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Abstract: Dystonia diagnosis is based on clinical examination performed by a neurologist with
expertise in movement disorders. Clues that indicate the diagnosis of a movement disorder such as
dystonia are dystonic movements, dystonic postures, and three additional physical signs (mirror
dystonia, overflow dystonia, and geste antagonists/sensory tricks). Despite advances in research,
there is no diagnostic test with a high level of accuracy for the dystonia diagnosis. Clinical neuro-
physiology and genetics might support the clinician in the diagnostic process. Neurophysiology
played a role in untangling dystonia pathophysiology, demonstrating characteristic reduction in inhi-
bition of central motor circuits and alterations in the somatosensory system. The neurophysiologic
measure with the greatest evidence in identifying patients affected by dystonia is the somatosensory
temporal discrimination threshold (STDT). Other parameters need further confirmations and more
solid evidence to be considered as support for the dystonia diagnosis. Genetic testing should be
guided by characteristics such as age at onset, body distribution, associated features, and coexistence
of other movement disorders (parkinsonism, myoclonus, and other hyperkinesia). The aim of the
present review is to summarize the state of the art regarding dystonia diagnosis focusing on the role
of neurophysiology and genetic testing.
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1. Introduction

Dystonia is a term used to identify hyperkinetic movement disorders in which dystonia
is the prominent feature. However, dystonia can also be present in other conditions.
According to the etiology, dystonia can be distinguished as acquired, inherited, or idiopathic.
The diagnosis of dystonia is based on clinical examination conducted by physicians with
expertise in movement disorders through a careful examination of the phenomenology
of the condition that allows for a classification of dystonia. For the diagnosis of dystonia
syndrome, the examiner should follow the definition of dystonia approved in the last
expert consensus [1], articulated in three subdefinitions:

1. Dystonia is a movement disorder characterized by sustained or intermittent muscle
contractions causing abnormal, often repetitive, movements, postures, or both.

2. Dystonic movements are typically patterned, twisting, and may be tremulous.
3. Dystonia is often initiated or worsened by voluntary action and associated with

overflow muscle activation.

The examiner should focus on the classic five physical signs of dystonia syndromes:
two main physical signs (dystonic movements and dystonic posture) and three additional
physical signs (mirror dystonia, overflow dystonia and geste antagonists/sensory tricks) [2,3].
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The role of laboratory analysis, neuroimaging studies, neurophysiology, and genetic
tests is to support the etiology definition of the disease, according to the Axis II of Dystonia
classification [1,4].

The aim of the present review is to summarize the state of the art regarding dystonia
diagnosis focusing on the role of neurophysiology and genetic testing.

2. Clinical Neurophysiology

Clinical neurophysiology techniques such as EMG mapping [2,5] allow clinicians
to support the diagnosis of dystonia and to explore the activity of individual muscles
which is not always easy to achieve with a clinical inspection alone. In addition, clinical
neurophysiology with different techniques, such as transcranial magnetic stimulation
(TMS) [6,7], transcranial direct current stimulation (tDCS) [8,9], or the newest transcranial
focused ultrasound stimulation (tFUS) [10–12], allow clinicians to explore in a non-invasive
way the brain functions In recent years, these techniques have been widely used as tools to
characterize distinctive features and improve diagnostic accuracy for different movement
disorders [13], particularly parkinsonian syndromes [14–16], tremor syndromes [17–19],
myoclonus [20], and dystonia [21]. The literature includes several studies that use different
neurophysiological tests to assess dystonia [22] (Table 1). Despite the amount of evidence,
most of the studies on dystonia neurophysiology have a small sample size and focus on
specific forms of dystonia (e.g., DYT-TOR1A); therefore, results are not always generalizable
to all forms of dystonia. Neurophysiology assessment is not formally included in the
diagnostic process [1]; however, neurophysiological tests can support the diagnosis.

Since the early 1980s, neurophysiology has been used to characterize dystonia patho-
physiology. Most studies were performed in focal hand dystonia (FHD) [22]. At first,
dystonia was classified as a basal ganglia (BG) disorder; however, in recent years, evidence
points to a disorder arising from a complex network system involving the cerebral cortex
(motor and sensory area), the basal ganglia, the brainstem, and the cerebellum [43,44],
suggesting that is it possible that several structures could be simultaneously involved in
the pathogenesis of dystonia subtypes [43,44].

The electromyographic (EMG) pattern observed in dystonia patients records simulta-
neous activation of agonist and antagonist muscles (co-contraction), prolonged duration of
EMG bursts, and involuntary overflow activation of muscles not directly involved in the
movement [3,23].

