z coordinates, respectively, with a
grid point spacing of 0.375 Å. The centre of the grid box was adjusted to cover the active
pocket. In MOE, dummies were created at the active site.

For AutoDock, the no. of population was set to 150 and the no. of genetic algorithm
(GA) runs were set to 100. For pose scoring, default scoring function was used. For MOE,
MMFF94x forcefield was loaded [38]. The default placement method, Triangle Matcher
algorithm, was implemented for generating pose. Two rescoring functions included London
dG and GBVI/WSA dG, and they were implemented for pose scoring [39,40].

2.4.4. Visualization

In AutoDock, visualization was carried out using Discovery studio visualizer (version
2020) [41]. Two-dimensional and three-dimensional interactions between protein and
ligand were analyzed. In MOE, 2D and 3D interactions were interpreted in MOE window
by opening the output file.

The conformations with the top score (minimum) binding energy were selected for
examining the interactions between the target (protein) and ligands [42].

2.4.5. Validation

The final assessment was done by calculating the RMSD value. From 100 runs, one
docking pose was considered successful, whose RMSD value was between the docking
pose and the experimentally determined conformation of a ligand was ≤2.0 Å [43]. As a
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consequence, RMSD is the most accurate and best way of computing the best pose, but an
acceptable one, as no other practical validation methods are available [44].

Vincristine, a known anti-cancer drug, was docked to validate our studies. Another
way used to validate our studies was the docking of co-crystal ligand NAP within the
active binding pocket (to reproduce the same configuration).

2.5. Molecular Dynamics Simulations

Gromacs-2018.1 with the am-ber99sb-ILDN force field was used for the simulation
studies of the AKR1B1, AKR1B10 protein and their complexes (in an aqueous environ-
ment) [45,46]. The AM1-BCC charge model and the Antechamber packages in Amber-
Tools21 were used to build the topology for both ligands after they were extracted from their
respective complexes [47]. The TIP3P water model was used to solvate both proteins alone
and in complexes, and then counter sodium/chlorine ions were introduced to neutralize
their charges. Highly restrictive descent minimization was used to limit all systems to a
maximum of 50,000 steps in order to exclude any weak van der Waals connections. Using a
V-rescale thermostat set at 300 K and a constant volume throughout one nanosecond, all
systems were initially equilibrated (NVT equilibration) [48]. A Parrnel-lo-Rahman barostat
was used to complete the second equilibration at 1.0 bar and 300 K for one nanosecond
(NPT equilibration). Both proteins and their complexes were simulated at 100 ns, and ten
thousand frames of each trajectory were recorded [49]. PBC changes were made to the
trajectory prior to the analysis. The MM-PBSA was used to calculate the ligand-protein
binding energies [50].

2.6. Cell Viability Assay

To assess the anti-cancer capability of the compounds, the cell viability assay of the
most potent derivative was estimated against human cervical cancer cell line (HeLa). The
experiment was performed according to the reported method Mosmann (in 1983) and
Nikš and Otto (in 1990), respectively [51,52]. The experiment was performed in 96–well
flat–bottom plates in 90 µL of medium containing 10 × 104 cells, seeded into each well.
The 100 µL of test compound solution was added to the respective well and the plate was
allowed for 24 h of incubation at 37 ◦C and 5% CO2. The positive and negative control
wells were seeded with 10 µL of standard drug (cisplatin) and 100 µL of cell media (no
compound), respectively. Each well was then pipetted with 10 µL of MTT reagent and
incubated for 4 h at 37 ◦C. Then, 100 µL of 10% sodium dodecyl sulphate solution was
added and kept at room temperature for 30 min. with occasional shaking. Finally, optical
density was calculated. The ability of mitochondrial dehydrogenase to generate formazan
complex indicated the presence of metabolically active cells (viable cells). All studies were
conducted in triplicate, and the results were reported as percent growth inhibition values,
as reported earlier [53].

2.7. ADMET Properties

Compounds with excellent pharmacological action are often rejected because of the
difficulties encountered related to their metabolism and excretion as well as their high levels
of absorption, distribution, and toxicity, collectively referred to as ADMET [54–57]. The
selected derivatives were inspected based on drug-likeness (ADMET). The drug-likeness
of a derivative were calculated by Lipinski’s rule of five (RO5) [58]. The calculation of
physicochemical properties and ADMET properties were performed by ADMET lab 2.0 [59].

3. Results and Discussion
3.1. Chemistry
Synthesis of Phenylcarbamoylazinane-1,2,4-Triazole Amides Derivatives

The primary synthesis pathway for the formation of phenylcarbamoylazinane-1,2,4-triazole
amides derivatives (7a–o) is illustrated in (Scheme 2). The reactant: 4-(5-mercapto-4-phenyl-
4H-1,2,4-triazol-3-yl)-N-phenylpiperidine-1-carboxamide (4) was treated for 30 min. with N-
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alkyl/aralky/aryl-2-bromoacetamides (6a–o) having different substituents. The mixture was
then allowed to be refluxed for 4–5 h to get different products of phenylcarbamoylazinane-1,2,4-
triazole amides derivatives (7a–o). The obtained product was further treated with the EtOH to
obtain pure compounds as discussed in earlier work [27].
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3.2. Density Functional Theory (DFTs)
3.2.1. Molecular Geometry

The most stable optimized structural parameters, i.e., bond length, bond angle, and
dihedral angles, were obtained implementing DFT/B3LYP/SVP calculations.

