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A New Methodology for Evaluation of Nematode Viability
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Nematodes infections are responsible for debilitating conditions and economic losses in domestic animals as well as livestock and
are considered an important public health problem due to the high prevalence in humans. The nematode resistance for drugs has
been reported for livestock, highlighting the importance for development of new anthelmintic compounds. The aim of the current
study was to apply and compare fluorimetric techniques using Sytox and propidium iodide for evaluating the viability of C. elegans
larvae after treatment with anthelmintic drugs.These fluorescent markers were efficient to stain larvae treated with ivermectin and
albendazole sulfoxide. We observed that densitometric values were proportional to the concentration of dead larvae stained with
bothmarkers. Furthermore, data onmotility test presented an inverse correlation with fluorimetric data when ivermectin was used.
Our results showed that lower concentrations of drugs were effective to interfere in the processes of cellular transport while higher
drugs concentrations were necessary in order to result in any damage to cell integrity. The methodology described in this work
might be useful for studies that aim to evaluate the viability of nematodes, particularly for testing of new anthelminthic compounds
using an easy, economic, reproducible, and no time-consuming technique.

1. Introduction

Intestinal nematode infections represent a debilitating threat
for livestock and domestic animals worldwide as it may
cause reduction in growth and weight gain and, depending
on the severity of infection, it can lead to animal death.
Moreover, production costs associated with treatment and
controlmeasures of parasitic infections can be very expensive
[1]. In humans, the intestinal nematode infections (e.g., soil-
transmitted helminthes) are highly prevalent and affect at
least 1 billion people worldwide [2].The control of nematodes
is generally performed by the use of commercially available
chemical compounds such as avermectins, benzimidazoles,
and imidazothiazoles [3]. Despite the availability of several
drugs for nematodes control, resistance to themain drugs has

been extensively reported for livestock, highlighting the need
to found new anthelmintic compounds [4, 5].

Caenorhabditis elegans, a free-living bacteriovorus nema-
tode, has been used as a good model for research new
novel anthelmintics [6]. This nematode has been valuable
in basic research on anthelmintic pharmacology of human
and agricultural parasites [7] as well as at understanding the
mechanisms of resistance to anthelmintics [8], mainly due to
the phylogenetic relationship to other parasitic helminthes.
Several characteristics make C. elegans a good model, such
as cycle fast, easy laboratory maintenance, knowledge of its
genome, and phylogenetic proximity to other nematodes
[9–11]. Currently, a number of techniques are available for
measuring C. elegans viability after treatment with known
drugs or candidates, such as larval development assays
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(ADLs, reproduction responses), or by the assessment of
motility and colorimetric assays [12–15]. However, some of
these techniques are time consuming and it can be subjective.
According to Dickson and Gagnon [16], the discovery of new
bioactive molecules is a long and expensive work, requiring
investment of an average of 10 to 20 years and more than 200
million of dollars. Thus, the development of no subjective,
economic, reproducible, and no time-consuming techniques
would be useful.

Techniques that employ fluorescent markers such as
propidium iodide and Sytox have been routinely used to
measure cellular viability of mammalian cell [17]. Propidium
iodide and Sytox also demonstrated to be efficient at staining
nematode larvae [18, 19]. Sytox intercalates into nucleic acid
and it is not able to passively cross the plasma membrane
of viable cells [20], propidium iodide, which is also an
intercalator to nucleic acid in cell death and, nevertheless,
is also capable of going through intact cell membranes;
however, it is expelled by viable cells [21]. Therefore, both
markers stain nonviable cells. In this study, we applied and
compared a feasible method, using the fluorescent markers
propidium iodide and Sytox to evaluate the viability of C.
elegans larvae after drug treatments.

