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Abstract. We have investigated the consequences of 
having multiple fusion complexes on exocytotic gran- 
ules, and have identified a new principle for interpret- 
ing the calcium dependence of calcium-triggered exocy- 
tosis. Strikingly different physiological responses to 
calcium are expected when active fusion complexes are 
distributed between granules in a deterministic or prob- 
abilistic manner. We have modeled these differences, 
and compared them with the calcium dependence of 

sea urchin egg cortical granule exocytosis. From the cal- 
cium dependence of cortical granule exocytosis, and 
from the exposure time and concentration dependence 
of N-ethylmaleimide inhibition, we determined that 
cortical granules do have spare active fusion complexes 
that are randomly distributed as a Poisson process 
among the population of granules. At  high calcium con- 
centrations, docking sites have on average nine active 
fusion complexes. 

XOCYTOSlS involves many steps, including the bio- 
synthesis of vesicles and their contents, vesicle 
transport to the plasma membrane, docking, the 

merging of membranes, and the release of vesicle con- 
tents. After exocytosis, there is often calcium-dependent 
granule mobilization (39) and endocytic membrane re- 
trieval (48, 49). In sea urchin eggs, the cellular machinery 
that mediates membrane merger in calcium-triggered exo- 
cytosis, the fusion complex, resides on exocytotic granules 
(53) and can undergo conformational changes from inac- 
tive to active states (55). Transition between these two 
states is thought to be regulated by the binding of calcium 
to a "calcium sensor" (13, 38), but the identity and mecha- 
nism of the calcium sensor and the fusion complex is un- 
known. While binding of calcium to the sensor may be re- 
versible, upon activation, a fusion complex can irreversibly 
commit to fuse (55). The sea urchin is a good preparation 
to study the calcium dependence of exocytosis because the 
fusion of predocked granules with the plasma membrane 
can be studied, in vitro, in the absence of reserve granule 
mobilization to docking sites, or in the absence of subse- 
quent endocytotic activity. 

The simplicity of cortical granule exocytosis in vitro al- 
lows the investigation of a feature common to almost ev- 
ery fusing system (28): submaximal response to calcium. 
We have recently concluded that sea urchin cortical gran- 
ules are heterogeneous in their response to calcium (Kap- 
lan, D., P.S. Blank, M.S. Cho, I. Steinberg, and J. Zimmer- 
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berg. Biophys. J. 66:A284 [Abstr.].). Depending only on 
calcium concentration, a cortical granule will either fuse in 
time or will never fuse, regardless of how long or the num- 
ber of times calcium is applied. This striking behavior oc- 
curs even though all granules are docked. In this in vitro 
system docking has been characterized by EM (8, 60 ,  and 
is functionally evident by the ability of granules to remain 
attached to the plasma membrane despite extensive perfu- 
sion (61). In this fusion system, it is not known if docking 
and membrane merger are mediated by the same compo- 
nents. In terms of the above description, a fusion complex 
is irreversibly activated when a threshold calcium concen- 
tration is exceeded, i.e., all conformational changes associ- 
ated with the calcium sensor and the fusion complex that 
are required for membrane fusion to ensue are complete. 
We define this state as an activated fusion complex. 

Practically all docked cortical granules fuse with the 
plasma membrane of in vitro preparations (4, 15, 51, 61) at 
calcium concentrations in excess of 100 ixM (45, 52). This 
suggests that virtually all cortical granules have at least 
one fusion complex that can be activated by calcium. The 
total surface area of the granule (1-1xm diameter; 8, 61) is 
400 times the surface area of a 50-nm synaptic vesicle, so 
there is ample area on a cortical granule for more than one 
fusion complex. Docked cortical granules are derived from 
much smaller vesicles that bud from the Golgi (14), and in 
other systems, such precursor vesicles fuse to each other 
before plasma membrane docking (16, 17). If each precur- 
sor vesicle contained at least one fusion complex, then 
docked cortical granules would contain multiple com- 
plexes, which may concentrate at their docking sites. 

