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Abstract
Ivermectin is an antiparasitic drug that has shown also an effective pharmacological activity towards various infective agents,
including viruses. This paper proposes an alternative mechanism of action for this drug that makes it capable of having an
antiviral action, also against the novel coronavirus, in addition to the processes already reported in literature.
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Ivermectin [mixture of 22, 23-dihydroavermectin B1a (80%)
and 22, 23-dihydroavermectin B1b (20%)] (Fig. 1) is a mac-
rocyclic lactone with a broad-spectrum antiparasitic pharma-
cological activity (Gonzalez Canga et al. 2008). It is the safest
and most effective semi-synthetic derivative of the entire class
of avermectins, discovered in 1975 by Professor Satoshi
Ōmura as fermentation products of the actinomycete bacterium
Streptomyces avermitilis (Crump 2017) (later reclassified in
S. avermectinius (Takahashi et al. 2002)). Its main pharmaco-
dynamics is to bind some channel proteins for chlorine con-
trolled by glutamate, typical of specific classes of invertebrates,
causing a greater permeability to this electrolyte: all this causes
a hyperpolarization of the cell membrane, blocking inhibitory
neurotransmission in neurons andmyocytes, resulting in paral-
ysis and death (Geary 2005). Commercialized since 1981, its
low cost, its high efficacy and safety, and the marked tropism
for helminths (therefore with an almost zero impact on the
biochemistry of human beings) have led to its inclusion in
the twenty-first World Health Organization's List of Essential
Medicines (World Health Organization 2019).

Ivermectin is a versatile drug with unique characteristics,
which make it interesting also for basic and applied research
(in particular for drug repurposing): it seems to reveal an an-
tibacterial (Lim et al. 2013; Ashraf et al. 2018), antiviral, and

anticancer activity (Juarez et al. 2018; Intuyod et al. 2019),
besides being potentially useful for the treatment of some
chronic pathologies (Ashraf and Prichard 2016; Ventre et al.
2017), result of an action on a wide range of cellular targets.

Regarding its role as an antiviral agent, its efficacy has been
demonstrated on several viruses, both in vitro and in vivo.
Among the many mechanisms by which it performs its func-
tion, the most consolidated one sees ivermectin as an inhibitor
of nuclear transport mediated by the importin α/β1 heterodi-
mer, responsible for the translocation of various viral species
proteins (HIV-1, SV40), indispensable for their replication
(Wagstaff et al. 2011; Wagstaff et al. 2012). This inhibition
appears to affect a considerable number of RNA viruses (Jans
et al. 2019; Caly et al. 2012), such as Dengue Virus 1-4
(DENV) (Tay et al. 2013), West Nile Virus (WNV) (Yang
et al. 2020), Venezuelan Equine Encephalitis Virus (VEEV)
(Lundberg et al. 2013), and Influenza (Gotz et al. 2016). In
addition, ivermectin has been shown to be effective against
the Pseudorabies virus (PRV, with a DNA-based genome),
both in vitro and in vivo (Lv et al. 2018), using the same
mechanism. Caly et al. (Caly et al. 2020) have recently shown
that the drug also inhibits the replication of the SARS-CoV-2
virus in vitro, however not clarifying how it occurs. Since the
causative agent of COVID-19 is an RNA virus, it can be
reasonably expected an interference with the same proteins
and the same molecular processes described above.

However, ivermectin could prove to be a powerful antiviral,
therefore also useful for a possible treatment of the new corona-
virus associated syndrome, even from a new perspective. This
could happen assuming its role as an ionophore agent, only
hinted in the recent past but never fully described (Juarez et al.
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2018). Ionophores aremolecules that typically have a hydrophil-
ic pocket which constitutes a specific binding site for one or
more ions (usually cations), while its external surface is hydro-
phobic, allowing the complex thus formed to cross the cell
membranes, affecting the hydro-electrolyte balance (Freedman
2012). These chemical species have historically been used to
study the mitochondrial respiratory chain and ATP synthesis
in eukaryotes (in this case also known as decoupling agents,
such as 2, 4-dinitrophenol), and their antibiotic activity has long
been appreciated (Bakker 1979). It is also hypothesized their
role as antiviral drugs (Krenn et al. 2009; Sandler et al. 2020)
and anticancer chemotherapeutic agents (Kaushik et al. 2018).
Thinking of the structure of two of the most important iono-
phores, monensin A and valinomycin, respectively a polyether
and a depsipeptide antibiotic, it is clear that they internally pres-
ent many oxygen atoms (with related free electron doublets),
indispensable for binding cations and transporting them through
phospholipidic bilayers.