The gas phase optimized geometries further lead to solvent phase (ethanol) opti-
mization and comparison. The DFT empowers to determine molecular properties such as
optimized geometry and energy. The information of molecular geometry and molecular
descriptors intended using quantum mechanical methods assist determination of molecular
quantities distinguishing reactivity, shape, and binding properties of the selected molecules.
The optimized structures of the most potent compounds (7d and 7f) are shown in Figure 3
(below, and the rest of the optimized structures of compounds in gas phase and in solvent
phase are given in Supplementary File (Figures S1 and S2). Selected optimized geometrical
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parameters of triazole derivatives generated by using this method and they are presented
in (Table 1) [31].
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Table 1. Optimized geometric parameters for compounds by using B3LYP/SVP DFT method in both
gas and in solvent phase (ethanol).

Scheme Compound

Gas Phase Solvent PHASE (Ethanol)

Optimization
Energy

(hartree)

Polarizability
(α) (a.u.)

Dipole
Moment
(Debye)

Optimization
Energy

(hartree)

Polarizability
(α) (a.u.)

Dipole
Moment
(Debye)

1 7a −1886.106 342.759 5.571 −1886.129 440.099 8.716
2 7b −1846.835 316.308 5.583 −1846.856 420.126 7.617
3 7c −1963.502 349.077 3.451 −1963.523 461.426 4.993
4 7d −1999.156 352.209 5.301 −1999.178 472.599 6.909
5 7e −1998.959 372.423 8.304 −1999.185 488.286 11.377
6 7f −1998.961 359.144 7.201 −1999.183 482.391 12.532
7 7g −2038.451 367.101 5.359 −2038.471 498.488 7.431
8 7h −2038.431 373.826 8.259 −2038.472 499.202 13.372
9 7i −2038.246 366.633 4.931 −2038.476 500.482 6.861

10 7j −2038.251 367.428 3.739 −2038.479 502.864 5.266
11 7k −2038.249 383.407 8.549 2038.477 505.231 11.091
12 7l −2038.239 374.953 7.782 −2038.469 496.319 10.475
13 7m −2038.252 369.696 4.901 −2038.478 498.915 6.528
14 7n −1959.667 362.458 9.135 −1959.893 471.238 11.747
15 7o −2038.237 380.534 8.538 −2038.466 497.686 12.259

The dipole moment is a global assessment of the precision with which an electron
density in a polar molecule is calculated. In this study, the results suggested that the dipole
moment has an effect on a molecule’s interactions with other molecules as well as on
electric fields [60]. Moreover, the dipole moment provides the basis for interpreting and
quantifying intermolecular interactions. Another parameter, i.e., polarizability, is a critical
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characteristic in molecular electronics. To assess the precision of a quantum chemical
approach, the electric characteristics of molecules provide the most direct relationships
between the electronic structure of molecules and spectroscopically detectable values [61].
The optimized geometric characteristics of the targeted molecules in the gas phase and
solvent phase (ethanol) are listed in Table 1.

3.2.2. Frontier Molecular Orbital (FMOs)

The study of molecular orbitals and their energies is used to describe different kinds
of reactions and to find the place in conjugated systems that is the most reactive. Molecular
orbital energies, such as the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO), as well as their energy gaps, emphasize a point
about the molecule’s biological and chemical activity. Having a small orbital gap suggests
that a molecule is highly polarizable, which is often coupled with high chemical and kinetic
reactivity and low kinetic stability. HOMO, or high-energy outer orbital containing elec-
trons, works as an electron donor, and as a result, the ionization potential (I) is proportional
to the energy of the high-energy outer orbital. However, LUMO may accept electrons, and
its electron affinity (A) is proportional to the amount of energy it possesses [49].

In gas phase, 7k had the smallest energy gap at 0.155 eV from all the selected triazole
compounds. 7b and 7d had the higher energy gap in gas phase and shown the same value
at 0.184 eV, among all the selected triazole compounds. 7e and 7n had slightly higher
energy gap than 7k at 0.158 eV and 0.160 eV, respectively.

In solvent phase (ethanol), 7j had shown the smallest energy gap value at 0.178 eV. 7o
had only one point higher value of energy gap than 7j at 0.179 eV. 7g also had a comparable
energy gap difference with value of 0.180 eV. Among all triazole compounds, 7d had a higher
energy gap difference at 0.193 eV. HOMO-LUMO structures of compounds 7d and 7f in gas
phase are shown in Figure 3b and rest of the HOMO-LUMO structures of all compounds in
gas phase and solvent phase are given in Supplementary Materials (Figures S3 and S4).