Since fusion for a single granule is all-or-none, fusion 
can be caused by one activated fusion complex. After fu- 
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sion, the rest of the fusion complexes will be redundant, 
and will not contribute to either the extent or the rate of 
fusion. Thus, if exocytotic granules have multiple activated 
fusion complexes before fusion, their number and distribu- 
tion can affect both the rate and extent of triggered exocy- 
tosis. Attempts to model the extents and kinetics of cal- 
cium-dependent fusion must consider the consequences of 
having multiple activated complexes. These consequences 
are examined in this study. 

Materials and Methods 
Cell surface complex (CSC) 1 was prepared and assayed for calcium-trig- 
gered exocytotic activity, as previously described (52). Sea urchin eggs 
were prepared from Strongylocentrotus purpuratus (Marinus, Long 
Beach, CA). Eggs in PKMEB (50 mM Pipes, 450 mM KCI, 10 mM MgC12, 
5 mM EGTA, I mM BAPTA, 1 mM benzamidine, pH 6.7) at a ratio of 1:10 
(vol/vol) were homogenized with 6-10 strokes of a Teflon-glass dounce 
homogenizer. The homogenate was centrifuged for 1 min at 200 g in a ta- 
bletop centrifuge. The pellet of CSC was resuspended in HENPK buffer 
(6 mM HEDTA, 6 mM EGTA, 3 mM NTA, 50 mM Pipes, 425 mM KCI, 1 
mM benzamidine, pH 6.7) by gentle vortexing to form a turbid white solu- 
tion. 

Fusion complexes were fractionally inactivated by mixing CSCs with 
HENPK containing various concentrations of NEM (up to 20 mM) on ice. 
After the appropriate incubation time (up to 2 h), unreacted NEM was 
neutralized by the addition of 20 mM DT1L The calcium dependence of 
cortical granule fusion in CSCs was determined at room temperature us- 
ing a turbidimetric microtiter dish assay, as previously described (52), and 
HENPK buffer containing defined calcium concentrations. Free calcium 
concentrations were measured for these buffers using a calcium electrode 
(World Precision Instruments, Inc., Sarasota, FL) or with the fluorescent 
calcium indicator BTC (Molecular Probes, Inc., Eugene, OR), whose fluo- 
rescence was measured using a CytoFluor 2350 finorimeter (Millipore, 
Bedford, MA) with a ratio (R) of the light excited at 360 ± 40 and 485 ± 
20 nm collected at 530 +_ 25 nm. The free calcium concentration was calcu- 
lated using the function [Ca 2+] = K d × Q × ( R - Rmin)/( Rma x - R)  and an 
apparent Kd value of 73 ± 1 p~M in HENPK buffer and a Q value of 6.6 ± 0.3. 

Survival curves were measured by monitoring light scattering from pla- 
nar isolated sea urchin egg cortices (61) that had been perfused with 
HENPK buffer containing defined concentrations of free calcium. Intact 
eggs were attached to polylysine-treated glass coverslips, and sheared with 
calcium-free HENPK buffer yielding a preparation consisting of exocy- 
totic cortical granules docked on plasma membrane fragments attached to 
a glass coverslip. The coverslip was placed in a rapid peMusion chamber 
(25) and challenged with calcium buffers. In this chambex;buffer  was 
completely replaced in <1 s. Light scattering was measured as previously 
described (61). 

The fraction of refractile granules was measured using planar isolated 
sea urchin egg cortices (61). Granules were imaged using a Plan-Neofluar 
63× 1.25 NA objective and Nomarski optics on an upright microscope 
(Carl Zeiss, Inc., Thornwood, NY). Cortices were incubated in a buffer 
containing 50 mM Pipes, 450 mM KCI, 1 mM benzamidine, 5 mM DM- 
nitrophen, and 2.5 mM CaCI2, pH 6.7. Caged calcium was released from 
DM-nitrophen, as previously described (45). The number of granules 
present before and 1 min after opening the UV shutter was directly 
counted for 60 independent trials by four observers. The fraction of gran- 
ules that failed to fuse was calculated, propagating sampling error. We 
only imaged centrally located regions of cortices to avoid edge problems (45). 

