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Abstract: This study aimed to compare antimicrobial resistance (AMR) in extended-spectrum
cephalosporin-resistant and generic Escherichia coli from a One Health continuum of the beef
production system in Alberta, Canada. A total of 705 extended-spectrum cephalosporin-resistant
E. coli (ESCr) were obtained from: cattle feces (CFeces, n = 382), catch basins (CBasins, n = 137),
surrounding streams (SStreams, n = 59), beef processing plants (BProcessing, n = 4), municipal sewage
(MSewage; n = 98) and human clinical specimens (CHumans, n = 25). Generic isolates (663) included:
CFeces (n = 142), CBasins (n = 185), SStreams (n = 81), BProcessing (n = 159) and MSewage
(n = 96). All isolates were screened for antimicrobial susceptibility to 9 antimicrobials and two
clavulanic acid combinations. In ESCr, oxytetracycline (87.7%), ampicillin (84.4%) and streptomycin
(73.8%) resistance phenotypes were the most common, with source influencing AMR prevalence
(p < 0.001). In generic E. coli, oxytetracycline (51.1%), streptomycin (22.6%), ampicillin (22.5%) and
sulfisoxazole (14.3%) resistance were most common. Overall, 88.8% of ESCr, and 26.7% of generic
isolates exhibited multi-drug resistance (MDR). MDR in ESCr was high from all sources: CFeces (97.1%),
MSewage (96.9%), CHumans (96%), BProcessing (100%), CBasins (70.5%) and SStreams (61.4%). MDR
in generic E. coli was lower with CFeces (45.1%), CBasins (34.6%), SStreams (23.5%), MSewage (13.6%)
and BProcessing (10.7%). ESBL phenotypes were confirmed in 24.7% (n = 174) ESCr and 0.6% of
generic E. coli. Prevalence of bla genes in ESCr were blaCTXM (30.1%), blaCTXM-1 (21.6%), blaTEM (20%),
blaCTXM-9 (7.9%), blaOXA (3.0%), blaCTXM-2 (6.4%), blaSHV (1.4%) and AmpC β-lactamase blaCMY (81.3%).
The lower AMR in ESCr from SStreams and BProcessing and higher AMR in CHumans and CFeces
likely reflects antimicrobial use in these environments. Although MDR levels were higher in ESCr as
compared to generic E. coli, AMR to the same antimicrobials ranked high in both ESCr and generic
E. coli sub-populations. This suggests that both sub-populations reflect similar AMR trends and are
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equally useful for AMR surveillance. Considering that MDR ESCr MSewage isolates were obtained
without enrichment, while those from CFeces were obtained with enrichment, MSewage may serve
as a hot spot for MDR emergence and dissemination.

Keywords: antimicrobial resistance; extended-spectrum beta-lactamase (ESBL); one health; beef; sewage

1. Introduction

Antimicrobial resistance (AMR) is a critical public health risk, estimated to account for
700,000 human mortalities per year [1,2]. Drivers of AMR include profuse use of antimicrobials
in human and veterinary medicine, often misused in clinical settings or overused to improve the
efficiency of livestock and crop production [3]. Genes associated with AMR can circulate among
bacteria which may contaminate food or water consumed by humans [3–5].

Canada is ranked among the top 10 beef exporters worldwide. In 2016, Canada’s beef export
industry was valued at $2.3 billion, contributing $33 billion worth of goods and services to the nation [6].
Antimicrobials (i.e., antibiotics) are administered to cattle to prevent and treat various diseases such
as liver abscesses [7], foot rot [8] and bovine respiratory diseases (BRD) [9,10]. Owing to the routine
use of antimicrobials common to the same class in both humans and beef, there is a possibility of
antimicrobial use (AMU) in beef contributing to AMR in humans. Some studies have found similar
AMR profiles and prevalence in bacterial species such as Escherichia coli and Salmonella isolates and
AMR genes from cattle, humans, swine and waste streams [11–13]. Several studies have been narrower
in scope, focusing on farms [14], processing plants [15,16] and retail meat [17]. Although a One Health
approach to AMR monitoring has been advocated, most studies have not systematically compared
AMR E. coli isolated across the beef production chain to those obtained from human sources. The One
Health approach acknowledges the interconnectedness of health domains associated with humans,
animals and the environment, and employs an integrated approach to risk management and decision
making. This enables the identification of those segments along the continuum that can best disrupt
the transmission of AMR from the environment to humans [2,18].

Extended-spectrum β-lactam (ESBL) resistant E. coli are of particular public health concern [19]
as they are able to inactivate most β-lactam antimicrobials [20] used to treat associated infections.
Presently, ESBL bacteria are a common source of therapeutic failure due to frequent co-resistance
to multiple last resort antimicrobials [21,22] including colistin (i.e., polymyxin E), aminoglycoside,
and 3rd and 4th generation cephalosporins that are used to treat a significant proportion of nosocomial
infections [23–25]. In veterinary and human medicine, the extended-spectrum cephalosporins which
are a sub-class of ESBL are regarded as critically important [26]. Resistance in extended-spectrum
cephalosporin-resistant E. coli is often encoded by genes such as blaSHV, blaTEM and blaCTX-M [22,27].

Monitoring of cephalosporin-resistant bacteria in agricultural sectors could uncover crucial
information for designing cost-effective actions to minimize the disease burden associated with these
bacterial infections [28]. Considering the impact of such infections on human health, broadening
the scope of monitoring to include AmpC-producing bacteria has also been recommended by the
WHO [18]. A study by Horton et al. [29] found levels of CTX-M-positive E. coli in cattle, pigs and
chickens at 100, 2800 and 5350 CFU/g of feces, respectively. Even though cephalosporin-resistant
E. coli have been reported in cattle, cattle farms and retail beef [30,31], evidence supporting the direct
contribution of livestock production to AMR emergence along the One Health continuum is lacking.
In contrast to the low prevalence of extended-spectrum cephalosporin-resistant E. coli (ESCr) reported
by the Canadian Integrated Program for Antimicrobial Resistance, Cormier et al. recently [32] found a
high prevalence of ESCr in cattle using enrichment methods. The present study aimed to employ a
One Health approach to examine similarities between patterns and prevalence of AMR typical of the
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entire food continuum using generic E. coli and cephalosporin-resistant E. coli in a defined geographic
region of high beef production intensity in Canada.

2. Materials and Methods

Sampling points and details of study area (Figure 1), associated sample collection and AMU
records on farms are published elsewhere [33,34]. Samples were collected and transported to the lab
on ice, with E. coli isolated within 24 h after arrival at the laboratory.
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Figure 1. Details of sample type and source of Escherichia coli isolates investigated for antimicrobial
resistance in a One Health study of the beef production system. Sample location/sites comprised
composite fecal samples collected from penned cattle in feedlots A, B, C and D as well as water samples
from catch basins. Environmental samples comprised constructed wetlands and a creek (adjacent to
feedlot C). Wastewater influent and effluent were collected from two water treatment plants while
samples at a beef processing facility were obtained from carcasses after hide removal, after final wash,
from ground beef and retail meat. Human samples were obtained from blood, urine and abdomen
samples collected from hospital patients in southern Alberta.