3.2.3. Global Chemical Reactivity Descriptors

By using HOMO-LUMO energy values, here the following parameters have been
calculated by using their respective formulas:

Hardness: η = 1
2 (ELUMO-EHOMO); Chemical potential: µ = −χ; Softness: S = 1

2 η

Electronegativity: χ = − 1
2 (ELUMO + EHOMO); Electrophilicity index: ω = µ/2 η

Where A = −E HOMO is the ionization potential and I = −E LUMO is the electron affinity
of the molecule. The estimated values such as EHOMO, ELUMO, ∆Egap, A, I, η, µ, S, χ andω of
triazole derivatives (7a–o) are given in Tables S1–S4 in Supplementary Materials. As shown
in (Tables S1 and S2), the compounds with the lowest energy gap were the compound 7k
and 7j in gas phase and solvent phase (ethanol) (∆Egap = 0.155 eV and 0.178 eV), respectively.
This lower gap permitted it to be the softest molecules. The compounds with highest
energy gap were the compounds 7b and 7d (∆Egap = 0.184 eV), both showing the same
value in gas phase. While in solvent phase (ethanol), 7d (∆Egap = 0.193) they exhibited the
highest energy gap. The compound 7k was the compound with the highest HOMO energy
(EHOMO = −0.207 eV), both in gas phase as well as in solvent phase (EHOMO = −0.222 eV).
These higher energy values make them the best electron donors. The compound with the
lowest LUMO energy was 7o (ELUMO = −0.059 eV) in gas phase, while in solvent phase
(ethanol) 7o (ELUMO = −0.046 eV) showed lowest LUMO energy, which predicted this
derivative as the best electron acceptor. The two parameters, ionization potential (I) and
electron affinity (A), are related to the one electron orbital energies of the HOMO and
LUMO, respectively. The chemical reactivity of compounds differs with their structures.
Chemical hardness and softness of compound 7k (η = 0.077 eV, S = 6.47 eV) was best
among all the compounds in gas phase. Thus, compound 7k was assumed to be more
reactive than all the compounds in gas phase. In solvent phase (ethanol), compound 7j was
found to be more reactive in comparison to all other compounds on the basis of values of
hardness and softness (η = 0.089 eV, S = 5.61 eV) Compound 7o in gas phase held a higher
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electronegativity value (χ = 0.143 eV) among all compounds, so it was the best electron
acceptor. While in solvent phase (ethanol), 7f and 7o showed the same value of higher
electronegativity (χ = 0.135 eV). Thus, both 7f and 7o were the best electron acceptors
among all compounds in solvent phase (ethanol). Compound 7o exhibited the higher value
of electrophilicity index in gas phase as well as in solvent phase (ethanol) (ωgas = 0.122 eV,
ωsolvent = 0.103 eV) specifies this derivative as the stronger electrophiles among all. The
compounds 7k and 7j both exhibited a lower frontier orbital gap; hence, they were found
more polarizable, highly chemically reactive, had low kinetic stability, and were considered
soft molecules.

3.2.4. Molecular Electrostatic Potential (MEP)

The MEP is associated with the understanding of reactive sites of nucleophilic and
electrophilic attacks, and ESP (electrostatic potential) correlates with a molecule’s partial
charges and electronegativity properties. It is an essential tool for figuring out how a
molecule is recognized as biologically active and how the electrophilic and nucleophilic
attacks affect it. The surfaces and contours give a sense of how different geometries interact.
The compounds’ electrostatic potential and electron density are depicted in Figure 3c. The
figure showed that electron density is uniformly distributed throughout the molecules,
and the ESP bar data showed that negative ESP is only localized in specific areas of a
molecule as demonstrated by the experiment. Different colors in the ESP bar reflected the
electrostatic potential values in Figure 3c rest of the electrostatic potential structures are
shown in Supplementary Material (Figure S5). Highly negative electrostatic potential is
illustrated by the red color, whereas the blue color is indicating highly positive potential
and the green color is indicating the zero potential regions.

It is evident that the highly negative potential (red) interacted by withdrawing elec-
trons is localized to nitrogen of the triazole ring and oxygen atom of carboxamide and
phenylacetamide moiety. The findings are important to depict the nucleophilic and elec-
trophilic attack on the molecule. As demonstrated in molecular docking, these areas were
intimately engaged in interactions.

3.3. Molecular Docking

Density functional theory calculations and a detailed MEP analysis were used to
find the best structure for the molecule. Electronegative parts of the molecule, such as
the nitrogen of the triazole ring, the oxygen atom of the carboxamide, and the phenylac-
etamide moiety, were found, and their interactions in the active pocket were studied with
molecular docking.

Crystal structures of both proteins reported the same substrate, with NAP attached
to them. Docking of both targets with NAP assisted to compare the selected ligands
(7a–o) with the co-crystal ligand. A conformation of the NAP with both targets is found
in the Supplementary Materials. Protein AKR1B1 has an active site with amino acids
included indene system Tyr48, Lys77, and His110. The amino acids with benzene included
Phe122 [62]. From the active pocket the most essential amino acids forming catalytic tetrad
were Asp43, Lys77, His110, and Tyr48. Lys262, Arg268, and Asn272 are primarily involved
in hydrogen bonding.

Structure-wise, the two proteins have a lot in common. They both have a Trp112
side-chain orientation that is not the same as the one in AKR1B10, which makes it possible
for AKR1B1 inhibitors to keep their affinity for AKR1B10 by flipping Trp112 to make a
AKR1B10 has an “AKR1B1-like” active site, whereas AKR1B10 inhibitors can take advan-
tage of AKR1B10’s broad active site due to the native Trp112 side-chain orientation.

The binding energy values of the selected derivatives against both proteins, i.e.,
AKR1B1 and AKRB10, are given in Table 2.
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Table 2. Binding energies with target AKR1B1 and AKR1B10 (kJ/mol).