The fate of randomly selected granules was followed once per second 
in intact Lytechinus pictus eggs, using differential interference video mi- 
croscopy as described above. The noncensored Kaplan-Meier survival 
curve (31) for exocytosis was calculated from granule fusion times (Sigma 
Plot; Jandel Scientific, Corte Madera, CA). 

Curve fitting was performed using the Levenberg-Marquardt algo- 
rithm, which minimizes the value of chi square. Igor Pro software (version 
2.04; Wavemetrics, Inc., Lake Oswego, OR) was used to analyze the data. 
When error bars are shown, fits were weighted with the SD for each point 

1. Abbreviat ions  used in this paper: BAPTA, bisaminophenoxy ethane -N, 
N, N', N' tetraacetic acid; CSC, cell surface complex; HEDTA, N- hydrox- 
yethylethlendiamine triacetic acid; NTA, nitrilotriacetic acid. 

to improve the estimates of the fitting coefficients. Error was propagated 
for all mathematical data transformations, as described by Bevington and 
Robinson (7). 

Results 

Models for Multiple Fusion Complexes 

The active fusion complex is defined as the minimal set of 
components that can independently cause the fusion of a 
granule with the plasma membrane. We will consider two 
models that describe the rate and extent of fusion when 
the number of active fusion complexes on granules are 
varied, the fixed and random models. Assumptions com- 
mon to both of these models are: 
(a) All granules are predocked on the plasma membrane. 
(b) Only active fusion complexes can initiate the fusion 

process. 
(c) The transition between the inactive and active state is 

irreversible: granules with activated complexes are 
committed to fuse. 

(d) The calcium concentration regulates the number of 
active fusion complexes. 

(e) Upon activation, the probability in time that a fusion 
complex initiates the fusion process may be a function 
of the calcium concentration, but does not change 
with either time, the number of active fusion com- 
plexes, or the location of granules. 

(f) Fusion complex activation is instantaneous relative to 
the time constant for observing fusion. 

In addition to the above assumptions, there are two as- 
sumptions that are unique to either the fixed or random 
model. The fixed model assumes that every granule in a 
population will have a fixed integral number of active fu- 
sion complexes at any specific calcium concentration. In 
contrast, the random model assumes that active fusion 
complexes are randomly distributed between the granules 
in a population such that the total number of active fusion 
complexes is much greater than one, their average number 
per granule, and their number on any one granule. 

Fixed Model 

Triggered exocytosis of a population of granules can be 
treated as a survival process where the population of 
docked granules decreases by fusion. Let t = time in 1-s in- 
tervals, n = a fixed integer representing the number of ac- 
tive fusion complexes per granule, and p = the probability 
per second that an active fusion complex mediates a fusion 
event between a granule and the plasma membrane. The 
time dependence of exocytosis (survival) is: 

S(t,n,p) = (1 - p)nt 

This formalism is the same as a coin toss problem. If 
granule fusion occurs on the first "heads" tossed, then p is 
equivalent to the probability per toss of getting a head, 
( 1  - p) is the probability of not getting a head, t is the toss 
turn number, and n is the number of coins tossed per turn. 
When p is not very large (<0.1), S(t,n,p) decays exponen- 
tially with a time constant, np. If the parameters n or p are 
functions of [ C a  2+1 then increasing the value of either pa- t Ji, 
rameter would increase the rate of fusion. The rate of fu- 
sion is the derivative of 1 - S(t,n,p). A 0 value for either n 
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or p would result in no fusion, while all other values for n 
result in every vesicle fusing (Fig. 1). For  example, if each 
granule has one active fusion complex, n = 1, and every 
granule fuses. 