At a first glance, the two structures that make up the iver-
mectin formula do not have these chemical properties, nor
those mentioned above, essential for a compound to be de-
fined as ionophore. However, it can be hypothesized that two
ivermectin molecules, reacting with each other in a “head-tail”
mode, can create a complex suitable to be considered such
(Fig. 2). This interaction could occur spontaneously or be
mediated by the binding of the same molecules to some

plasma transport proteins, in particular albumin (Klotz et al.
1990), which would have the role of positioning them in the
correct way to obtain the proposed configuration.

As it can be seen, in this way, an internal cavity is formed:
the oxygen atoms (indicated in red), now present in greater
number, work as Lewis bases and could therefore coordinate a
series of cations (Lewis acids). On the other hand, the –OH
groups are highlighted in blue and they could have a decisive
role in the stabilization of the new structure, with the estab-
lishment of chemical bonds between these functional groups:
one or more –O– bridges (however, it is difficult the formation
of ether bonds, since acid catalysis at high temperature is not
possible under normal conditions, both in vitro and in vivo) or
more probably hydrogen bonds could be formed, even among
more molecular complexes of this type. However, the forma-
tion of other weak and strong interactions of various kinds
cannot be excluded. Otherwise, specific cations could bind
the two molecules in the proposed way, creating themselves
the final structure and stabilizing it: there are examples already
known in literature (Abbott et al. 1979). The external part of
the complex, then, would already have in itself all the hydro-
phobic characteristics necessary to carry ions through the viral
membrane. As a consequence, it would be determined an ionic
imbalance between the external and internal environment,
with the recall of water and consequent osmotic lysis. This
would allow to neutralize the virus at an early stage of the

Fig. 1 Structural formulas of
ivermectin compounds
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infection, before; therefore, it can adhere to the host cells and
enter it to exploit their biochemical machinery for the produc-
tion of other viral particles. However, this hypothesis would
concern only viruses without a proteic capsid, a structure that
shows a certain resistance to osmotic pressure, even if to a
lesser extent than a bacterial, fungal, or plant cell wall
(Cordova et al. 2003). The new coronavirus is one of these,
presenting only a phospholipid envelope in defense of the
genetic material, where its few proteins are inserted and which
it acquires in the act of exiting the infected cells (Sigrist et al.
2020). This unconventional electrolyte uptake mode could
also affect the potential of the viral membrane, threatening
its integrity and functionality. The same goes for the viral
proteins present here. Furthermore, the concentration variation
of some cations, thus determined, could inhibit some key en-
zymes in the viral replication, such as RNA-dependent RNA
polymerases (RdRp) (te Velthuis et al. 2010), already used as
pharmacological targets.

Another indication in favor of a possible ionophore role for
ivermectin comes from the analysis of molecular similarity
that can be carried out through the Drugbank database
(www.drugbank.ca). By setting a minimum similarity
threshold for ivermectin equal to 0.7, about 14 results are
obtained. Among the various selected molecules, the
majority of which have antiparasitic and antibiotic activity
(already not only on the market but also in the study and
experimentation phase), a compound that has high structural
similarity is nystatin (score of 0.72), an antimycotic drug with
an ionophoric activity at the plasma membrane level, where it
forms channels (Yamasaki et al. 2011; Stillwell 2016; Rang
2015).

Immediately afterwards, with a slightly lower similarity, it
can be find amphotericin B and natamycin, all pharmacolog-
ical molecules of assured ionophoric activity (score of 0.71
and 0.706, respectively) (Stillwell 2016; Rang 2015; Ramos
1989; Ikehara et al. 1986).

In conclusion, pending computational simulations and
chemical-physical laboratory analysis, this hypothesis could
be applied to other known pharmacological molecules, in or-
der to identify compounds with probable ionophore nature to
be used in research and clinical practice.
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