The most relevant neurophysiological feature shared by all dystonia subtypes is the
reduced inhibition of central motor circuits [22]. This is demonstrated by characteristics
in several structures: (1) at the subcortical level, a reduction of presynaptic inhibition in
the spinal cord has been reported in patients with FHD [24]; (2) at the brainstem level, - a
reduced inhibition in the blink reflex recovery cycle in blepharospasm patients [25] and
an impairment of the trigeminocervical reflex produced by infraorbital nerve stimulation
in torticollis patients was noted [26]; and (3) at the motor cortex level, a loss of inhibition
was demonstrated with several transcranial magnetic stimulation (TMS) protocols. Sev-
eral studies reported abnormalities in dystonic patients of paired pulse protocol as short
intracortical inhibitions (SICI), that is, an inhibition of motor cortex response produced
by a subthreshold conditioning stimulus followed by a supra-threshold stimulus. SICI is
reduced in different subtypes of dystonia [27–29]. Reduced transcallosal inhibition was
also demonstrated in FHD patients with mirror dystonia. In these patients, stimulation of
one hemisphere does not suppress motor responses evoked by a stimulus delivered about
10 ms later over the contralateral hemisphere, as observed in normal subjects [30]. Finally,
the duration of the cortical silent period (SP), the inhibition of ongoing muscular activity
produced by a TMS pulse during muscle contraction, is reduced in dystonic patients [31],
and the lack of suppression could be related to some specific tasks [32].

In recent years, the relevance of the cerebellum in dystonia’s pathophysiology has been
investigated [45]. The eye blink classic conditioning (EBCC) protocols consist of electric
stimulation of the supraorbital nerve. This protocol that involves cerebellar circuits shows
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impairment in focal dystonia patients [33], while it is normal in inherited dystonia caused
by the DYT-TOR1A and DYT-THAP1 gene mutation [34]. A further test evaluates the motor
cortex inhibition produced by cerebellar stimulation. In control subjects, stimulation of one
cerebellar hemisphere produces a suppression of the contralateral motor cortex at intervals
between 5 and 10 ms [46]. Cerebellar inhibition is impaired in dystonic patients [35].

Table 1. Main neurophysiological findings in dystonia.

Neurophysiological Test Results Accuracy Ref.

Lo
ss

in
hi

bi
ti

on

EMG
Prolonged bursts

Co-contraction agonist and antagonist muscles
Overflow to other muscles

NA [23]

Spinal cord reciprocal inhibition Reduced reciprocal inhibition NA [24]

Blink reflex recovery cycle Reduced inhibition of R2 component NA [25]

Short latency
trigemino-sternocleidomastoid

response
Impairment of the trigemino-cervical reflex NA [26]

SICI Reduced in most studies NA [27–29]

IHI Loss of suppression NA [30]

SP Reduced NA [31,32]

C
er

eb
el

um EBCC
Impaired in primary focal dystonia

Normal in DYT-TOR1A and DYT-THAP1
dystonia

NA [33,34]

CBI Absent NA [35]

Se
ns

or
y

A
bn

or
m

al
it

ie
s GOT

Increased SD threshold in blepharospasm, CD,
FHD

Normal in DYT-TOR1A
NA [36]

STDT
Abnormally increased STDT (higher in CD

patients with tremor).
No statistical differences between CD and PD

CD compared to ET:

• ≤67 ms:

100% Sens
100% NPV

• ≥120 ms

100% Spec, 100% PPV

[37]

TVR Abnormally increased NA [38]

M
al

ad
ap

ti
ve

Pl
as

ti
ci

ty PAS
Abnormally increased in dystonic patients

Normal in functional dystonia and
DYT-TOR1A carrier

NA [39]

HF-RSS Reduced inhibition NA [40]

B
as

al
G

an
gl

ia

LFP recordings (GPi) Synchronized activities in 4–10 Hz band NA [41,42]

Legend: CBI: cerebellar brain inhibition; CD: cervical dystonia; EBCC: eyeblink classic conditioning; EMG:
electromyography; ET: essential tremor; GOT: grating orientation task; HF-RSS: high-frequency repetitive so-
matosensory stimulation; IHI: inter-hemispheric inhibition; NA: not available. NPV: negative predictive value;
PAS: paired associative stimulation; PD: Parkinson’s disease; PPV: positive predictive value; Sens: sensitivity; SD:
spatial discrimination; SICI: short intra-cortical inhibition; SP: silent period; Spec: specificity; STDT: somatosensory
temporal discrimination threshold; TVR: tonic vibration reflex.