Code
AKR1B1 AKR1B10

MOE AutoDock MOE AutoDock

1. 7a −37.04 −41.72 −36.44 −40.24
2. 7b −37.72 −39.16 −36.04 −41.36
3. 7c −38.52 −45.04 −38.36 −43.08
4. 7d −38.68 −49.40 −40.88 −41.28
5. 7e −40.28 −42.36 −38.44 −43.80
6. 7f −40.00 −47.64 −38.16 −52.84
7. 7g −40.44 −39.52 −40.16 −41.44
8. 7h −40.32 −46.44 −42.28 −43.76
9. 7i −39.08 −45.68 −39.92 −41.24
10. 7j −41.72 −47.80 −42.04 −41.28
11. 7k −39.88 −41.28 −39.48 −43.56
12. 7l −39.16 −44.72 −38.88 −40.00
13. 7m −40.92 −52.04 −41.32 −43.44
14. 7n −39.36 −39.40 −38.00 −42.92
15. 7o −40.84 −42.64 −40.32 −46.08

Co-crystal NAP −29.48 −22.92 −27.44 −18.16
Control Vincristine −28.72 +5.68 −27.40 −8.84

3.3.1. Structure Activity Relationship of Phenylcarbamoylpiperidine-1,2,4-Triazole
Amide Derivatives

The structure activity relationship of these derivatives was studied on the basis of
predicted inhibitory values obtained during docking and re-docking steps. An interesting
behavior was observed in the case of both targeted protein results. The compounds that
showed maximum binding interactions against the respective proteins were in correlation
with the previously obtained anti-inflammatory activity results. Briefly, the derivatives
7d, 7e, 7f, 7h, 7j, 7k, and 7m were reported as the best derivatives with micro-molar
anti-inflammatory activity, and here in this study these derivatives exhibited maximum
potential for the targeted proteins.

Against AKR1B1, among these derivatives, compound 7m was found as the most
potent derivative with the maximum binding interactions (binding score: −52.04 kJ/mol)
and maximum (predicted) inhibitory constant value, i.e., 0.514 nM. When the predicted
inhibitory constant values of this compound were compared to derivative 7d (13.6 nM)
and 7a (53.8 nM), the substitutional effect was observed. The detailed structure activity
compound 7d having phenyl substitution showed better binding interactions (binding
score: −49.4 kJ/mol) in comparison to 7a (binding score: −42.36 kJ/mol), indicating that
the improvement in the activity might be due to the presence of the phenyl ring, which
caused the inductive effect and enhanced the capacity of the compound to make strong
interactions within the active pocket. In the case of 7m, the presence of two methyl groups
at 3 and 4 position of the phenyl ring activated the ring and caused the resonance effect,
resulting in the stronger interaction as compared to 7a and 7d. The compound 7f was found
as the most potent inhibitor of AKR1B10 with a maximum binding score in comparison to
the other derivatives, i.e., binding score: −52.84 kJ/mol and predicted inhibitory constant
value i.e., 0.31 nM. This compound also showed good results against AKR1B1, i.e., binding
score: −47.64 kJ/mol and predicted inhibitory value, i.e., 1.87 nM. The detailed structure-
activity relationship of this compound suggested that the presence of methyl group was
found favorable for the improved activity. This was compared with the activity of 7e,
7j, and 7k derivatives and it was found that the enhanced activity of 7f is due to the
substitution at meta position.
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Conclusively, the structure activity relationship of all the derivatives suggested that
the substitution at ortho position alone is less favorable for the inhibition of either AKR1B1
or AKR1B10 as in case of 7e, 7g, and 7l but the improved inhibition was found by those
compounds where substitution was done at para alone (derivative 7h) or in case of di-
substitution, i.e., ortho-para (derivative 7j), ortho-meta (derivative 7i), or meta-para (derivative
7m) position. Moreover, derivatives having para directing single substitution showed better
results against AKR1B1 while compounds with meta alone (derivative 7f) or di-substituted
meta-para directing and meta-meta (derivative 7n) directing substitution showed better
results against AKR1B10. Scheme 3 below illustrates the structure activity relationship of
potent derivatives of AKR1B1 and AKR1B10 via docking studies.
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3.3.2. Detailed Molecular Docking Discussion of Protein AKR1B1

The 3D and 2D interactions of the most potent derivative 7d are shown in Figure 4.
The interactions were observed as strong hydrogen bonding, van der Waals interactions,
π-interactions, which included π-π, π-cation, and π-anion interactions.
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Figure 4. The docking conformations of most potent compounds of target AKR1B1. (a) Compound
7d in pocket of AKR1B1 (visualization by AutoDock), (b) Compound 7d in pocket of AKR1B1
(visualization by MOE).

Significant hydrogen bonding was observed by nitrogen of ligand 7d and amino acid
residue of active pocket Lys262. Another hydrogen bonding was formed between oxygen
and sulfur of N-benzyl-2(methylthio) acetamide of ligand 7d and amino acid residue of
active pocket Arg268. One of the predominant hydrogen bonding was found between the
oxygen of N-phenylpiperidine-1-carboxamide of ligand 7d and three amino acid residues
(Gly213, Ser214 and Leu212). Electrostatic interaction (π-cation) was formed between
toluene ring of ligand 7d and Arg268.

In this paper, only potent compound (7d) is shown in Figure 4, all other compounds
are discussed and shown with 3D and 2D conformations in Supplementary Materials
(Figures S6 and S7).