Random Model 

If  active fusion complexes are randomly distributed among 
a population of  granules, then different granules can have 
different numbers of active fusion complexes, with t and p, 
as described above. S(t,<n>,p) is the survival curve for a 
population containing individual granules that may have 0, 
1, 2, 3 . . . .  active fusion complexes. The relative abundance 
of granules with different numbers of  active fusion com- 
plexes is set by the value of < n > .  Because we assume that 
large numbers of active fusion complexes are randomly 
distributed among large numbers of  granules such that 
< n >  is small relative to the total number  of active fusion 
complexes, S(t,<n>,p) is the Poisson-weighted sum of in- 
dividual, fixed model survival curves: 

e ~  

S(t,<n>,p) = n~=o ((<n>n/n!) e -<n>) (1 - p)nt 
= e<n>(( 1 _ p ) t  1) 

The maximal rate of  fusion is the derivative of 1 - 
S(t,<n>,p) as t goes to 0: 

Rma x = - < n >  In (1 - p)  

The extent of fusion, E ( < n > )  is 1 - S(t, < n > ,  p)  as t goes 
to infinity: 

E ( < n > )  = 1 - e -<"> 

In the random model, increasing the value of either < n >  
or p as a function of [Ca2+]i  would increase Rma x. In con- 
trast to the fixed model, random model  survival curves are 
not single exponentials (at low values of  p), but are 
weighted sums of exponentials. More importantly, survival 
curves do not always extrapolate to 0 (100% fusion), but 
can asymptotically approach intermediate values as t ap- 
proaches infinity (Fig. 1): the extent of fusion, 1 - S (t 
0% < n > ,  p), is a function of < n >  alone. 

Fixed Random 
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Figure 1. The dependence of survival on n, <n>,  for the fixed 
model (lefipanel) and the random model (right panel). The value 
ofp was constant (p = 0.01) and the values ofn or < n >  were var- 
ied. In the random model, the presence of granules with no active 
fusion machines results in a fraction of granules that cannot fuse. 

The Time Course of Exocytosis Can Be Fit by the 
Random Model 

If active complexes are randomly distributed, and an in- 
crease in [Ca2+]i  corresponds to an increase in their num- 
ber, then three predictions can be used to differentiate be- 
tween these two models: (a) there should exist a range of 
calcium concentrations where submaximal extents of  fu- 
sion are observed; (b) survival curves should be best fit by 
the random model; and (c) even at very high calcium con- 
centrations (>1 mM), a small fraction of exocytotic gran- 
ules should fail to fuse. In contrast, 100% should fuse if ev- 
ery granule has a fixed number  of active fusion complexes 
(>o). 

The extent of fusion was measured as a function of  the 
calcium concentration in an in vitro preparation of sea ur- 
chin egg cortical granules that are predocked on isolated 
plasma membrane fragments. ATP,  GTP, cytosol, and all 
other soluble factors were not included in the reaction 
mixture to obviate the possibility that calcium might, in 
addition to triggering fusion, also trigger fusion complex 
assembly. Consistent with the random model, submaximal 
extents of  fusion were observed between 10 and 100 I~M 
calcium (Fig. 2). To test the second prediction of  the ran- 
dom model, survival curves were obtained from cortices 
that were exposed to either 16 or 350 IxM calcium in a rapid 
perfusion chamber. At  the lower calcium concentration, 
submaximal extents of fusion were observed, and the sur- 
vival curve (Fig. 3 A) was well fit by the random model. 
This curve is poorly described by the fixed model, even 
when the constraint of  noninteger n is lifted (compare re- 
siduals of best fits in Fig. 3 A and the error for the fitting 
parameters). At  the higher calcium concentration, where 
the rate of fusion is much faster, the survival curve (Fig. 3 
B) appears to be a convolution of the delivery of  calcium 
(45), a calcium activation process (55), and the underlying 
fusion process. These additional kinetic processes pre- 
clude our  use of  this technique for obtaining accurate val- 
ues of < n >  and p. Despite the convolution, a better fit 
was obtained when this survival curve was fit to the ran- 
dom model (see Fig. 3 B). The inability of the fixed model 
to fit either data set becomes even more apparent  when 
the value of  n is constrained to integer values. To test the 
last prediction of  the random model, that even at high cal- 
cium concentrations a fraction of the granules (e -<">) fail 
to fuse, the fate of ,'-~22,000 granules was determined after 
exposure to 2.5 mM calcium (see Fig. 4). Between 3-12 
survivors were observed. This corresponded to a fusion ef- 
ficiency >99.97% and to an < n >  value of 8.4 ___ 0.6 (mean 
--- SEM; n = 4) in the random model. Since these predic- 
tions of the random model have been observed, it remains 
a viable description for the extent and rate of cortical 
granule exocytosis. In contrast, the fixed model  is rejected. 