2.1. Study Area and Description of Sampled Matrices

2.1.1. Fecal and Water Sampling from Cattle Feces, Catch Basins and Surrounding Streams

Four feedlots in Southern Alberta designated as A, B, and C used conventional production
practices including the use of antimicrobials, while lot D was a commercial feedlot that employed
both conventional and “raised without antimicrobials” practices. Feedlots had a one-time capacity of
15,000–40,000 cattle and were characterized by production conditions typical for western Canadian
feedlots, with open air pens with dirt floors arranged side-by-side with central feed alleys. Animals used
in this experiment were cared for in accordance with the Canadian Council of Animal Care [35].
All procedures and protocols used in this study were reviewed and approved by the University of
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Calgary’s Animal Care Committee (Protocol number AC14-0029). Fresh pen-floor fecal samples were
collected every two months from April 2014 to April 2016. Twenty pens within each feedlot containing
between 100 to 300 cattle were randomly selected, and the same pens were sampled throughout the
two-year study. For each pen, a combined sample of 10 g of feces was obtained from 20 fecal pats
to generate composite pen samples that were transported to the lab in Cary-Blair enteric transport
medium (BD Canada, Inc., Mississauga, ON, Canada).

In each feedlot, runoff from the sampled pens drained into an adjacent catch basin. In feedlot C,
water samples were also obtained from accumulated runoff periodically transferred into a constructed
wetland and from an adjacent ephemeral creek into which the wetland drained. From mid-depth
(≈0.75 m), 1 L of water was collected using a polyethylene bottle attached to a telescopic pole
at four different locations per site, which were combined to generate a composite sample. For the
wetland, one sample was generated by collecting and combining samples from four consistent locations
throughout the study. Water samples were collected monthly from catch basins, the wetland and creeks
from April to October of 2014 and 2015. Subsequently, samples from the creeks were collectively
referred to as surface streams, while the wetland samples were categorized together with samples from
the catch basin. Samples were not collected from these sources from November to March as they were
often frozen.

2.1.2. Wastewater Treatment Plants (WWTP)

In tandem to farm sample collection, a composite of influent (post-grit tank) and effluent (just prior
to release) sewage samples (1 L) was collected bimonthly from WWTP in Calgary and Medicine Hat
from April 2014 to April 2016.

2.1.3. Processing Plants

Protocols for beef processing plant and retail meat sample collection followed procedures published
elsewhere [36,37]. Samples were obtained from ~100 cm2 areas of hides, beef trim and conveyers;
1000 cm2 areas of washed carcasses; and from the whole of the distal surface of each chilled side
(~12 × 500 cm2). Carcasses or conveyer samples were collected by randomly swabbing the surface
with a 2 × 2 sterile gauze pad (Millerdale Pharmacy, Dukal Corporation, Red Deer, AB, Canada)
moistened with 0·1% w/v peptone water (Becton Dickinson Co., Sparks, MD, USA). For ground beef,
200 g was obtained by aseptically removing ground beef from 4–5 kg packs of coarsely ground
chub. Samples were placed in sterile stomacher bags on ice and transported in a cooler to the lab.
Processing plant samples and feedlot fecal samples did not arise from the same animals, although the
feedlots sampled did send cattle to the same processing plant.

2.1.4. Humans

Human clinical samples were randomly selected from blood, urine and abdominal samples
from anonymous individual patients and did not require patient approval or a clinical use permit.
The samples were collected during the same time period as those described above by the Division
of Medical Microbiology, Calgary Laboratory Services (CLS) biorepository. This laboratory services
about 1.5 million people in Calgary and the surrounding rural area. Clinical strains were isolated and
confirmed from samples as described by Pitout et al [38,39].

2.2. Isolation of E. coli

Processing of samples from cattle feces, catch basin, surrounding streams and sewage treatment
followed procedures detailed by Adator et al. [40] and Tymensen et al. [41] to obtain generic E. coli
and ESCr. To isolate ESCr from feedlot samples, 0.5 g of cattle feces was added to 4.5 mL E. coli
broth-cefotaxime (2 µg/mL) and enriched overnight, followed by sub-culture onto MacConkey
plates supplemented with 1 µg/mL of ceftriaxone (MilliporeSigma) [40]. Three distinct red/magenta
lactose-fermenting colonies were subcultured onto tryptic soy agar (TSA)-ampicillin (32 µg/mL)
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(MilliporeSigma) and later archived at −80 ◦C. For catch basins and surrounding streams, ESCr were
isolated by membrane filtration using the US EPA Method 1603 [34,40]. To obtain generic E. coli,
the same procedure, excluding enrichment and selective plates, was used. For samples from the beef
processing plant (BProcessing), swabs were mixed with 10 mL of buffered peptone water (BPW),
stomached for 2 min and incubated overnight at 37 ◦C. For ground beef, ~25 g of ground beef was
incubated overnight at 37 ◦C in 225 mL of BPW. One mL from each resulting culture was added to
9 mL of E. coli enrichment broth containing a Durham tube and 2 µg/mL of cefotaxime, followed by
overnight incubation at 37 ◦C and plating onto MacConkey agar containing 1 µg/mL of ceftriaxone.
The plates were then incubated overnight at 37 ◦C. Samples from catch basin (CBasins), surface streams
(SStreams), sewage treatment (MSewage) and humans (CHumans) were not enriched overnight prior
to plating onto ceftriaxone-supplemented MacConkey plates.

Subsequently, pure putative E. coli colonies obtained from feedlots A, B and D, MSewage and
BProcessing were subjected to indole test (Indole Spot Reagent, Hardy Diagnostics; Santa Maria,
CA, USA). Three colonies positive for the indole reaction were deposited in Brain Heart Infusion
(BHI) broth containing 15% glycerol and in Tris-EDTA (TE) buffer (pH 7.6) for DNA template
extraction and stored at −80 ◦C. E. coli ATCC 25,922 and M. haemolytica 33,396 were included as
indole positive and negative controls, respectively. E. coli was confirmed using the arpA gene for PCR
before archiving [34]. A single colony obtained from antibiotic-supplemented plates with or without
enrichment were collectively referred to as extended-spectrum cephalosporin-resistant E. coli (ESCr).
ESCr isolates originated from CFeces (n = 382), CBasins (n = 137), SStreams (n = 59), BProcessing (n = 4),
MSewage (n = 98) and CHumans (n = 25), while generic E. coli isolates obtained on MacConkey agar
originated from CFeces (n = 142), CBasins (n = 185), MSewage (n = 96), SStreams (n = 81) and
BProcessing (n = 159).