3.3.3. Detailed Molecular Docking Discussion of Protein AKR1B10

The detailed 3D and 2D bonding and non-bonding interactions of the selected deriva-
tives against AKR1B10 are shown in Figure 5. The interactions were observed as strong
hydrogen bonding, van der Waals interactions, π-interactions, which includes π-π, π-cation,
and π-anion interactions.
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Figure 5. Docking conformations of the most potent compounds of target AKR1B1. (a) Compound
7f in pocket of AKR1B10 (visualization by AutoDock), (b) Compound 7f in pocket of AKR1B10
(visualization by MOE).

Sulfur of 2-mercapto-N-(m-tolyl) acetamide of ligand 7f formed hydrogen bond com-
plex with Lys22. Oxygen of N-phenylpiperidine-1-carboxamide of 7f also formed hydrogen
bonding interaction with Asn161 and Ser160. Another hydrogen bond was observed be-
tween piperidine ring of ligand 7f and Tyr49. Electrostatic interaction (π-anion) was formed
by one amino acid residue Asp217 with xylene of ligand 7f. A favorable hydrophobic
interaction (π-π T-shaped) was also observed by amino acid residue Trp21 with triazole
ring of ligand 7f.

In this paper, only potent compound 7f is shown in Figure 5, all other compounds
are discussed and shown with 3D and 2D conformations in Supplementary Materials
(Figures S8 and S9).

3.3.4. SeeSAR Analysis

The SeeSAR analysis of the best compounds was executed, which anticipates the
visual representation of binding interactions. The pharmacologically active compounds
were presented as the blue-colored coronas, whereas the components having negative
influence on binding interactions were shown as the red-colored coronas. The components
with no role in contributing were shaded as colorless coronas. The size (small/large) of
the corona indicated the structural component’s involvement. The SeeSAR representations
of potent derivatives (Figures 6 and 7), indicates that nearly the whole structure of 7d
was subsidizing favorably, but only phenyl urea group and two nitrogen of the base of
triazoles ring were participating negatively (red coronas) because of the enormous energy
of desolvation and the positive contribution denoted by green coronas. Same distribution of
coronas presented in case of 7f. The Hyde energies of the favorable coronas (green-colored)
for derivative 7d and 7f, were −4.3 and −4.2 kJ/mol, respectively.
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3.4. Molecular Dynamics Simulations

In order to investigate the dynamics and stability of proteins (AKR1B10 and AKR1B1)
and the respective docked complexes, they were simulated in an aqueous environment.
Proteins and their complexes were employed as starting points for MD simulations. For the
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analysis, the RMSD of the backbone of each system was determined with regard to their
respective original configurations. The RMSD of both proteins and their complexes is shown
in Figure 8a. The root mean square deviation of the AKR1B10 and AKR1B10−7f complexes
varied initially but became steady after 60 ns. The average RMSD of the AKR1B10 and
AKR1B10−7f complexes was determined to be 0.167 and 0.161 nm, respectively. The
comparable result was observed for the complexes of AKR1B1 and AKR1B1−7d. The result
demonstrates unequivocally the excellent stability of both proteins and their respective
complexes in an aqueous solution. Additional analysis was performed using the RMSF
formula, and the results are displayed in Figure 8b. The RMSF of the bulk of C atoms
in the amino acid residues of the AKR1B10 and AKR1B10−7f complexes was less than
0.1 nm. Similarly, the RMSF of the majority of AKR1B1 and AKR1B1−7d residues was less
than 0.1 nm. However, the terminal residues of both proteins exhibited greater oscillations,
which could be a result of their suspended state. Additionally, the RMSF data demonstrated
the stability of both proteins and their complexes in aquatic environments. Additionally,
the RMSF of each atom in both ligands was computed (Figure 8c. Both ligands’ RMSFs
fluctuated, indicating a dynamical alteration in their binding sites in respective proteins.
The atoms of 7d fluctuated more than those of 7f.
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Figure 8. (a1) RMSD of AKR1B10 backbone and AKR1B10−7f complex as the function of time.
(a2) RMSD of AKR1B1 backbone and AKR1B1−7d complex as the function of time. (b1) RMSF
of Cα atoms of AKR1B10 and AKR1B10−7f complex. (b2) RMSF of Cα atoms of AKR1B1 and
AKR1B1−7d complex. (c1) The average RMSF value of each atom of 7f and 7d when in complexation
with AKR1B10 and AKR1B1, respectively. (c2) Potential energy and total energy of AKR1B10,
AKR1B10−7f complex, AKR1B1, and AKR1B1−7d complex as the function of time.

The radius of gyration (Rg), solvent accessible surface area (SASA), and energy of all
systems were also analyzed by MD simulations. The Rg of the AKR1B10 and AKR1B10−7f
complexes were found to be constant throughout the simulation and are therefore suggested
to be stable. Finally, the stability of the compounds was established by computing their
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physicochemical properties, such as their potential and total energies, as shown in Figure 8c;
(B). The total and potential energy of proteins and their complexes were found constant
throughout the simulation, confirming the systems’ stability.