Docking Sites Can Have on Average Nine Active 
Fusion Complexes 

We reasoned that the maximum number  of  fusion com- 
plexes, on average, could be determined by randomly and 
irreversibly modifying the proteinaceous components  of 
fusion complexes needed for their activity, and then mea- 
suring the extent of  fusion in response to saturating con- 
centrations of calcium. By definition, granules that fail to 
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Figure 2. The top panel shows the calcium dependence of exocy- 
tosis in isolated cell surface complexes consisting of plasma mem- 
brane fragments and docked, ready releasable cortical granules. 
Points are mean --- SD, n = 8. Between 10 and 100 ixM calcium, 
submaximal extents of exocytosis were observed. This behavior is 
consistent with the random model. The bottom panel shows the 
transformation of survival (S) into < n >  according to the rela- 
tionship < n >  = - I n  (S), derived from the random model. As 
survival values approach 0, the error in < n >  increases. This is 
caused by our assay's inability to distinguish between 97 and 
100% granule exocytosis. Below 10 p.M calcium, granule exocyto- 
sis was not observed. Between 10 and 80 txM calcium, < n >  was 
proportional to pCa. The calcium dependence of < n >  above 80 
txM was not measurable with this technique. 

fuse no  longer  have any  active fus ion complexes.  N E M  
was chosen as an  inh ib i to r  because  it is a k n o w n  irrevers-  
ible inh ib i to r  of cortical  g ranu le  exocytosis (15, 23). I t  is 
possible  that  the  NEM-sens i t ive  site in sea u rch in  eggs is 
re la ted  to the NSF  pro te in  that  is involved  in Golgi  stack 
transfer ,  yeast  secret ion,  an d  synapt ic  release (5, 12, 44). 
However ,  cort ical  g ranu le  exocytosis inh ib i ted  by N E M  
canno t  be  rescued by cytosol (58). Rather ,  N E M  is thought  
to inhib i t  exocytosis by  r a n d o m l y  modi fy ing  free sulfhy- 
dryls on  fus ion complex  calcium sensors  (58) res iding on  
the exocytot ic  granules  (53, 56). N E M  t r e a t m e n t  should  
progressively decrease  the n u m b e r  of fus ion  complexes  
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Figure 3. Survival curves for sea urchin egg cortices exposed to 
either 16 ixm (A) or 350 txM (B) calcium. Cortices were perfused 
for 1 s with the calcium buffers beginning at t = 0. Survival curves 
were fit to either the fixed model or the random model, and resid- 
uals of the fits are plotted in the lower panels. The fitting parame- 
ters (-+SE) for the fixed model in A were n = 0.31 --_ 0.33, p = 
0.006 _+ 0.006, and the parameters for the random model were 
< n >  = 0.38 _ 0.00 andp  = 0.007 ___ 0.000. (B)The fitting param- 
eters for the fixed model were n = 6.06 - 27.80, p = 0.129 - 
0.549, and the parameters for the random model were < n >  = 
6.29 _+ 0.53 andp  = 0.169 ___ 0.022. Survival data in A was from a 
single experiment, while the survival curve in B is the mean 
( - S E M )  from five experiments illustrating that both single and 
averaged data can be fit. The fits for average data in B w e r e  

weighted by the sample variance. 

pe r  granule ,  and  the  r em a in ing  complexes  should  be  ran-  
domly  dis t r ibuted.  If  the average n u m b e r  of complexes  is 
low and  there  are m a n y  granules  s tud ied  at one  t ime, t hen  
their  d i s t r ibu t ion  a m o n g  granules  is Poisson (7). 