Traditionally, dystonia was referred to as a motor disorder; however, several recent
studies have provided evidence on the role of the somatosensory system in dystonia
pathogenesis. Several studies suggested that abnormalities in the somatosensory system
are present in almost all dystonic patients, and several neurophysiology tests investigated
these findings. The most relevant discovery is the abnormality in the somatosensory
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temporal discrimination threshold (STDT) [37]. STDT represents the shorter interval at
which two different stimuli are perceived as separate. Cervical dystonia (CD) patients have
abnormally increased STDT, and the effect seems higher in CD patients with tremor. In a
validation study, 51 CD were compared to essential tremor (ET) patients and Parkinson’s
disease (PD) patients. The authors found that compared to ET patients, if STDT is ≤67 ms,
it has 100% sensitivity and 100% negative predictive value, while if STDT is ≥120 ms,
it has 100% specificity and 100% positive predictive value to differentiate ET from CD.
However, no statistically significant differences were found between the PD and CD groups
even though evidence suggests that STDT is normal in the early PD phase and becomes
abnormal in later stages, while STDT is abnormally increased from the first stages of
dystonia disease. Another important feature in dystonic patients is the somatosensory
discrimination threshold tested with a grating orientation task (GOT) that is a measure of
spatial tactile discrimination. These parameters results increased in all idiopathic forms
of dystonia, while they are normal in inherited disease cases [36]. Proprioception is also
altered in dystonic patients as demonstrated by an abnormally increased tonic vibration
reflex (TVR) [38]. Moreover, a study demonstrated that dystonic patients have kinanesthesia
impairment seen as abnormal perception of the Aristotle’s illusion, suggesting cortical
impairment of somatosensory processes [47]. One possible cause of all these abnormalities
could be a deficit in the lateral (or surround) inhibition process, as demonstrated by a
somatosensory-evoked potential (SEPs) study [48].

Finally, another possible contribution to dystonic pathophysiology is represented
by maladaptive plasticity. Abnormal sensory-motor plasticity was demonstrated using
a paradigm termed paired associative stimulation (PAS) In this TMS protocol, cortical
stimulation is paired with peripheral nerve stimulation at an interstimulus interval of
25 ms resulting in long-term potentiation-like phenomenon (LTP). This form of LTP is
pathologically enhanced in FHD [39]. Maladaptive plasticity could be a key factor in the
development of dystonic symptoms and a peculiar feature of dystonic patients as suggested
by other studies that did not find the same increased plasticity in DYT-TOR1A carrier sub-
jects [49] and in psychogenic dystonia patients [50]. A pronounced increase of PAS-related
plasticity was also reported in Costello syndrome, a genetic syndrome characterized by
pronounced dystonia [51,52]. Furthermore, evidence of abnormal plasticity in dystonic
patients was highlighted with the use of high-frequency repetitive somatosensory stimu-
lation (HF-RSS) [40]. HF-RSS is a repetitive electric stimulation delivered though surface
electrodes on the skin that enhances inhibitory sensorimotor processes. In HS, it usually
increases inhibition, while in CD patients inhibition is reduced.

Although all this evidence suggests that dystonia is a complex network disorder in-
volving the brainstem, the basal ganglia, the thalamus, the cortex, and the cerebellum [44],
originally dystonia was referred to as basal ganglia disease. Several trials point out that elec-
trical modulation of the basal ganglia network through continuous deep brain stimulation
(DBS) in internal globus pallidus (GPi) could improve generalized dystonia symptoms [53].
DBS electrodes were also used to invasively record synchronized neuronal activities, point-
ing out that in line with other movement disorders, pathological basal ganglia oscillatory
activities [54] can be found in dystonic patients [41,42]. This invasive recording of local field
potentials (LFP) of basal ganglia revealed that GPi and external globus palidus (GPe) have
a decreased discharge rate and irregular firing in dystonic patients [55,56]. In addition, LFP
studies demonstrated that pallidus nuclei of dystonic patients show excessive synchronized
activities in the 4–10 Hz frequency band [42].

The study of oscillatory activities in neurological disorders [54] revealed new patholog-
ical biomarkers in recent years. Several authors suggested that these abnormalities could
be used as biomarkers to deliver electrical DBS only in response to pathological neuronal
oscillation (adaptative DBS-aDBS). This technique was mainly evaluated in Parkinson’s
disease patients [57–59] in which LFP monitoring could be supported by multiparamet-
ric [60] motor symptoms monitoring [61–63] with the assistance of artificial intelligence
algorithms [64]. It has been suggested that this protocol could be translated to dystonic
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patients with specific biomarkers, such as GPi LFPs theta-alpha band activity [41,42,53],
in combination with dystonic muscle activity monitoring through subcutaneous EMG or
wearable accelerometer devices [53].

3. Dystonia Genetics

Dystonia genetics is a wide field with continuous updates. After the first description
of DYT-TOR1A, several other genes have been proposed as linked with the dystonia
phenotype [65]. As in other fields of genetics, after the first years focused on the genetic
marker, the focus is moving on to proteomics, searching the causal link between the protein
produced by these genes and the phenotype of dystonia. Camargos and Cardoso [66]
proposed a model of the “dystonia cell” linking the dystonic genes to the proteins function
(Figure 1), based mainly on the classic DYT nomenclature.