The hydrogen bond patterns of both ligands (7d and 7f) were analyzed to determine
their interaction with their respective proteins. Figure 9a illustrates the existence of hydro-
gen bonds between AKR1B10 and 7f and AKR1B1 and 7d at a concentration greater than
1%. As evidenced by the data, hydrogen bonds between ligands and their corresponding
proteins existed indefinitely. Hydrogen bonds between 7f and AKR1B10 were rather con-
stant throughout the simulation time. However, the presence of hydrogen bonds between
7d and AKR1B1 was greater until 65 ns, when it decreased marginally. The weakening of
the hydrogen bond may be caused by the interaction of solvent molecules with the binding
site [63]. Between AKR1B10 and 7f, the average number of hydrogen bonds produced was
1.091. Similarly, an average of 1.602 hydrogen bonds was observed between AKR1B1 and
7d. By computing the average of secondary structures of both ligands, the influence of
their interaction on the secondary structural components of their respective proteins was
studied. The Supplementary Materials contains all of the information necessary to calculate
secondary structures (Figures S10 and S11).
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Figure 9. (a1) Map of 7f’s hydrogen bonds in complex with AKR1B10 during MD simulation. (a2) Map
shows the presence of hydrogen bonds in 7d in complex with AKR1B1 during MD simulation.
(b1) The two-dimensional scatter plot of PCA obtained by projecting the AKR1B10 and AKR1B10−7f
complex eigenvectors. (b2) Two-dimensional scatter plot of PCA obtained by projecting the AKR1B1
and AKR1B1−7d complex eigenvectors.

The PCA is a statistical approach that is used to characterize the large-scale motion of
the biological macromolecules, during MD simulations. Moreover, it is used to reduce the
dimension of a data collection without sacrificing critical information, which is represented as
eigenvectors [64]. This analysis was used to determine both proteins’ flexibility in the absence
as well as presence of respective ligands. Figure 9b illustrates the projection of proteins and
complexes’ eigenvectors. The 2D projection showed that both complexes occupied nearly
same conformational space as compared to their respective proteins alone, showing the
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presence of ligands did not alter the flexibility of the proteins. The free energy landscapes of
AKR1B10 and AKR1B1 and their complexes was also made to examine the protein folding
pattern, shown in Figure S13 in the Supplementary Materials, and further discussion about
free energy landscapes is also elaborated in Supplementary (Figures S12 and S13).

Moreover, the binding energies of 7f-AKR1B10 and 7d−AKR1B1 were calculated by using
MM-PBSA analysis and further discussed in detail in Supplementary File (Tables S5 and S6).

3.5. % Cell Viability Assay Using HeLa Cells

To strengthen the computational data, the most potent derivatives were tested using an
in-vitro cell viability test, i.e., MTT assay. The human cervical cancer cells, i.e., HeLa cells, were
treated at 100 µM concentrations for 24 and 48 h. This single-dose concentration was taken
based on the predicted inhibitory values, obtained during molecular docking experiments.
At a single dose concentration, a time-dependent linear response of cell death was found.
Derivatives 7d and 7f demonstrated the maximum cell death, supporting the computational
studies in which these molecules were reported as the strongest inhibitor of AkR1B1 and
AKR1B10, respectively. Cisplatin was use as a positive control. The findings were computed
by comparing them to the total activity control (i.e., untreated cells). Figure 10 is the depiction
of % viability graph, created using GraphPad PRISM program.
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Figure 10. Depiction of % cell viability results of cervical cancer cells (HeLa cells) after treatment with
potent derivatives (7d and 7f) and cisplatin. Data were investigated as mean of three experiments ±S.D.
(n = 3), using PRISM 5 (GraphPad, San Diego, CA, USA). (*** p < 0.005, significant result.)

3.6. ADMET Properties

The calculated physicochemical properties predicted that there was no contravention
of Lipinski’s rule of five which was testimony of drug likeness of the compound. The
details of each parameter of physicochemical and pharmacological properties are shared in
Supplementary Materials (Tables S7 and S8).

4. Conclusions

The results of molecular docking studies from both software revealed that our com-
pounds showed better binding energy scores than the already reported anti-cancer com-
pounds (vincristine, cisplatin) and the co-crystal ligand (NAP). However, the dispersion of
the docking scores was seen, acquired from repeated docking runs. The docking program
produced different docking results every time, under the same docking protocols. The large
and bulky binding sites usually produce a great dispersion of the docking positions and
scores, as there are more positions for the ligand conformations. It is not feasible to repeat
calculations for the same ligands as it is a time-taking program. This is why we took the
best poses from calculating the RMSD value. Additionally, for further validation and verifi-
cation of our studies, control (vincristine) and co-crystal ligand (NAP) were docked along
with other ligands. Thus, AutoDock was proved to be the best among the two software
because it showed less dispersion as compared to MOE on repeated docking protocols.
Then, DFT results showed the good chemical properties of the selected compounds after
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being optimized in gas phase as well as in solvent phase (ethanol). The ADMET properties
showed that the selected compounds had drug-likeness properties. In addition to this, the
results were supported by the cell viability assay.