The  Poisson d is t r ibu t ion  is a discrete f r equency  dis t r ibu-  
t ion  of i n d e p e n d e n t  coun tab l e  events  which is comple te ly  
charac ter ized  by  a single pa ramete r ,  the m e a n  of the  distri- 

Figure 4. Four examples of exocytosis in response to 2.5 mM calcium from 60 individual experiments. Isolated sea urchin cortices were 
exposed to calcium before (left) and 1 min after (right). Occasionally, a granule failed to fuse in the presence of high calcium (see top 
video pair). Bar, 10 Ixm. 
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bution. The Poisson distribution describes many biological 
processes, such as the release of  quanta at synaptic termi- 
nals (26). A population of  granules with a Poisson distribu- 
tion of active fusion complexes will have a fraction of  
granules (e -<">) with no active fusion complexes. By mea- 
suring the fraction, S, of  granules in a population that sur- 
vives after exposure to calcium, we can calculate the value 
of  < n >  using the formula: < n >  = - In (S )  (see Fig. 2). 
< n >  as a function of  time of  exposure to an inhibitor, or 
as a function of inhibitor concentration, enables extrapola- 
tion to the value of < n >  in an untreated cortex. The max- 
imum number  of  active fusion complexes per granule, on 
average (<n>MAX), can be measured at saturating calcium 
concentrations. 

To measure the value of <n>MAX, the calcium and 
NEM sensitivity of cortical granule exocytosis was charac- 
terized in isolated cell surface complexes consisting of  
plasma membrane fragments and docked, ready releasable 
cortical granules. Submaximal extents of exocytosis were 
observed between 10 and 100 ixM calcium (Fig. 5). Gran- 
ule exocytosis was not observed below 10 I~M calcium. 
Mild NEM treatment shifted the survival activation curve, 
while more extensive treatment decreased the fraction of 
fusible granules. The decrease in the fraction of  fusion 
competent  granules could not be overcome with higher 
calcium concentrations (>1 mM). The plateau region ob- 
served above 1 mM calcium is consistent with the satura- 
tion of calcium sensor-binding sites: above 1 mM calcium 
additional active fusion complexes cannot be recruited. 

response studies using irreversible competitive inhibitors 
(29, 41, 46), and is the hallmark of "receptor reserve" or 
"spare receptors" (32, 47). 

The value of  <n>MAX was determined by extrapolation 
of the concentration and time dependence of NEM inacti- 
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Figure 5. Mild NEM treatment shifts the survival activation 
curve, while more extensive treatment results in a decrease in the 
fraction of granules that are capable of fusing. CSCs were treated 
with different concentrations of NEM for 2 h on ice, and then a 
calcium dose response was measured using a turbidimetric assay. 
Points are mean + SD, n = 3. 

tion of both the time of NEM inactivation or NEM concentration 
at the indicated calcium concentration. All experimental points 
are mean --- SD, n = 3. Dotted lines are weighted averages of all 
individual single exponential fits using the equation: y = ae (-bx), 
where a is a scaling parameter, b is either the time or concentra- 
tion decay constant for NEM inactivation, and x is either the time 
or NEM concentration. The exponential extrapolation to either 0 
NEM concentration or time 0 is mean --+ SEM derived from indi- 
vidual fits and displayed on a log-linear plot to explicitly show the 
exponential nature of this process. 
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vation at calcium concentrations >1 mM. The decrease in 
< n >  is an exponential function of both the time of NEM 
treatment and the NEM concentration during a fixed time 
period (Fig. 6). A single exponential decay would be ob- 
served if fusion complex inactivation was both random 
and required either a single-site modification or modifica- 
tion of multiple identical sites. At all calcium concentra- 
tions measured, above 1 mM calcium <n>MAX = 9.0 ----_ 0.2 
(mean --- 95% confidence) when extrapolated to a NEM 
concentration of 0, and <n>MAX = 8.1 ----- 2.2 (mean ----- 
95% confidence) when extrapolated to time 0. These val- 
ues of < n >  at high calcium concentrations are in agree- 
ment with the value of 8.4 +__ 0.6 derived from the fraction 
of granules that failed to fuse at 2.5 mM calcium (Fig. 4). 
At lower concentrations of calcium (<1 mM), the extrapo- 
lated values of < n >  were lower. For example, at 809 IxM 
calcium, < n >  had an extrapolated value of 6.0 + 2.2 
(mean - SD). 