2.3. Antibiograms

A comprehensive panel of antimicrobials was selected on the basis of: (i) use in beef production
systems; (ii) category of medical importance to humans; (iii) adequate representation of antimicrobials
in diverse classes; and (iv) use in phenotypic confirmation of extended-spectrum β-lactam -resistant
E. coli. Resistance of ESCr and generic E. coli to an antibiotic panel (ampicillin, amoxicillin/clavulanic,
ceftiofur, ceftazidime, ceftazidime/clavulanic acid, streptomycin, neomycin, oxytetracycline, florfenicol,
trimethoprim/sulfamethoxazole and sulfisoxazole) was examined using the Kirby–Bauer disk diffusion
susceptibility method according to documents M100-S26 and VET-01S of the Clinical and Laboratory
Standards Institute (CLSI) [42,43]. Briefly, E. coli isolates were retrieved from −80 ◦C and streaked
onto TSA supplemented with 5% sheep blood (PB75, Dalynn Biologicals, Calgary, AB) and incubated
overnight at 37 ◦C. A single colony from each plate was subcultured onto PB75, incubated overnight
at 37 ◦C and then used for ASTs. Isolates were resuspended in saline and density was calibrated to
a 0.5 McFarland turbidity standard. The suspension was streaked onto Mueller Hinton Kirby agar
plates (PM90K) (Dalynn Biologicals). BD BBL™ Sensi-Disc™ (BD) (Becton, Dickinson and Company,
Franklin Lakes, NJ, USA) or Thermo Scientific Oxoid (Dardilly, France) antimicrobial susceptibility
disks were then placed onto the plates. The plates were incubated for 18 h and zone diameters of
inhibition were recorded using BIOMIC V3 Microbiology System (Santa Barbara, CA) using standards
set by the CLSI [42,43]. E. coli American Type Culture Collection (ATCC) 25,922, ATCC 35,218 and
Staphylococcus aureus ATCC 29,213 were used as quality controls [42,44]. Putative extended-spectrum
β-lactamase-resistant phenotypes were assigned if isolates showed an increased zone of inhibition of
≥5 mm for ceftazidime in combination with clavulanic acid versus the zone of inhibition obtained
when tested against ceftazidime alone [42,45].

2.4. Genotypic Characterization of ESBL Resistance

A simplex and two multiplex PCR assays were used to screen 705 ESCr using the primer sets
and conditions previously validated elsewhere, with minor modifications. Multiplex 1 comprised
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blaTEM [46], blaSHV [46], blaOXA [47], and blaCMY [48], multiplex 2 comprised blaCTX-M 1,2,9 [47], while the
simplex identified blaCTX-M [46]. DNA template was prepared by heat lysing each E. coli colony in TE
(pH 7.4) at 99 ◦C for 10 min and the lysate was centrifuged 21,130× g for 5 min (5424 R Eppendorf
Centrifuge). Each 25 µL multiplex PCR reaction comprised 12.5 µL of 1×Qiagen HotStar Plus Multiplex
PCR Master Mix (Qiagen GmbH, Hilden, Germany), 2.5 µL CoralLoad Concentrate, primer-specific
concentration and 2 µL DNA template. Simplex reactions were comprised of 12.5 µL of Qiagen
PCR Master Mix, 2.5 µL coral-load solution, primer-specific concentration and 2 µL DNA template.
Amplification conditions for multiplex 1 were as follows: 95 ◦C for 15 min; 30 cycles of 94 ◦C for
1 min, annealing at 53 ◦C for 1 min, 72 ◦C for 1 min with a final extension for 10 min at 72 ◦C.
For multiplex 2 and simplex reactions, annealing temperature was 60 ◦C. PCR products were subjected
to electrophoresis in 1.5% agarose gel in 1X TAE buffer. E. coli strains previously sequenced with
known β-lactamase genes of interest were used as positive controls and water was used as a no
template control.

2.5. Data Management and Analysis

Descriptive analysis comparing the distributions of resistance (R), intermediate (I) and susceptible
(S) E. coli, MDR and ESBL-resistant phenotypes as well as β-lactamase genotypes was performed
with PROC FREQ (SAS software, version 9.4 SAS Institute, Cary, North Carolina, USA). Isolates were
categorized as MDR if they showed resistance to antimicrobial agents in ≥2 different antimicrobial
classes [49,50]. To compare the effect of isolate source on AMR in both ESCr and generic E. coli
sub-populations, univariate multinomial logistic regression models were fitted to the data using
the SAS GLIMMIX procedure [13,51]. E. coli population (ESCr or generic E. coli) was modeled as
a random block factor, while antibiotic isolate source and their interaction were considered fixed
effects. Differences in AMR for each antibiotic per source were expressed as odds ratios (OR);
source-specific ORs were specified with a 95% confidence interval and declared significant at p < 0.05.
Antimicrobials which were not modeled due to low prevalence of resistance or inability for the model
to converge included neomycin in ESCr and ceftiofur, ceftazidime, trimethoprim-sulfamethoxazole
and neomycin in generic E. coli. Since not all bla genes are indicative of ESBLs, isolates were designated
as cephalosporin-resistant, β-lactamase genotype-positive if they possessed one or more of blaSHV,
blaTEM, blaOXA and blaCTXM and designated as a pAmpC genotype-positive if they possessed blaCMY.
To examine the associations between the number or type of genes present and MDR phenotype
per source, separate binary logit analyses were performed using logistic regression [52] and effects
were considered significant at p < 0.05 [53]. For source effect analyses of AMR phenotypes and
β-lactamase/pAmpC genes in ESCr, CHumans and MSewage ESCr isolates were categorized together
as human-associated E. coli designated HM (total n = 123). ESCr BProcessing isolates were not included
in the analyses due to the low number of isolates obtained.

3. Results

3.1. Antimicrobial Resistance in Extended-Spectrum Cephalosporin-Resistant E. coli and Generic E. coli

A total of 705 ESCr strains and 663 generic E. coli were examined for antimicrobial susceptibility
to nine antimicrobial agents and two combinations. For ESCr, prevalence of resistance ranked
as oxytetracycline (87.7%), followed by ampicillin (86%), streptomycin (73.9%), ceftiofur (70.2%),
sulfisoxazole (66.8%), trimethoprim-sulfamethoxazole (43.4%) and neomycin (3.7%) (Figure 2).
Generic E. coli exhibited the highest prevalence of resistance to oxytetracycline (51.1%), followed
by streptomycin (22.6%), ampicillin (22.5%), sulfisoxazole (14.3%), trimethoprim-sulfamethoxazole
(3.6%), ceftiofur (0.9%), ceftazidime (0.8%) and neomycin (0.5%) (Figure 2). In both populations,
resistance to oxytetracycline and ampicillin was prevalent, while neomycin resistance was the least
common. The overall prevalence of resistance to antimicrobials was higher (p < 0.001) for ESCr than
for generic E. coli.
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Figure 2. Antimicrobial resistance distribution among generic (n = 663) and extended-spectrum
cephalosporin-resistant (n = 705) Escherichia coli. Legends: S—Susceptible; I—Intermediate;
R—Resistance. OXYT—Tetracycline; STEP—Streptomycin; AMPI—Ampicillin; SULF—Sulfisoxazole;
FLOR—Florfenicol; AMCL—Amoxicillin/clavulanic acid; TMSZ—trimethoprim/sulfamethoxazole;
CTIO—Ceftiofur; CTZD—Ceftazidime; NMYN—neomycin.