Conclusively, from fifteen derivatives, only seven potent inhibitors (7d, 7e, 7f, 7h, 7j,
7k, and 7m) of both the targets were extracted after the deep analysis of docking scores
and inhibition constant. In order to find the selective inhibitor of the selected targets,
7d was identified as the best inhibitor of AKR1B1 and 7f was proved as potent inhibitor
of AKR1B10. Interestingly, the DFT results of the identified compounds were also in
accordance with the other studies, suggesting these derivatives for the further investigation
at molecular level and other pharmacological studies in future. Our study purposes to
discover the potent aldo-keto reductase inhibitors that may help to synthesize effective
molecule with drug-likeness for the treatment of colon cancer specifically occur from the
abnormal expression of either protein AKR1B1 or AKR1B10. At last, the results of MD
simulations confirmed the stability and dynamics of complex 7d with AKR1B1 and complex
7f with AKR1B10.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27133981/s1, Figure S1: Optimized structures of phenylcarbamoylazinane-1,2,4-
triazole amides derivatives in gas phase, Figure S2: Optimized structures of phenylcarbamoylazinane-
1,2,4-triazole amides derivatives in solvent phase (ethanol), Figure S3: HOMO LUMO structures of
phenylcarbamoylazinane-1,2,4-triazole amides derivatives in gas phase, Figure S4: HOMO LUMO
structures of phenylcarbamoylazinane-1,2,4-triazole amides derivatives in solvent phase (ethanol),
Figure S5: Electrostatic potential (ESP) of phenylcarbamoylazinane-1,2,4-triazole amides derivatives,
Figure S6. Showing 3D interactions of phenylcarbamoylazinane-1,2,4-triazole amides derivatives
(7a–o) with active site of AKR1B1, Figure S7. Showing 2D interactions of phenylcarbamoylazinane-
1,2,4-triazole amides derivatives (7a–o) with active site of AKR1B1, Figure S8. Showing 3D interactions
of phenylcarbamoylazinane-1,2,4-triazole amides derivatives (7a–o) with active site of AKR1B10,
Figure S9. Showing 2D interactions of phenylcarbamoylazinane-1,2,4-triazole amides derivatives
(7a–o) with active site of AKR1B10, Figure S10. 3D and 2D interactions of 7d, 7a and 7f with active site
of NF-κB [65–67], Figure S11. (A) Radius of gyration (Rg) of AKR1B10 and AKR1B10-7f complex as
function of time. (B) Rg of AKR1B1 and AKR1B1-7d complex as function of time, Figure S12. (A) Sol-
vent accessible surface area (SASA) of AKR1B10 and AKR1B10-7f complex as function of time.
(B) SASA of AKR1B1 and AKR1B1-7d complex as function of time, Figure S13. (A) Average secondary
structural components of AKR1B10 and AKR1B10-7f complex. (B) Average secondary structural
components of AKR1B1 and AKR1B1-7d complex [68], Figure S14. (A-i) Free energy landscape plot
of AKR1B10. (A-ii) Free energy landscape plot of AKR1B10-7f complex. (A-iii) Free energy landscape
plot of AKR1B1. (A-iv) Free energy landscape plot of AKR1B1-7d complex. (B-i) Ramachandran
plot of AKR1B10. (A-ii) Ramachandran plot of AKR1B10-7f complex. (A-iii) Ramachandran plot
of AKR1B1. (A-iv) Ramachandran plot of AKR1B1-7d complex. Table S1. Energetic parameters of
phenylcarbamoylazinane-1,2,4-triazole amides derivatives (7a–7o) in gas phase, Table S2. Energetic
parameters of phenylcarbamoylazinane-1,2,4-triazole amides derivatives (7a–7o) in solvent phase
(ethanol), Table S3. Quantum chemical descriptors of phenylcarbamoylazinane-1,2,4-triazole amides
derivatives (7a–7o) in gas phase, Table S4. Quantum chemical descriptors of phenylcarbamoylazinane-
1,2,4-triazole amides derivatives (7a–7o) in solvent phase (ethanol), Table S5. Binding free energy
(kJ/mol) for the interaction of 7f with AKR1B10 and 7d with AKR1B1 using MMBSA analysis, Ta-
ble S6. The average polar, apolar and total binding energies (kJ/mol) of the key residues, Table
S7. Physicochemical properties of the selected compounds [69–71], Table S8. ADMET properties of
phenylcarbamoylazinane-1,2,4-triazole amides derivatives (7a–o) [72,73].

Author Contributions: Writing—original draft, A.S. and S.A.E.; Supervision, S.A.E.; Formal analysis,
M.S.; Software, N.T.; Methodology, M.S., F.S. and F.A.Q.; Resources, N.R.; Data curation, N.R. and
S.C. Project administration, S.A.E. and F.S.; Validation, F.A.Q.; Visualization, S.C.; Writing—review &
editing, S.A.E. and J.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Princess Nourah bint Abdulrahman University, grant number
PNURSP2022R12.

Institutional Review Board Statement: Not Applicable.

https://www.mdpi.com/article/10.3390/molecules27133981/s1
https://www.mdpi.com/article/10.3390/molecules27133981/s1


Molecules 2022, 27, 3981 20 of 22

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Acknowledgments: All the authors are very thankful to the Princess Nourah bint Abdulrahman Uni-
versity’s Researchers Supporting Project for providing research grant under Grant No. PNURSP2022R12,
Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Buchwald, P.; Hall, C.; Davidson, C.; Dixon, L.; Dobbs, B.; Robinson, B.; Frizelle, F. Improved survival for rectal cancer compared

to colon cancer: The four cohort study. ANZ J. Surg. 2018, 88, E114–E117. [CrossRef] [PubMed]
2. Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz.