2. Methodology

2.1. C. elegans L
3
Production. The strain of C. elegans was

kindly provided by Professor Carlos Eduardo Winter (Uni-
versidade de São Paulo (USP)). L

3
larvae of C. elegans were

grown on NGM plates 8P according to the methodology
previously described [22, 23]. After seven days of culture
in BOD incubator at 20∘C, the plates were washed with
M9 medium [22] and filtered through three sieves with
pores of 40𝜇m, 30 𝜇m, and 20𝜇m. L

3
larvae retained in the

20𝜇m strainer were collected by backwashing. The obtained
larvae were washed by centrifugation at 700 g for 4 minutes,
followed by twowasheswithM9medium. Larvae average size
was 527 𝜇 (𝜎 3.4) long by 23.3 𝜇 in diameter (𝜎 1,9) [24].

2.2. Drug Tests with Fluorescent Markers. In order to evaluate
the proportion between the number of larvae (L

3
) and the

fluorescence signal, initial concentration of 2000 L
3
larvae per

well diluted in M9 medium was used for fluorimetric tests
followed by 1 : 2 serial dilution of L

3
larvae per well. Briefly,

100 𝜇L of larvae suspension was added to each well in a 96-
well microplate, followed by immediate addition of 100 𝜇L of
the tested drugs solution (Albendazole sulfoxide, ivermectin,
Sigma-Aldrich). Stock solutions (20mM) for all drugs were
prepared in M9 solution supplemented with 0.05% DMSO
(Vetec, BR) and stored at −20∘C protected from light. For
albendazole sulfoxide, several concentrations (4000, 3000,
2000, 1000, 500, 100, 10, 1, 0.1, and 0.01𝜇M) were tested.
Ivermectin was tested at these concentrations: 1000, 500,
100, 10, 1, 0.1, and 0.01 𝜇M. The negative control was M9
solution with 0.05% DMSO, and methanol (CH

3
OH) was

used as positive control at the following dilutions 50, 25, 5, 0.5,
0.05, and 0.005% [25, 26]. Quadruplicates were performed
for each drug concentration and for controls. Incubation of

microplates with different drugs was performed in a BOD
(incubator) at 20∘C.

2.3. Staining with Propidium Iodide and Sytox. After 48
and 72 hours of incubation with the drugs, propidium
iodide (Invitrogen, USA) and Sytox (Invitrogen, USA) were
added to the microplates markers at a final concentration of
20𝜇M and 1 𝜇M per well, respectively [18, 19]. Microplates
were incubated for 15 minutes at room temperature in a
horizontal shaker at 120 rpm followed by reading at LAS
ImageQuanttm GE 4000 with excitation in white light and
emission at 605 nm for propidium iodide and 575 nm for
Sytox. Densitometric analyses of the images were performed
using the softwareGE ImageQuant TL 8.1. Images were taken
at microscope (Leica DM500) 100x magnification: excitation
at 510–560 nm and emission at 590 nm for propidium iodide,
excitation at 450–490 nm and emission at 535 nm for Sytox
using a capture system (Canon EOS 600D).

2.4. Motility Test. C. elegans L
3
were resuspended in M9,

and then approximately 1000 larvae in 100𝜇L of suspension
were added to each well in a 96-well microplate. Tested
drugs were then added at the same concentrations described
in fluorimetric methods. Microplates containing drugs and
larvae were stored in BOD incubator at 20∘C. After 48 and
72 hours, 10 𝜇L of solution containing ca. 100 larvae was
removed from each well for analysis and quantification of
paralyzed larvae number using an optical microscope at
100x magnification. Larvae were considered paralyzed when
presenting with straight body and absence of any motility
[27].

2.5. Statistical Analyses. Data from densitometry and motil-
ity assays were tested by analysis of variance (ANOVA) and
linear and nonlinear regression using the statistical program
GraphPad Prism 5.0. The model was considered adequate
to the data when 𝑟2 was above 0.8 for nonlinear regression
and 0.95 for linear regression. Comparison of groups was
performed using normality test of Kolmogorov-Smirnov,
followed by two-way ANOVA; comparison of means was
tested using Bonferroni correction test for multiple hypoth-
esis. Correlation analysis was performed using Spearman
rank correlation. Nonlinear regression analysis was used to
calculate the IC

50
value.