The classic DYT nomenclature is based on locus symbols (e.g., DYT 1) and has been
used for several years. It is still used in literature and clinical practice [67]. However, the
system of locus symbols has been challenged by advances in techniques of genetics research
that allow us to define the causative gene, as explained by Marras et al. [68], and the need
to renovate the nomenclature system has arisen. The MDS Task Force for the Nomenclature
of Genetic Movement Disorders proposed new recommendations, whose use in research
and clinical practice is strongly encouraged [69]. This new nomenclature strictly connects
the prefix to the predominant phenotype and considers the causative gene rather than the
locus symbols (e.g., DYT 1 is now named DYT-TOR1A) [4]. The prefix DYT is used only if
dystonia is the prominent disease feature due to a pathogenetic mutation [69]. Otherwise,
if another movement disorder is a prominent feature along with dystonia, a double prefix
would be assigned (e.g., DYT/PARK-ATP1A3). Indeed, genetic dystonia can be isolated
or combined with other movement disorders such as parkinsonism, myoclonus, or other
hyperkinesia (Figure 2).
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Moreover, in the proposed nomenclature and in the last consensus update on dystonia,
the term complex dystonia is used, referring to conditions in which dystonia predominates
the clinical phenotype but occurs in the context of a complex disease including symptoms
other than movement disorders [1,69]. For example, Wilson disease is named according to
the proposed nomenclature with a DYT prefix (DYT-ATP7B), and the same happens for
Lesch–Nyhan syndrome and other infantile and childhood onset disease [69]. Given that
most of isolated hereditary dystonia is recognized as an autosomal dominant inheritance,
the mode of transmission cannot be used as the only criterion to make a differential
diagnosis. To guide the clinician towards a genetic diagnosis of dystonia, at least clinical
phenotype and age of onset should be considered (Table 2). If dystonia dominates the
clinical picture, one of the isolated dystonias may be considered, and the gene mutations
involved may be DYT-TOR1A, DYT-THAP1, DYT-GNAL, DYT-ANO3, DYT-KMT2B, DYT-
TUBB4A, DYT-HPCA, and DYT-PRKRA [70]. The last-mentioned dystonia is a controversial
classification, as it is considered as combined dystonia by some authors [71] and as isolated
dystonia by others [70]. Indeed, despite parkinsonism being described in about half the
patients, it seemed to be caused not by true parkinsonian features, but by slow movements
of dystonic body parts [70]. The isolated form of dystonia could be distinguished according
to the age of onset, body distribution, temporal pattern, associated features, responses to
drugs, response to DBS, and brain imaging. Regarding age of onset, in infancy, childhood,
and adolescence DYT-TOR1A, DYT-THAP1, DYT-KMT2B, DYT-TUBB4A, DYT-PRKRA,
and DYT-HPCA are more probable, while DYT-ANO3 and DYT-GNAL begin in early
adulthood. In particular, DYT-ANO3 recognizes two peaks of the age of onset: one in
infancy/childhood and one in early-late adulthood [70]. Age at onset may by modified
by several aspects, e.g., penetrance as is the case of DYT-TOR1A [72]. Hence, age of
onset alone cannot be used as the only criteria to orient the diagnosis. According to
body distribution, generalized forms of isolated dystonia are mainly due to DYT-TOR1A,
DYT-THAP1, DYT-KMT2B, DYT-HPCA, and DYT-PRKRA. Among these, DYT-TOR1A,
DYT-HPCA, and DYT-KMT2B usually begin in the lower limbs asymmetrically with
secondary generalization. In contrast, DYT-THAP1 may initiate in the upper part of the
body, involving cranio–cervical districts, speech difficulties, and the upper limbs, with
successive generalizations [73]. If DYT-TOR1A begins in the upper limbs, it tends to be focal.
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Focal and segmental isolated dystonia are more likely caused by DYT-GNAL and DYT-
ANO3. These two forms of dystonia typically begin at the cervical level and may cause head
tremor [70]. DYT-GNAL may be suspected if age at onset is in early-late adulthood. In case
of early involvement of craniofacial muscles with laryngeal dystonia and speech difficulties,
with secondary generalization involving the arms at younger ages, DYT-ANO3 becomes
more probable [70]. Another peculiar form of isolated dystonia with focal distribution
involving the cervical district and causing spasmodic dysphonia is caused by DYT-TUBB4A.
This focal form may successively evolve into a generalized dystonia [74]. Regarding the
temporal pattern, except for the last-mentioned dystonia, all the other isolated dystonia
follows a persistent temporal pattern. Associated features may guide the clinician in
the differential diagnosis. The presence of additional phenotypic characteristic, such as
microcephaly, short stature, intellectual disability, abnormal eye movements, myoclonus,
dysmorphisms, and psychiatric symptoms, may be suggestive of DYT-KMT2B [70]. Thin
face, body habitus, and hobby horse gait are described in the DYT-TUBB4A [75]. None
of the isolated forms of dystonia respond to L-Dopa; DYT-TOR1A, DYT-THAP1, DYT-
ANO3, DYT-KMT2B, and DYT-HPCA may respond to anticholinergics [70]. Response to
alcohol is described in DYT-GNAL and DYT-TUBB4A. It is important to define the genetic
etiology of the dystonia because response to DBS varies according to the genetic conditions,
and this is an important prognostic factor to be considered when selecting patients for
advanced therapy. Indeed, is well known that DYT-TOR1A, DYT-THAP1, DYT-ANO3,
DYT-GNAL, and DYT-KMT2B show a good response to DBS with a target in the GPi,
unlike the other forms of isolated dystonia [76–79]. Brain imaging is not conclusive in
distinguishing between the several forms of isolated dystonia, as the sole characteristic
described is pallidal hypointensity in DYT-KMT2B [70].