Gastroenterol. 2019, 14, 89. [CrossRef] [PubMed]
3. Tammali, R.K.; Srivastava, S.V.; Ramana, K. Targeting aldose reductase for the treatment of cancer. Curr. Cancer Drug Targets 2011,

11, 560–571. [CrossRef] [PubMed]
4. Crosas, B.; Hyndman, D.J.; Gallego, O.; Martras, S.; Parés, X.; Flynn, T.G.; Farrés, J. Human aldose reductase and human small

intestine aldose reductase are efficient retinal reductases: Consequences for retinoid metabolism. Biochem. J. 2003, 373, 973–979.
[CrossRef] [PubMed]

5. Koutsopoulos, K.; Lavrentaki, V.; Antoniou, I.; Kousaxidis, A.; Lefkopoulou, M.; Tsantili-Kakoulidou, A.; Kovacikova, L.; Stefek,
M.; Nicolaou, I. Design synthesis and evaluation of novel aldose reductase inhibitors: The case of indolyl–sulfonyl–phenols.
Bioorg. Med. Chem. 2020, 28, 115575. [CrossRef]

6. Endo, S.; Matsunaga, T.; Nishinaka, T. The Role of AKR1B10 in Physiology and Pathophysiology. Metabolites 2021, 11, 332.
[CrossRef]

7. Muthenna, P.; Suryanarayana, P.; Gunda, S.K.; Petrash, J.M.; Reddy, G.B. Inhibition of aldose reductase by dietary antioxidant
curcumin: Mechanism of inhibition, specificity and significance. FEBS Lett. 2009, 583, 3637–3642. [CrossRef]

8. Ma, J.; Cao, D. Human aldo-keto reductases: Structure, substrate specificity and roles in tumorigenesis. Biomol. Concepts 2011,
2, 115–126. [CrossRef]

9. Kirtonia, A.; Sethi, G.; Garg, M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell Mol. Life Sci. 2020, 77,
4459–4483. [CrossRef]

10. Kropotova, E.S.; Tychko, R.A.; Zinov’eva, O.L.; Zyryanova, A.F.; Khankin, S.L.; Cherkes, V.L.; Aliev, V.A.; Beresten, S.F.; Oparina,
N.Y.; Mashkova, T.D. Downregulation of AKR1B10 expression in colorectal cancer. Mol. Biol. 2010, 44, 216–222. [CrossRef]

11. Tammali, R.; Reddy, A.B.; Saxena, A.; Rychahou, P.G.; Evers, B.M.; Qiu, S.; Awasthi, S.; Ramana, K.V.; Srivastava, S.K. Inhibition
of aldose reductase prevents colon cancer metastasis. Carcinogenesis 2011, 32, 1259–1267. [CrossRef] [PubMed]

12. Ji, J.; Xu, M.X.; Qian, T.Y.; Zhu, S.Z.; Jiang, F.; Liu, Z.X.; Xu, W.S.; Zhou, J.; Xiao, M.B. The AKR1B1 inhibitor epalrestat suppresses
the progression of cervical cancer. Mol. Biol. Rep. 2020, 47, 6091–6103. [CrossRef] [PubMed]

13. Zhang, L.; Zhang, H.; Zhao, Y.; Li, Z.; Chen, S.; Zhai, J.; Chen, Y.; Xie, W.; Wang, Z.; Li, Q.; et al. Inhibitor selectivity between
aldo-keto reductase superfamily members AKR1B10 and AKR1B1: Role of Trp112 (Trp111). FEBS Lett. 2013, 587, 3681–3686.
[CrossRef] [PubMed]

14. Thun, M.J.; Henley, S.J.; Patrono, C. Nonsteroidal anti-inflammatory drugs as anticancer agents: Mechanistic, pharmacologic, and
clinical issues. J. Natl. Cancer. Inst. 2002, 94, 252–266. [CrossRef] [PubMed]

15. Fiorica, C.; Mauro, N.; Pitarresi, G.; Scialabba, C.; Palumbo, F.S.; Giammona, G. Double-network-structured graphene oxide-
containing nanogels as photothermal agents for the treatment of colorectal cancer. Biomacromolecules 2017, 18, 1010–1018.
[CrossRef] [PubMed]

16. Coseri, S. Natural products and their analogues as efficient anticancer drugs. Mini. Rev. Med. Chem. 2009, 9, 560–571. [CrossRef]
17. Li, J.; Guo, W.J.; Yang, Q.Y. Effects of ursolic acid and oleanolic acid on human colon carcinoma cell line HCT15. World J.

Gastroenterol. 2002, 8, 493. [CrossRef]
18. Balendiran, G.K.; Martin, H.J.; El-Hawari, Y.; Maser, E. Cancer biomarker AKR1B10 and carbonyl metabolism. Chem. Biol. Interact.

2009, 178, 134–137. [CrossRef]
19. Hevir, N.; Šinkovec, J.; Rižner, T.L. Decreased levels of AKR1B1 and AKR1B10 in cancerous endometrium compared to adjacent

non-cancerous tissue. Chem. Biol. Interact. 2013, 202, 226–233. [CrossRef]
20. Kousaxidis, A.; Petrou, A.; Lavrentaki, V.; Fesatidou, M.; Nicolaou, I.; Geronikaki, A. Aldose reductase and protein tyrosine

phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur. J. Med. Chem. 2020, 207, 112742.
[CrossRef]
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