Overall AMR prevalence among ESCr from various sources (CFeces, CBasins, MSewage,
BProcessing, MSewage, and CHumans) differed (p < 0.001; Table 1). ESCr from CFeces exhibited
high levels of resistance to oxytetracycline (98.4%) followed by ampicillin (96.3%), streptomycin (89.0%),
sulfisoxazole (85.1%), ceftiofur (78.2%), florfenicol (77.2%), amoxicillin clavulanate (71.7%),
ceftazidime (65.4%), trimethoprim-sulfamethoxazole (51.0%) and neomycin (4.9%; Table 1).
Although less common than in CFeces, resistance to oxytetracycline, ampicillin and streptomycin was
also most prominent in CBasins and SStreams isolates. Resistance to neomycin was rare, regardless of
isolate source. ESCr from MSewage and CHumans did not exhibit specific similarities in AMR
trends. In MSewage, ESCr exhibited the highest resistance to ampicillin (99%) and ceftiofur (93.9%),
while clinical isolates from humans showed the highest resistance to ampicillin (100%), ceftiofur (92%)
and oxytetracycline (84%; Table 1).

Comparison of source among ESCr (Table 1; Table S1a–i; Figure S1) revealed that for all
antimicrobials, resistance was higher in CFeces than in CBasins and SStreams isolates (p ≤ 0.002),
which did not differ (p > 0.2). CFeces isolates were more (p ≤ 0.001) resistant to oxytetracycline (98.4%),
streptomycin (89.0%), sulfisoxazole (85.1%), florfenicol (77.2%), amoxicillin/clavulanate (71.7%) and
ceftazidime (65.4%) than HM isolates (CHumans and MSewage isolates combined), which averaged
70.1%, 46.5%, 53.9%, 6.6%, 30.9% and 31.9%, respectively. In contrast, ceftiofur resistance was
higher (p = 0.01) in HM than CFeces isolates. HM isolates also showed higher (p ≤ 0.01) resistance
than CBasins and SStreams to ampicillin, ceftiofur, ceftazidime and trimethoprim-sulfamethoxazole.
Florfenicol resistance levels were higher in CBasins (45.3%) and SStreams (28.8%) isolates than
in HM isolates (6.6%). For almost all antimicrobials, HM isolates differed in AMR prevalence
from those obtained directly from cattle or surrounding environments (Table 1; Table S1a–i).
Additionally, an antibiotic*source interaction (p < 0.001) was observed for the prevalence of
resistance to some antimicrobials, associated specifically with isolates from CBasins, CFeces and
HM. Synergistic interactions associated with slightly higher resistance to specific antimicrobials
included HM*amoxicillin/clavulanate, sulfisoxazole (p ≤ 0.001), both CBasins and HM*ampicillin,
ceftazidime and ceftiofur (p ≤ 0.001) and CFeces*florfenicol (p < 0.04), while isolates from all three of
these sources were associated with higher resistance to trimethoprim-sulfamethoxazole (p ≤ 0.001).
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Table 1. Trends of antimicrobial resistance prevalence in extended-spectrum cephalosporin-resistant E. coli (ESCr) and generic E. coli populations with specificity to
sample origin, expressed as percentages.

Prevalence (%) of antimicrobial
resistance in extended-spectrum
cephalosporin E. coli per source

Environment OXYT AMPI STEP SULF CTIO FLOR AMCL CTZD TMSZ NMYN

CFeces 98.4 96.3 89 85.1 78.3 77.2 71.7 65.4 51 5

CBasins 88.3 62.8 64.2 43.1 39.4 45.3 33.6 33.6 27 0.7

SStreams 71.2 45.8 52.5 44.1 39 28.8 23.7 27.1 27.1 0

BProcessing 75 100 75 75 100 75 100 75 0 0

MSewage 56.1 99 49 43.9 93.9 9.2 41.8 43.9 46.9 5.1

CHumans 84 100 44 64 92 4 20 20 52 4

Pair wise comparison of resistance
prevalence for sources of
extended-spectrum cephalosporin E. coli

CBasins vs. CFeces CB < CF CB < CF CB < CF CB < CF CB < CF CB < CF CB < CF CB < CF CB < CF nd

CBasins vs. HM* CB > HM CB < HM CB < HM CB > HM CB < HM CB < HM

CBasins vs. SStreams

CFeces vs. HM* CF > HM CF > HM CF > HM CF < HM CF > HM CF > HM CF > HM

CFeces vs. SStreams CF > SS CF > SS CF > SS CF > SS CF > SS CF > SS CF > SS CF > SS CF > SS