Combined dystonia is characterized by the coexistence of another movement disorder
in addition to dystonia. The association of dystonia with parkinsonism defines dystonia–
parkinsonism. The monogenic forms of dystonia–parkinsonism are DYT/PARK-GCH1,
DYT/PARK-TH, DYT/PARK-TAF1, and DYT/PARK-ATP1A3 [71]. Contrary to what has
been observed for isolated dystonia, combined dystonia recognizes a different mode of
inheritance: autosomal dominant inheritance is characteristic of DYT/PARK-GCH1 and
DYT/PARK-ATP1A3, while autosomal recessive inheritance is typical of DYT/PARK-TH.
X-linked transmission characterizes DYT/PARK-TAF1 (also known as Lubag syndrome).
Among this, it is of paramount importance to diagnose the dopa-responsive dystonia,
DYT/PARK-GCH1. Indeed, patients have excellent and sustained response to L-Dopa [80].
Another form of combined dystonia with response to L-Dopa is DYT/PARK-TH. These
two forms of dystonia–parkinsonism may be differentiated according to age of onset,
as DYT/PARK-GCH1 begins in infancy/childhood, while DYT/PARK-TH may initiate
in infancy. Moreover, diurnal fluctuations of parkinsonian symptoms due to circadian
variations in dopamine concentration are more pronounced in DYT/PARK-GCH1 than in
DYT/PARK-TH [80]. An adjunctive feature may help in differential diagnosis among the
two forms: the presence of hypotonia is suggestive of DYT/PARK-TH, while in DYT/PARK-
GCH1 hyperreflexia has been described [81]. The coexistence of non-motor features orients
towards the diagnosis of DYT/PARK-GCH1, while a more complex clinical picture, with
autonomic disturbances, ptosis, and oculogyric crisis is suggestive of DYT/PARK-TH. In
both forms, dystonia begins as focal with subsequent generalization [82–85].
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Table 2. Isolated and combined genetic types of dystonia.

Phenotype Gene/
Locus

Inheritance
/Penetrance OMIM Age of Onset Body

Distribution
Temporal

Pattern Associated Features
Drugs Response

DBS
Response

Brain
Imaging
Findings

References
Dopa Other

Drugs Alcohol

Is
ol

at
ed

TOR1A/
DYT 1

AD/
Reduced 128100

Childhood-
Adolescence-Early

adulthood
Generalized Persistent none No Anticholinergics No Good None [70]

THAP1/
DYT 6 AD/48% 602629 Childhood-Adolescence Segmental-

generalized Persistent Laryngeal
dystonia/dysarthria/dysphonia No Anricholinergics No Variable None [70,73]

ANO3/
DYT 24 AD/NA 615034

Infancy/childhood,
early and late

adulthood

Focal-
Segmental Persistent Tremor Yes Anticholinergics

/Antiepileptics No Good None [70,78]

GNAL/
DYT 25 AD/High 615073 Early adulthood-Late

adulthood

Focal-
segmental-
occasionaly
generalized

Persistent none No No Yes Good None [70]

KMT2B/
DYT 28

AD/
Incomplete 617284 Infancy-Childhood-

Adolescence Generalized Persistent

Nonmotor signs,
neurodevelopemental

disorders, Dysmorphisms,
Psychiatric symptoms,

No Anticholinergics No Good Pallidal
hypointensity [70]

HPCA/
DYT2 AR 224500 Infancy/childhood Generalized Persistent

Psychiatric features,
cognitive impairment,

dystonic tremor
No Anticholinergics No Not know None [70]

TUBB4A/
DYT 4 AD/High 128101 Childhood-Adolescence Focal-

generalized
Spasmodic
dysphonia

Thin face-body
habitus-hobby horse gait No No Yes Not known None [74,75]

PRKRA/
DYT 16 AR/NA 612067 Infancy-Childhood-

Adolescence Generalized Persistent Parkinsonism, Hyperreflexia No No No Not known None [70]
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Table 2. Cont.