3. Results

Both Sytox and propidium iodide were effective for staining
larvae of C. elegans previously killed by treatment with
50% methanol (Figure 1), presenting a clear differentiation
to viable larvae, which did not present any fluorescence
(Supplementary Figure S1 in Supplementary Material avail-
able online at http://dx.doi.org/10.1155/2015/879263). When
suspension of dead larvae was serially diluted and stained
with both fluorescent markers (Figure 2(a)), the observed
densitometric values were proportional to the concentration
of dead larvae stainedwith Sytox (Figure 2(b)) and propidium
iodide (Figure 2(c)). The comparison of the densitometric
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Table 1: IC50 drugs: ivermectin and albendazole sulfoxide, using different fluorimetric markers and motility test (means of times 48 and 72
hours). Different letters in the lines demonstrate that the means are different (𝑃 < 0.05) according to Tukey test and 𝑡-test.

Drug IC50 P. iodide IC50 Sytox IC50 motility
Ivermectin 132.4 𝜇M ± 5.3a 261.4 𝜇M ± 23.7b 0.87 𝜇M ± 0.05c

Albendazole sulfoxide 214.9 𝜇M ± 100.2a 874.5 𝜇M ± 67.50b —

(a)

(b)

Figure 1: Dead C. elegans larvae (L
3
), bright field images on the left, and fluorescence images of same larvae on the right, propidium iodide

(a) and Sytox (b).

values obtained by staining with Sytox and propidium iodide
demonstrates that significant differences were observed only
at high number of larvae (500 and 1000 larvae) (𝑃 < 0.05)
(Figure 2(d)).

Figure 3 shows the densitometric data of the larvae treated
with albendazole sulfoxide and ivermectin and stained with
propidium iodide. Our data suggest that the higher con-
centrations of drugs might affect the mechanisms used to
expel the marker, once propidium iodide labels the nucleic
acids when it remains within the cell. The densitometric
data of larvae treated with the same drugs and stained
with Sytox suggests that higher concentrations of drugs
were able to induce damage in the cellular integrity of the
larvae, because this marker is not able to overcome intact
membranes (Figure 4). Concerning the ivermectin treatment,
we observed that at the highest concentrations all larvae were
practically inert (Figure 5). For instance, at concentration of
1000 uM, 100% of paralysis was observed when compared to
control group (𝑃 < 0.05). A negative correlation (Spearman
rank correlation, 𝑃 < 0.05) was observed when paralysis

and densitometry data were compared (Figure 6). The alben-
dazole sulfoxide treatment induced a slightly reduction of
the movement; however, body straight shapes and absence
movement were not observed; thus, motility assay could not
be properly performed (data not shown). The IC

50
dates are

demonstrated at Table 1, where different IC
50
were observed.

IC
50

data for albendazole sulfoxide motility test were not
included once the larvae did not fit the criteria used for
impairment of motility. Larvae were considered paralyzed
when presenting straight body and absence of any motility;
the treatment with albendazole sulfoxide induced reduction
of the larval movement but body straight shapes and absence
of movement were not observed.

4. Discussion

In this study, we aimed to establish a methodology based on
staining dead cells with the fluorescent markers Sytox and
propidium iodide to evaluate the viability of C. elegans and
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Figure 2: Analysis of viability using fluorimetric markers. (a)Microplate with serial dilution ofC. elegans L
3
(first point 2,000 to 62). Rows A–

D dead larvae; E–H represent viable (control) larvae. Correlation between the number of dead larvae with 50%methanol and the fluorescence
intensity of the pixels with Sytox (b) and propidium Iodide (c). Comparison of densitometry (number of pixels) between Sytox and propidium
iodide markers (d). Significant differences (𝑃 < 0.05) were only detected when 1000 and 500 larvae were tested.

its further use on testing of novel anthelmintic compounds
for control of human and animal nematode infections.