HM* vs. SStreams HM > SS HM > SS HM > SS SS > HM HM > SS HM > SS HM > SS

Prevalence (%) of antimicrobial
resistance in generic E. coli per source

CFeces 88.7 13.4 41.5 25.4 0.7 12 1.4 0.7 6.3 0

CBasins 72.4 17.3 29.2 18.4 1.1 9.7 1.6 1.1 2.2 1.1

SStreams 44.4 8.6 22.2 12.3 0 8.6 1.2 0 7.8 1.2

BProcessing 19.5 44 5.7 3.8 0 1.3 18.9 0 1.9 0

MSewage 12.5 21.9 10.4 9.4 3.1 0 1 2.1 4.2 0

Pair wise comparison of resistance
prevalence for sources of generic E. coli

CBasin vs. CFeces CB < CF nd nd nd nd

CBasins vs. BProcessing CB > BP CB < BP CB > BP CB > BP CB < BP

CBasins vs. MSewage CB > MS CB > MS

CBasins vs. SStreams CB > SS

CFeces vs. BProcessing CF > BP CF < BP CF > BP CF > BP CF > BP CF < BP

CFeces vs. MSewage CF > MS CF > MS CF > MS

CFeces vs. SStreams CF > SS SS < CF

BProcessing vs. MSewage BP > MS

BProcessing vs. SStreams BP > SS BP > SS BP < SS BP > SS

MSewage vs. SStreams MS < SS

In the ESCr population, E. coli resistance to individual antibiotics differ across sources (p < 0.001), whereas in the generic population, E. coli did not differ across sources (p < 0.99),
although differences were observed per source*antibiotic interaction in both populations (p < 0.001). Pairwise comparisons display significant differences in antibiotic resistance between
locations (0.0 ≤ p ≤ 0.03 for ESCr E. coli, while 0.0 ≤ p ≤ 0.04 for generic E. coli; Table S3). CF—cattle feces, CB—catch basins, SS—Surface streams, BP—Beef processing, MS—Municipal
sewage, CH—Human clinical isolates while HM* represents the total of human clinical and municipal sewage isolates. nd represents antibiotics which were not modeled due to low
prevalence of resistance and as a consequence the model did not converge.
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Generic E. coli isolates from all environments (CFeces, MSewage, SStreams, CBasins and
BProcessing) were the least resistant to neomycin (0.0% to 1.2%), followed by ceftazidime (0.0% to
2.1%). Resistance to individual antimicrobials was higher for generic isolates from CFeces and CBasins
(Table 1; Figure S1). Similar resistance trends in CFeces (oxytetracycline, 88.7% > streptomycin,
41.6% > sulfisoxazole, 25.4%), but at lower frequencies were observed in CBasins (oxytetracycline,
72.4% > streptomycin, 29.2% > sulfisoxazole, 18.4%), with low resistance to ceftazidime, ceftiofur and
neomycin (Table 1; Figure S1). In BProcessing, MSewage and SStreams, resistance to ampicillin
(44.0%, 21.9% and 8.6%) and oxytetracycline (19.5%, 12.5% and 44.4%) was most prevalent (Table 1).
Independently, the source of generic E. coli did not affect the prevalence of AMR (p = 0.998), but an
antibiotic*source interaction was observed (p < 0.001). Oxytetracycline resistance in CFeces (88.7%)
was higher than BProcessing (19.5%; p = 0.03) and MSewage (12.5%; <0.001) (Table 1; Figure S1).

For generic isolates, ampicillin resistance was higher in BProcessing (44.0%; p < 0.001) and
MSewage (21.9%; p = 0.01) than in CBasins isolates. Resistance to amoxicillin/clavulanate in CBasins
isolates was also slightly higher than in CFeces and SStreams (p ≤ 0.02), but less than BProcessing
isolates (p = 0.004). Streptomycin resistance was higher in CFeces (41.5%; p ≤ 0.0013) than MSewage
and CBasins isolates, while sulfisoxazole resistance was higher (p = 0.04) for CFeces than CBasins
isolates. Prevalence of florfenicol resistance did not differ across most sources (p ≥ 0.09), with no
resistance to this antibiotic detected in isolates from MSewage. For most antimicrobials, prevalence of
resistance in generic E. coli population did not differ between CBasins, SStreams and MSewage (Table 1;
Table S1j–o; Figure S1).

3.2. Distribution of Multidrug Resistance in Extended-Spectrum Cephalosporin-Resistant E. coli and Generic
E. coli

Altogether, 88.8% of ESCr were MDR, with the majority resistant to six different classes of
antimicrobials (Table 2). Generic E. coli isolated on antibiotic-free media exhibited MDR in 26.7% of the
isolates (Table 2). Altogether, ESCr collected from MSewage (96.9%), CHumans (96%), CFeces (97.1%)
and BProcessing (100%) exhibited high MDR, with the least MDR observed in isolates from SStreams
(54.2%) (Table 2; Table S3 and Figure S2). With generic E. coli, prevalence of MDR was highest
in CFeces (45.1%), CBasins (34.6%), SStreams (23.5%), MSewage (13.6%) and BProcessing (10.7%)
(Table 2; Figure S2). Confirmed ESBL phenotypes were more prevalent in ESCr isolates from
CHumans (64%), followed by MSewage (48%), CFeces (22.5%), SStreams (15.3%) and CBasins
(10.9%), with no ESBL phenotypes identified within BProcessing (Table 3). The most common MDR
profiles in ESCr were oxytetracycline, streptomycin and sulfisoxazole with the majority of this group
exhibiting the phenotypes AMPI–CTZD–AMCL–CTIO–STEP–SULF–FLOR–OXYT–TMSZ (41.3%) and
AMPI–CMCL–CTZD–CTIO–STEP–SULF–FLOR–OXYT (35.2%) (Table S2). For generic E. coli the most
common MDR profiles were to OXYT, AMPI and STEP. Combined, 24.7% of the ESCr were positive
for ESBL phenotype, whereas only 0.6% (n = 3 MSewage; n = 1 from BP) of the generic E. coli isolates
exhibited true ESBL phenotypes (data not shown). Hence, confirmed phenotypic ESBL E. coli were not
found among generic E. coli isolated from feedlot environments.

Table 2. Distribution of multidrug resistance in extended-spectrum cephalosporin-resistant E. coli and
generic E. coli population per source.

E. coli Population Multidrug Resistance (%) R6 R5 R4 R3 R2 R1 S

Extended-spectrum
cephalosporin-resistant

E. coli (n = 705)

Overall MDR in ESCr E. coli 45.2 17.9 2.3 15.6 7.8 7.4 3.8
Cattle feces (n = 382) 64.4 19.6 0.3 12.0 0.8 2.6 0.3
Catch basin (n = 137) 34.3 6.6 0.0 19.0 13.1 19.7 7.3

Surface streams (n = 59) 28.8 6.8 0.0 11.9 6.8 18.6 27.1
Municipal sewage (n = 98) 5.1 29.6 12.2 22.4 27.6 3.1 0.0

Beef processing (n = 4) 75.0 0.0 0.0 0.0 25.0 0.0 0.0
Human (n = 25) 4.0 36.0 12.0 36.0 8.0 4.0 0.0
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Table 2. Cont.

E. coli Population Multidrug Resistance (%) R6 R5 R4 R3 R2 R1 S

Generic E. coli (n = 663)

Overall MDR in generic E. coli 0.6 2.9 4.4 9.2 9.7 37.9 35.4
Cattle feces (n = 142) 0.7 4.9 7.7 14.1 17.6 45.1 9.9
Catch basin (n = 185) 1.6 3.8 4.9 11.9 12.4 40.5 24.9

Surface streams (n = 81) 0.0 3.7 4.9 7.4 7.4 21.0 55.6
Municipal sewage (n = 96) 0.0 0.0 5.2 5.2 3.1 15.6 70.8
Beef processing (n = 159) 0.0 1.3 0.0 5.0 4.4 50.3 39.0

S—% susceptible; R—% resistance to specific number of antimicrobial classes, represented 1–6. Total of 88.8% of
extended-spectrum cephalosporin-resistant isolates showed MDR phenotypes and were resistant to antimicrobials
belonging to at least two different antimicrobial classes, while 26.7% of generic E. coli isolates were MDR.

Table 3. Proportion of true ESBL phenotypes andβ-lactamase among extended-spectrum cephalosporin-
resistant E. coli isolates from multiple sources.