Phenotype Gene/
Locus

Inheritance
/Penetrance OMIM Age of Onset Body

Distribution
Temporal

Pattern Associated Features
Drugs Response

DBS
Response

Brain
Imaging
Findings

References
Dopa Other

Drugs Alcohol

C
om

bi
ne

dK
C

Pa
rk

in
so

ni
sm

GCH1/
DYT 5a AD/50% 128230 Infancy-Childhood Mostly

generalized
Diurnal

fluctuations
Parkinsonism-spasticity-non

motor features Yes None No Not known None [80,81]

TH/
DYT 5b AR/NA 605407 Infancy Mostly

generalized
Diurnal

fluctuations

Parkinsonism-ptosis-
hypotonia-autonomic

disturbances, oculogyric
crises, developmental delay

Yes None No Not known None [82–85]

TAF1/
DYT 3 XL/Full 314250 Early adulthood-Late

adulthood Generalized Persistent
Parkinsonism, jaw opening

dystonia, bulbar
involvement, striatal toe

No None No Variable

Stiatal
atrophy and

pallidum
volume loss
in pallidum

[86–89]

ATP1A3/
DYT 12

AD/
Incomplete 128235 Adolescence-Early

adulthood
Generalized-
Segmental Persistent

Abrupt onset, Fluctuating
course, Parkinsonism,

Postural instability,
Psychiatric features

No None No Not known None [85,90,91]

M
yo

cl
on

us SGCE
DYT 11

AD/
Reduced
(maternal

imprinting)

159900 Childhood-Adolescence Focal-
segmental Persistent

Myoclonic jerks mainly of
the neck, prominent
psychiatric features

No None Yes Variable None [71]

KCTD17
DYT26 AD/NA 616398 Childhood-Adolescence Focal-

segmental Persistent Myoclonus of upper limbs,
psychiatric features, No None No Good None [92]

H
yp

er
ki

ne
si

a

ADCY5 AD/NA 600293 Childhood
Focal-

segmental-
generalized

Paroxysmal
worsening

Generalized choreoathetosis,
Facial dyskinesia,

myoclonus, learning
difficulties, behavioral

abnormalities

No Caffeine No Variable None [76,93,94]

Legend: AD autosomic dominant, AR autosomic recessive, XL X Linked, NA not available.
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DYT/PARK TAF1 differs from the previous mentioned strains for the age of onset,
body distribution of dystonia, and neuroimaging. This form of combined dystonia be-
gins in early to late adulthood and, contrary to DYT/PARK-GCH1 that begins with foot
dystonia and then progress cranially, DYT/PARK TAF1 involves mainly the upper body,
with characteristic jaw opening dystonia and bulbar involvement. Another difference with
respect to the dopa-responsive dystonia is the absence of diurnal fluctuation. Brain imaging
shows striatal atrophy and pallidum volume loss, considered an expression of the neurode-
generative nature of the disease. This form recognizes an X-linked transmission, hence is
more frequent in males [86–89]. Abrupt onset, fluctuating course, psychiatric features, and
postural instability may raise suspicion of DYT/PARK-ATP1A3. This disease begins with
dystonic spasms, usually following a provoking event (fever, infection, childbirth, alcohol
binging, fall, excessive exercise, heat exposure, and psychological stress), with a plateau
within 30–60 days of disease onset, with no significant improvement [90]. Dystonia begins
in limbs and develops with a characteristic rostrocaudal gradient, cranial symptoms being
more severe than upper limbs and lower limbs [91].

Combined dystonia also encompasses dystonia associated with myoclonus and other
hyperkinetic disorders. To date, two forms of dystonia–myoclonus have received confir-
mations: DYT-SGCE and DYT-KCTD17. These diseases have several features in common:
age of onset is in the first or second decade of life, myoclonic jerks involve the upper body,
and in DYT-SGCE also the neck may be involved. In both diseases, dystonia affects the
upper part of the body, with involvement of upper limbs and the cranio-cervical region.
If in DYT-SGCE myoclonic jerks dominates the clinical picture, in DYT-KCTD17 dystonia
seems to be the prominent feature. Interestingly, DYT-SGCE myoclonic symptoms respond
to alcohol, while in DYT-KCTD17 this response is absent [71,92].

Dystonia may coexist with other hyperkinetic disorders, such as chorea, as observed
in several forms of complex dystonia. Marras et al. [69] also classify CHOR/DYT-ADCY5
as combined dystonia. This disease is characterized by a plethora of hyperkinetic disorders,
such as chorea, dystonia, and myoclonus, beginning in early childhood and with a charac-
teristic fluctuating or paroxysmal course. Interestingly, symptoms do not disappear during
sleep, resulting in significant disturbances, and may respond to caffeine [93,94]. Response
to DBS is lower than in other form of monogenic dystonia [76].