During the standardization of the technique, the densit-
ometric values observed for positive controls (larvae treated
with 50% methanol, a concentration known to kill the larvae
[25, 26]) were indeed proportional to the number of dead
larvae, demonstrating the ideal number of larvae for the
subsequent testing trials. Different number of larvae has been
reported previously in the testing and standardization of new
methodologies for several nematodes with a variety of IC

50

has been observed [14, 28, 29]. According to Smith et al.
[30], such discrepancies may be attributed to differences in
worm strain susceptibility against the toxic agent or variation
in the methods employed in the analysis or effective drug
concentration.

Once the standardization of number of larvae was per-
formed, the staining methodologies were further tested with
a representative compound of each main class of available
drugs currently used. When ivermectin and albendazole

sulfoxide were used to induce worm death, we observed
that both fluorimetric markers were efficient to stain dead
larvae. Considering the mechanism of action of propidium
iodide and Sytox [20, 21], our results allowed us to infer
that treatment of larvae with ivermectin and albendazole
sulfoxidemay induce damage on themechanism of exclusion
of exogenous substances and/or affect the integrity of cell
membranes. Indeed, the association of ivermectin association
with glutamate-gated chloride channels (GluCl) results in the
influx of chloride ion and consequent hyperpolarization of
nematode muscle, culminating in the disarray on the loco-
motion mechanism and “pumping” of nutrients through the
pharynx, promoting a flaccid paralysis and death of organism
[31]. The albendazole sulfoxide is tubulin ligands with high
and selective affinity for 𝛽-tubulin molecules, disturbing the
microtubules polymerization and consequently preventing
transport system mediated by microtubules [29].

Our results demonstrated that propidium iodide detected
a smaller IC

50
for ivermectin and albendazole sulfoxide,
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Figure 3: C. elegans larvae (L
3
) treated with ivermectin (a) at concentrations 0.01 to 1000𝜇M (identical curves) and albendazole sulfoxide

(b) at concentrations 0.01 to 4000 𝜇M, stained with propidium iodide. The larvae were incubated with the drugs for 48 and 72 hours in all
treatment.
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Figure 4: C. elegans larvae (L
3
) treated with ivermectin (a) at concentrations 0.01 to 1000𝜇M and albendazole sulfoxide (b) at concentrations

0.01 to 4000𝜇M, stained with Sytox. The larvae were incubated with the drugs for 48 and 72 hours in all treatment.

which is probably related to the cellular mechanism of
influx or efflux responsible for excretion of several ana-
lytes including propidium iodide, suggesting that a relative
lower drug concentration is sufficient to interfere with the
mechanism of transport and the efflux of propidium iodide
[29, 32, 33]. The ivermectin IC

50
obtained with the motility

assay was considerably lower than the IC
50

obtained for
fluorimetric assay, suggesting that a lower drug concentration
is sufficient to impair the locomotion and disposition of
worm body muscle as already described [27]. On the other
hand, in order to disturb the mechanisms of exclusion of
exogenous molecules or induce damage of cell membrane,
higher concentrations of the drugs are required, and it is

known that used drugs in the present work can damage
transport protein and cell membrane [32, 33]. Interestingly,
the negative correlation between motility data and number
of pixels in the fluorimetric assay indicates that ivermectin
induces an efficient paralysis.

Taken together, our results show that fluorimetric
microplate reading tests using propidium iodide and Sytox
were efficient for larvae viability analysis after treatment with
ivermectin and albendazole sulfoxide. This provides a simple
and viable analysis technique to probe viability nematodes
using C. elegans as a model, likely that is easy, less subjective,
economic, reproducible, and no time consuming.
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Figure 6: Correlation of paralysis and number of pixels from fluorimetric assays. (a) Propidium iodide and (b) Sytox. Statistical significance
was determined by Spearman rank correlation.
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