Source Phenotypic
Confirmatory Test β-Lactamase Genes

Sources ESBL non-ESBL SHV TEM OXA CTXM CTXM 1 CTX-M 2 CTX-M 9 CMY
Human 64.0 36.0 0.0 48.0 28.0 96.0 72.0 24.0 24.0 32.0

Municipal sewage 48.0 52.0 3.1 34.7 14.3 67.3 33.7 19.4 28.6 50.0
Cattle feces 22.5 77.5 1.8 15.4 0.0 25.4 18.6 5.2 5.8 87.2
Catch basin 11.7 88.3 0.0 19.7 0.0 11.7 11.7 0.0 0.0 91.2

Surface water 15.3 84.7 0.0 15.3 0.0 15.3 15.3 0.0 0.0 93.2
Processing plant 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0

Total ESBL prevalence was 24.7% in extended-spectrum cephalosporin-resistant E. coli sub-population (n = 705).
ESBL phenotypic confirmation was achieved using the combination disk method such that a ≥5-mm increase in
zone diameter for ceftazidime tested in combination with clavulanate vs the zone diameter of ceftazidime when
tested alone equaled confirmed phenotypes.

3.3. AMR Determinants of Extended-Spectrum Cephalosporin-Resistant E. coli

Overall, 40.9% of the ESCr population possessed at least one cephalosporin-resistant β-lactamase
gene, with 81.3% of isolates possessing pAmpC blaCMY. All (100%) E. coli isolates of human origin
possessed ≥1 cephalosporin-resistant β-lactamase gene, followed by isolates from MSewage (80.6%),
CFeces (35.3%), CBasins (27.0), SStreams (22.0%) and BProcessing (0%) (Table S3). Trends of ESBL
phenotypes followed a similar pattern as we found for β-lactamase genotypes CHumans > MSewage
> CFeces > CBasins > SStreams > BProcessing, but prevalence of ESBL phenotypes were generally
lower than the identification of β-lactamase determinants (Table 3; Table S3), with a higher diversity of
genes occurring in MSewage isolates (Table 3; Table S3). However, no apparent trends were observed
between β-lactamase and pAmpC genotypes and MDR phenotypes relative to source, although the top
three sources (CHumans, MSewage and CBasins) remained consistent for both MDR and β-lactamase
genotypes (Table 3, Figure S2 and Table S3). Assessment of individual bla genes per source revealed that
most were blaCTX-M genes. Extended-spectrum cephalosporin-resistant E. coli from CFeces harbored
blaCTX-M (25.4%), followed by blaCTX-M-1 (18.6%), blaTEM (15.4%), blaCTX-M-9 (5.8%), blaCTX-M-2 (5.2%)
and blaSHV (1.8%), while blaOXA was not detected. Clinical isolates tended to be higher in blaCTX-M
(96%) and blaCTX-M-1 (72%), followed by blaTEM (48%) and blaOXA (28%) (Table 3). For the remaining
sources, MSewage isolates also harbored blaCTX-M (67.3%), SStreams isolates blaCTX-M and blaTEM (15.3%
each) and CBasins isolates blaTEM (19.7%). SStreams and CBasins isolates also exhibited the highest
prevalence of blaCMY at 93.2% and 91.2% respectively, with a lower level of this determinant (32%) in
CHumans isolates.

Generally, the source of isolate was found to influence MDR phenotypes in the ESCr population
(p < 0.004), although the exact or relative number of genes did not influence MDR. Additionally,
when the effect of the presence or absence of a single gene was examined, statistical analyses revealed
that MDR prevalence was not affected by the presence of just a single gene. Examination of the effect of
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specific bla/pAmpC gene types also revealed that the presence of the genes (SHV, TEM, OXA, CTX-M,
CTXM 1, CTX-M 2, CTX-M 9 and CMY) did not influence the prevalence of MDR.

4. Discussion

4.1. Overall and Longitudinal Antimicrobial Resistance

In this investigation, enrichment procedures were used to increase the likelihood of isolating
extended-spectrum cephalosporin-resistant E. coli (ESCr) within the beef production system. This study
is the first to comprehensively assess AMR ESCr and generic E. coli in beef production systems from
the perspective of a One Health continuum within the same geographical region.

In the present study, oxytetracycline, ampicillin and streptomycin resistance were the highest
in both ESCr and generic E. coli. The generally high levels of AMR in ESCr as opposed to generic
E. coli is a potential reflection of the enrichment procedure selecting for ESCr. Genes such as blaSHV,
blaTEM and blaCTX-M are often borne on mobile genetic elements that code for resistance to multiple
antimicrobials [54–56]. Although enrichment for ESCr was expected to only isolateβ-lactamase resistant
E. coli, 4.1% of isolates were susceptible to ampicillin. Factors such as silencing of resistance genes in
E. coli [57] and the loss of plasmids in the absence of selective pressure may explain this finding [58–60].

Overall, high prevalence of AMR in ESCr agrees with reports of resistance to 3rd generation
cephalosporin E. coli (3GCr) isolated from the beef processing continuum [15], as well as wild birds
and associated nearby water sources [61]. Schmidt et al. [15] reported AMR for ampicillin, ceftiofur,
tetracycline and streptomycin (100%, 100%, 97.3% and 65.3%) in 3GCr E. coli, while our study found that
85.6%, 69.7%, 87.1%, 73.4% and 66.4% of ESCr were resistant to ampicillin, ceftiofur, oxytetracycline,
streptomycin and sulfisoxazole, respectively. Similarly, in generic E. coli isolated from conventionally
raised beef cattle [62] and from dairy cattle, swine, horses, sheep, goats, chickens, cats, dogs, deer, ducks,
geese, human sewage and surface water, resistance to tetracycline, streptomycin and sulfisoxazole was
most common [13].

Significant differences in AMR profiles associated with various isolate sources coincide with
findings by Ojer-Usoz et al. [63] where they investigated ESBL E. coli from food, wastewater, rivers,
farms and humans and found higher cefepime (a 4th GC) resistance in food and human isolates
(94.2% and 94.6%, respectively), compared to farm isolates (2.0%). In our study, prevalence of AMR
was higher in CFeces compared to CBasins, SStreams, BProcessing and HM (MSewage and CHumans
combined), with the exception of ampicillin, ceftiofur and trimethoprim/sulfonamide. In North America
and the United Kingdom, tetracyclines, penicillins and aminoglycosides tend to be among the major
classes of antimicrobials used in beef production [7,64]. Widespread use of tetracyclines in livestock
increases tetracycline-resistant E. coli in feces [62,65]. In this study, the conventional feedlots used
tetracycline so it is not surprising that tetracycline resistance was the highest in E. coli isolated at the
point source of utilization and declined with movement from CFeces to CBasins and surrounding
water ways.