Genetic Testing and Genetic Counseling

According to the EFNS dystonia guidelines, genetic testing is not sufficient to make
a diagnosis of dystonia in the absence of clinical features suggestive of dystonia [95].
Therefore, the clinical picture should orient the decision to carry out genetic testing [96–98].

The previously mentioned guidelines recommend, with a level B of evidence, the DYT-
TOR1A testing for patients with limb-onset, primary dystonia with onset before age 30 [98],
and in those with onset after age 30 if they have an affected relative with early-onset dysto-
nia [98]. Guidelines do not recommend DYT-TOR1A testing in asymptomatic individuals
in dystonia families as a good practice point. After exclusion of DYT-TOR1A, in early-onset
dystonia or familial dystonia with cranio-cervical predominance, DYT-THAP1 testing is
recommended [73]. It is considered a good practice point to conduct a diagnostic levodopa
trial in every patient with early-onset dystonia without an alternative diagnosis [99]. In-
dividuals with early-onset myoclonus affecting the arms or neck, particularly if positive
for autosomal-dominant inheritance and if triggered by action, should be tested for the
DYT-SGCE gene [100].

In clinical practice, genetic testing consists of of using predefined panels for dystonia.
The whole-exome sequencing (WES) is also a resource to consider; however, it is expensive
and requires a long time. Zech et al. [101] proposed an algorithm to predict diagnostic
success rate of WES in individuals with dystonia. This algorithm assigns a score to three
clinical characteristics:

- Age at onset (0–20 years: score 2; >21 years: score 0),
- Body distribution (generalized or segmental: score 1; focal: score 0),
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- Dystonia category (complex dystonia: score 2; combined dystonia: score 1; isolated
dystonia: score 0).

Summary scores range from 0 to 5 and predict the diagnostic success rate of WES in
individuals with dystonia. If the score is three, the sensitivity is 96% and the specificity is
62%; if the score is five, the sensitivity is 62% and the specificity is 86%. Hence, if the score
is equal to or higher than three, whole-exome sequencing is recommended [101].

An extensive discussion about genetic counseling goes beyond the scope of this
review. The main concept to underscore is that genetic counseling depends largely on
the determination of the mode of inheritance of a specific cause of an inherited dystonia
in an individual (i.e., autosomal dominant, autosomal recessive, mitochondrial, X-linked
inheritance). According to the inheritance, Table 3 describes all the possible diseases [4].

Moreover, penetrance must be considered because of the influence of the pheno-
typic expression of dystonia [102]. For example, for two hereditary forms of dystonia,
mechanisms affecting penetrance have been identified:

- DYT-SGCE dystonia has maternal imprinting of the gene, meaning that the dystonia-
myoclonus only manifests when SGCE pathogenic variants are paternally inher-
ited [103].

- DYT-TOR1A has a reduced penetrance of the GAG deletion in TOR1A, from about 35%
to 3% in individuals who also have a heterozygous NM_000113.2:646G>C (p.Asp216His)
variant in TOR1A on the other allele [72].

Genetic counseling should be offered to the patients and the family by qualified
personnel and, according to the EFNS dystonia guideline, is recommended [95].

Table 3. Inherited causes of dystonia.

Autosomal Dominant

Disease OMIM Code

- Oppenheim dystonia (DYT-TOR1A) #128100

- Childhood and adult onset-familial cranial limb dystonia
(DYT-THAP1) #602629

- Dopa-responsive dystonia (DYT/PARK-GCH1) #128230

- Rapid-onset dystonia–parkinsonism (DYT/PARK-ATP1A3) #128235

- Myoclonus–dystonia (DYT-SGCE) #159900

- Neuroferritinopathy (NBIA/CHOREA-FTL) #606159

- Dentatorubral-pallidoluysian atrophy #125370

- Huntington’s disease #143100

- Machado–Joseph disease (SCA-ATXN3) #109150

- Creutzfeldt–Jakob disease #123400

- Primary Familial Brain Calcification #213600

- Myclonic-dystonia 26 (DYT-26) #616398

- Dystonia-28 (DYT-KMT2B) #617284

- Dystonia-30 (DYT-30) #619291

- Dystonia-33 (DYT-33) #619687

- Dystonia-25 (DYT-GNAL) #615073
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Table 3. Cont.