Runoff water from pens collects in CBasins, and from there it may enter the surrounding
environments, resulting in the prevalence of resistance to oxytetracycline, ampicillin, and streptomycin
and neomycin being similar in E. coli isolated from these environments. Considering that AMR
prevalence of CFeces > CBasins > SStreams isolates, CFeces may serve as a point source from which
antibiotic residues as well as AMR bacteria and genes may be disseminated. The decreasing AMR
proportions in CBasins and SStreams could reflect decreasing selective pressure as a result of lower
antibiotic residue concentrations in these environments as compared to CFeces [66,67]. According to
Sayah et al. [13], similarities of AMR patterns in different farm sources suggest a common source of
resistant bacteria, an assertion that agrees with our findings. Likewise, Ibekwe et al. [68] found that
elevated levels of AMR E. coli in surface water coincided with nonpoint sources of fecal contamination
from both agricultural and human sources.
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ESCr from MSewage and CHumans differed in the top-three resistant phenotypes (ampicillin >

ceftiofur > oxytetracycline) as compared to ESCr (oxytetracycline > ampicillin > streptomycin) isolated
from cattle. Symptomatic correlations between AMR and selective antibiotic pressures are expected
when both antimicrobials and bacterial isolates are derived from a common source, as is the case
when human feces enter surface waters in the form of sewage effluent [69]. The similarity in AMR
phenotypes in MSewage and CHumans E. coli isolates is consistent with this observation.

Generic E. coli isolated from CFeces, CBasins, SStreams and MSewage were most often resistant
to oxytetracycline, streptomycin, sulfisoxazole and ampicillin. Antibiograms of CFeces isolates,
which aligned with those from CBasins suggests that catch basins restricted the flow of AMR E. coli into
surrounding surface waters. Generic BProcessing isolates were resistant to ampicillin, oxytetracycline
and amoxicillin-clavulanic acid, likely reflecting the frequent use of penicillins and tetracyclines in beef
production [13].

4.2. Resistance to Antimicrobial Agents of Clinical Relevance Relative to Source

4.2.1. Oxytetracycline

High prevalence of resistance to oxytetracycline in E. coli has been reported in several other studies
related to beef cattle and the environment [13,62,66,68]. This finding is not surprising as tetracycline is
a first-line antibiotic used in beef cattle to control liver abscesses and bovine respiratory disease [7,13].
Interestingly, oxytetracycline resistance in generic MSewage isolates in this study was less than in
a study by Ibekwe et al. [68], where the highest tetracycline resistance was found in isolates from
WWTPs (~27%), followed by urban and agricultural runoff.

4.2.2. Penicillins

Schmidt et al. (2013) and Volkova et al. (2012) reported 100% ampicillin and 64.7% amoxicillin
resistance in 3GCr E. coli from CFeces, hides, pre-evisceration and final carcasses. In our study,
96.3% and 71.7% of ESCr isolates from CFeces were resistant to ampicillin and amoxicillin/clavulanic
acid, respectively, while all human isolates in our study were resistant to ampicillin. A USDA
report examining E. coli isolates from 1950–2002 consistently found more resistance to antimicrobials
such as penicillin, which have been used for decades in clinical and veterinary medicine [70].
In another report, ≤2% of 600 isolates from agricultural sources and urban runoff were resistant
to amoxicillin-clavulanic [68]. Consequently, it can be speculated that there are other prevailing
conditions such as antibiotic residues at the point of isolation which may impact ampicillin and
amoxicillin/clavulanic acid resistance in specific populations.

Resistance to ampicillin and amoxicillin/clavulanic acid was consistently higher in both ESCr and
generic BProcessing isolates. As such, it makes sense to surmise that irrespective of sub-population,
β-lactamase-resistant E. coli could potentially contaminate beef products.

4.2.3. Aminoglycoside

Streptomycin resistance was found to range between 44% (CHumans) and 89.1% (CFeces) in
ESCr. Coincidentally, high streptomycin (84.2%) and low kanamycin resistance (5.3%) were reported
in generic E. coli from surface water. [66]. It is interesting to note that our isolates showed neomycin
resistance ranging between 0% and 5.1% for ESCr, while very few generic E. coli were neomycin
resistant. In generic isolates, streptomycin resistance ranged from 5.7% in BProcessing isolates to
41.5% in CFeces. These results are consistent with the observation of very low neomycin and higher
streptomycin resistance in E. coli from feedlot cattle [62]. In the current investigation, CHumans ESCr

exhibited low prevalence of streptomycin and neomycin resistance, a finding consistent with those
of others [71]. E. coli from CFeces and CBasins in both sub-populations showed high resistance to
streptomycin even though it was not administered to cattle, suggesting possible co-selection for this
resistance when other antimicrobials such as tetracyclines are administered [70,72,73].
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4.2.4. Trimethoprim/Sulfonamide

Trimethoprim-sulfamethoxazole is a first-line therapy for acute urinary tract infection (UTI), one of
the most common infections in outpatients [74,75]. We found sulfamethoxazole-trimethoprim resistance
to be rare in both generic and ESCr, as have others [13]. Sulfamethoxazole-trimethoprim resistances
between 0.0% and 2.2% and sulfisoxazole between 0.0% and 13.98% have been reported in generic
E. coli from livestock, companion animals, farm environments, surface water and human septage [13],
compared to 1.9% (BProcessing) to 6.3% (CFeces) in generic E. coli in our study. Since this antibiotic is
mainly used in human medicine, it is unsurprising that clinical human isolates demonstrated a higher
prevalence of resistance than those from the beef production system.

4.2.5. Phenicol

It has been reported that florfenicol use in livestock co-selects for chloramphenicol
resistance [76–78]. Florfenicol is approved for use in treating BRD. Donaldson et al. [76] reported 93%
florfenicol and 94% chloramphenicol resistance in 3GCr E. coli isolated from dairy cattle, while 92% of
E. coli isolated at necropsy or from fecal samples of calves with diarrhea were florfenicol resistant [79].
In the present study, florfenicol resistance in ESCr was 77.4% in CFeces, while it was low ≤ 45%
in isolates from other environments. Similarly, Escherichia/Shigella, Pseudomonas, Sphingobactaria,
and Brevundimonas obtained from a university hospital outlet and municipal sewage inlet on
sulfamethoxazole/trimethoprim and streptomycin-selective plates exhibited florfenicol resistance
in ≤45% of the isolates [80]. Results from our study suggest that florfenicol resistance in E. coli was
generally infrequent in human-associated sources, likely due to limited use of phenicols in humans.