Autosomal Dominant

Disease OMIM Code

- Dystonia-24 (DYT-ANO3) #615034

- Dystonia-4 (DYT-TUBB4A) #129101

- Dystonia-26 (DYT-KCTD17) #616398

- Dyskinesia with orofacial involvement (CHOR/DYT-ADCY5) #606703

Autosomal recessive:

- Wilson disease #277900

- Neurodegeneration with brain iron accumulation type 1
(NBIA/DYT-PANK2) #234200

- Neurodegeneration with brain iron accumulation type 2, infantile
neuroaxonal dystrophy (NBIA/DYT/PARK-PLA2G6) #610217

- Aceruloplasminemia (NBIA/DYT/PARK-C) #604290

- Fatty acid hydroxylase-associated neurodegeneration (FAHN)
(HSP/NBIA-FA2H) #612319

- Early-onset parkinsonism (PARK-Parkin) (PARK-PINK1) #608309

- Aromatic-L-amino acid decarboxylase (DYT-DDC) #608643

- Early-onset dystonia with parkinsonism (DYT-PRKRA) #612067

- Niemann–Pick type C #257220

- Juvenile neuronal ceroid-lipofuscinosis (Batten disease) #204200

- GM1 gangliosidosis (DYT/PARK-GLB1) type III, chronic/adult form #230500

- GM2 gangliosidosis #272750

- Metachromatic leukodystrophy #250100

- Homocystinuria #277400

- Glutaric acidemia (DYT/CHOR-GCDH) #231670

- Methylmalonic aciduria (DYT/CHOR-MUT) #251000

- Hartnup disease #234500

- Ataxia telangiectasia #208900

- Friedreich ataxia #229300

- Neuroacanthocytosis #200150

- Dopa-responsive dystonia (DYT/PARK-TH) #605407

- Neuronal intranuclear hyaline inclusion disease #603472

- Hereditary spastic paraplegia (HSP-SPG7) #607259

- Sjögren–Larsson syndrome (ichthyosis, spasticity,
intellectual disability) #270200
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Table 3. Cont.

Autosomal recessive:

- Biotin-responsive basal ganglia disease (DYT-SLC19A3) #607483

- Dystonia musculorum deformans 2 (DYT-HPCA) #224500

- Zech-boesch syndrom (DYT-31) #619565

X-linked recessive:

- Dystonia-parkinsonism or Lubag syndrome (DYT/PARK-TAF1) #314250

- Lesch-Nyhan syndrome (DYT/CHOR-HPRT) #300322

- Mohr-Tranebjaerg syndrome (Deafness–dystonia syndrome)
(DYT-TIMM8A) #304700

X-linked dominant

- Rett syndrome #312750

Mitochondrial

- Leigh syndrome #256000

- Leber’s hereditary ocular neuropathy plus dystonia (DYT-mt-ND6) #500001
Legend: OMIM code = Online Mendelian Inheritance in Man code (reproduced under the terms and conditions of
the Creative Commons Attribution (CC BY) license from [4]).

4. Discussion

The present review summarized the possible contribution of clinical neurophysiology
and genetic testing to clinical examination for dystonia diagnosis (Figure 3).
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However, dystonia diagnosis is still based on clinical examination conducted by
physicians with expertise in movement disorders. The clinical diagnosis should be based
on the observations of two core characteristics and of adjunctive features [1]. According
to the EFNS dystonia guidelines, a neurophysiological test may help diagnosis despite
low evidence (class IV), hence further and proper studies are needed [95]. However, the
role of neurophysiology is not marginal, being an important resource to enlighten the
pathophysiology of dystonia (Table 1). Among neurophysiological alterations observed in
dystonia, sensitivity, specificity, and positive predictive value have been evaluated only for
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STDT. That is pathologically increased in patients affected by cervical dystonia compared
to patients affected by essential tremor [37]. Neurophysiology also represents an excellent
support for the therapy of dystonia in the case of EMG-guided botulinum toxin injection.
In future applications, neurophysiology could guide adaptive DBS. Indeed, LFP recorded
in GPi could be used as input signals to modulate stimulation parameters as currently used
for Parkinson’s disease [104].

Once dystonia has been clinically diagnosed, the definition of the etiology is needed [1].
The etiological diagnosis of dystonia cannot ignore the role of genetics testing. Several
genes have been described as causes of isolated, combined, or complex forms of dystonia
(see Table 2). Regarding isolated dystonia, age at onset, body distribution (focal, segmental
or generalized), and associated features may orient the clinicians towards a specific form
of monogenic dystonia. In combined dystonia, the second most represented movement
disorder, the clinical picture guides the clinician in the direction of dystonia associated with
parkinsonism, myoclonus, or other hyperkinesia. The choice to request WES to reach a
diagnosis should be carefully considered when panels for dystonia fail to detect causative
mutations. Zech et al. proposed an interesting and feasible algorithm to predict diagnostic
success rate of WES, according to dystonia characteristics [101]. The algorithm considers
tree items (age at onset, body distribution, dystonia category) and assigns a score to each
one. If the summary score is equal or higher than three, WES is recommended because of a
high probability to identify causative mutations.

Considering the inheritance mode and the risk of transmission of the disease in the
context of the same family, genetic counseling should be offered to the patients and a
multidisciplinary approach involving geneticists, psychologist is desirable.
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