4.2.6. Third-Generation Cephalosporins and ESBL Phenotype Distribution

In cattle feedlots, commensal 3GCr E. coli represent a sub-population of generic E. coli associated
with hide and fecal populations [81,82]. We observed that ceftiofur resistance (93.9%) in MSewage
ESCr isolates was substantially higher than in all other sources except for CHumans isolates (92%).
Ceftiofur (38.9%) and ceftazidime (27.1%) resistance in SStreams ESCr isolates was comparably
lower than cefotaxime-resistant (77%) ESBL E. coli isolated from rivers and lakes in Switzerland [83].
Schmidt et al. [81] and Volkova et al. [82] also reported ceftiofur and ceftriaxone resistance of 100% in
3GCr E. coli from cattle feces, hide and carcasses as compared to 66.7% of isolates from BProcessing
and 65.5% from CFeces being resistant to ceftazidime in our study. It is possible that differences in
the prevalence of 3GC resistance within ESCr populations are attributable to differences in isolation
methods, including the specific type and concentration of antimicrobial used for enrichment. The use
of enrichment broths containing cephalosporins may also enhance bacterial conjugation and exchange
of resistance plasmids between bacteria [28].

The β-lactam antimicrobials including cephalosporins are routinely used for treating bacterial
infections in humans so that hospitals are a significant source of cephalosporin antimicrobials
in wastewater [84]. Korzeniewska et al. [84] found that the majority of generic E. coli in three
different hospital sewage plants were resistant to cefotaxime and ceftazidime, a result similar to
ours with MSewage ESCr isolates, although this contrasted the low resistance in our generic E. coli
isolates. ESBL E. coli were readily obtained from MSewage even without enrichment with ceftriaxone.
Discharge of untreated sewage containing antimicrobial residues and resistant bacteria from humans
and animals may contribute to the emergence and spread of AMR bacteria in aquatic environments [80].
It is possible that antimicrobial residue levels in MSewage exert sufficient selective pressure for
the development of MDR phenotypes. It was not surprising that clinical isolates obtained without
enrichment showed the highest ESBL phenotype, as β-lactams are widely used in Canadian clinics.

Phenotypic ESBL isolates were not detected in BProcessing samples, an observation that agrees
with others that did not detect ESBL E. coli in raw milk or minced beef, despite enrichment [85].
Furthermore, these observations suggest that there is a decrease in ESBL bacteria after defecation
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as one moves down the production chain [86]. The overall low levels of phenotypic ESBL E. coli
reported suggests that without enrichment, negligible levels would have been detected within the beef
production environment.

4.3. Prevalence of Multidrug Resistance

Of the 88.8% MDR ESCr in the current study, most (45.1%) were resistant to
antimicrobials in six different drug classes. The most common MDR patterns in ESCr involved
combinations of oxytetracycline, ampicillin, streptomycin, ceftiofur, florfenicol and sulfisoxazole,
whereas oxytetracycline, streptomycin and sulfisoxazole were common in generic E. coli. Others have
also found high levels of oxytetracycline, ampicillin and streptomycin resistance in generic E. coli isolates
from feedlot cattle, farm environments, human septage and surface water [13,62]. In concordance with
results from Ojer-Usoz et al. [63], MDR ESCr exceeded 60% in all sources. Ojer-Usoz et al. [63] found
levels of MDR in ESBL E. coli ranging between 58% and 86.2% in food, WWTP, rivers, farms and humans.
Numerous investigators note that the administration and presence of even a single antimicrobial can
select for MDR strains in both humans and animals [87–89]. Consequently, it is likely that the high
MDRs reflect long-term exposure of bacteria to specific antimicrobials [87]. Long-term tetracycline use
confers resistance to other antimicrobial agents via co-selection, as tet genes and other resistance genes
often share common integrons, plasmids or transposons [65,90].

4.4. AMR Determinants Associated with Extended-Spectrum Cephalosporin-Resistant E. coli

4.4.1. Occurrence of Bla Genes

Per source, bla genes from CFeces, MSewage and CHumans isolates were mostly blaCTX-M in
agreement with studies conducted in Canada [27,32] and other countries [91,92]. Enterobacteriaceae
possessing blaCTX-M variants have been isolated from food [93], poultry [94], companion animals [95,96],
clinical settings [97–99] and wastewater [100,101]. Most clinical isolates in the current study possessed
blaCTX-M (96%) a finding that agrees with Ojer-Usoz et al [63]. In MSewage isolates, we also detected
blaCTX-M (67.3%), a result that aligns with clinical and human sewage isolates obtained by others [84,102].

The SHV- and TEM-type genes have also been detected in livestock and meat products [63,103],
while OXA has been rarely reported in livestock. Brinas et al. [104] detected SHV- or OXA-type
β-lactamases in only 3% of 124 ampicillin-resistant E. coli recovered from food and feces of healthy
animals and humans. This is only slightly higher than the level of SHV (1.4%) we observed in
ESCr. Interestingly, the OXA-type genes in our study were unique to MSewage and clinical
isolates, while SHV-type were specific to CFeces and MSewage. Agga et al. [11] also reported
a higher diversity of resistance genes in municipal wastewater than in livestock environments.
In wastewater, the commonality of homologous regions within complex DNA elements enhances
recombination [105,106], a response that may account for the high diversity of bla genes in MSewage.
The complete absence of blaOXA in our isolates from the beef production environment agrees with
Ojer-Usoz et al. [63], who found blaOXA-1 (20%) only in clinical E. coli isolates and not in isolates from
food, farm or aquatic environments. OXA-type β-lactamases have often been reported in clinical
Enterobactreacea around the world as well as from WWTP, with some variants implicated in hospital
outbreaks [107–109].

4.4.2. Occurrence of AmpC Gene

Few investigations have assessed the frequency of blaCMY genes in E. coli isolated from food and
environmental matrices as compared to isolates obtained from clinical settings. Of ESCr from cattle
sources, we found blaCMY ranging from 87.2% to 93.2%, in contrast to the lower prevalence of 32% to
50% in human sources. In Canada, blaCMY has mostly been detected in clinical or hospital-associated
isolates and infrequently in food-associated Enterobacteriaceae, while others have suggested that food
sources may be an emerging concern [110–112].
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5. Conclusions

Overall, AMR profiles of E. coli from the various sources reflected corresponding antimicrobial
use in those segments of the continuum. A point source effect on AMR occurrence, where sources
with antibiotic use reflected high AMR E. coli was further underscored by the similarity of AMR
patterns between CFeces and CBasins. As such, continuing to challenge both the human medical and
veterinary communities to monitor use protocols and improve antimicrobial stewardship practices in
line with community, national and global AMR reduction goals. Continuous monitoring of critically
important antimicrobials such as neomycin should be considered as a means of detecting early changes
in resistance trends and onset of AMR emergence. E. coli isolation with enrichment enhanced the
sensitivity of detecting ESBL-producing bacteria. ESBL phenotypes within ESCr were more frequently
associated with human than cattle sources. In generic E. coli, MDR was lowest in BProcessing isolates,
suggesting that strategies employed during beef processing reduce the risk of MDR isolates in final
meat products.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/2076-2607/
8/6/885/s1.
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