We have demonstrated that at >1 mM calcium, < n >  
reaches a maximum value of 9.0 +_ 0.1 (mean --- SEM, n = 
10). Below 1 mM calcium, the extent of fusion can be in- 
terpreted as the fractional activation of fusion complexes 
in response to calcium. Fig. 7 depicts the cumulative re- 
suits of four techniques used to measure the calcium de- 
pendence of < n >  from sea urchin exocytotic preparations 
in vitro. No fusion was observed below 10 IxM calcium, so 
< n >  = 0. Between 10 and 800 txM calcium, < n >  in- 
creased with pCa. It is important to realize that 50% of 
granules fuse between 18 and 22 ILM calcium, while in con- 
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Figure 7. Four techniques were used to measure the calciurn de- 
pendence of <n> from sea urchin exocytotic preparations in 
vitro. The final extents from survival data for either CSCs ( . )  or 
the perfused cortex (O) were transformed into <n> values. At 
higher calcium concentrations where >98% of granules fuse, 
<n> was measured either by extrapolation of NEM inactivation 
data (N), or by the number of refractile granules (O). The figure 
insert is the same data on a log-log scale. 

trast, 50% of the fusion complexes, which can be activated, 
were active at ~100 IxM calcium. These different half max- 
imal calcium concentrations are derived, in part, from the 
same data set, and they illustrate the model dependence of 
assigning calcium-binding affinities. 

To examine the applicability of the random model to de- 
scribe the time course of exocytosis in intact cells, we visu- 
alized a population of cortical granules in L. pictus eggs 
during fertilization and measured the time course of exo- 
cytosis (Fig. 8, A-C). The exocytotic survival curve for this 
egg is shown in Fig. 8 D. After perfusion with sperm, there 
was a lag time during which sperm must find the egg, fuse 
with the oolemma, and release calcium from the egg's in- 
tracellular stores. Presumably, when the calcium concen- 
tration at docking sites reaches a threshold, granule fusion 
complexes are activated and mediate fusion with the 
plasma membrane. This survival curve can be parameter- 
ized by the random model (Fig. 8 D). In the egg, as ob- 
served in the isolated sea urchin egg cortex (Fig. 3 B), the 
initial portion of the survival curve (Fig. 8 D) may be con- 
volved with the temporal and spatial characteristics of the 
calcium delivery and a calcium activation process. During 
fertilization, the subcortical space that was occupied by 
cortical granules before fusion (Fig. 8 A) is not invaded by 
cellular organelles in the cytoplasm after exocytosis (see 
Fig. 8 C). 

Discussion 

The Random Model 

We envision cortical granule docking sites as having, de- 
pending upon [Ca2+]i, an average of between 0-9 active fu- 
sion complexes. Using the random model, we can rational- 
ize much of the calcium-dependent exocytotic behavior 
observed in this preparation. These include (a) the sigmoi- 
dal dependence of survival on pCa due to the existence of 
submaximal responses (4, 60); (b) the increase in fusion 
rate with increase in [Ca2+]i (10, 54); (c) the discrepancy 
between the calcium concentration required for maximal 
extents and rates (61); (d) shifting of the calcium activa- 
tion curve with inhibitors of exocytosis (23, 34, 58); and (e) 
aging (45, 61), where a progressive decrease in calcium 
sensitivity is observed with time in the isolated planar cor- 
tex. The random model succeeds in describing all of these 
behaviors in the sea urchin with the simple hypothesis that 
an increase in [Ca2+]i corresponds to an increase in the av- 
erage number ( < n > )  and perhaps the efficacy (p) of ac- 
tive fusion complexes at docking sites. According to this 
model, the number of active fusion complexes per granule 
is a Poisson-distributed random variable, with a maximal 
average value of < n >  = 9. In contrast, deterministic mod- 
els such as the fixed model are not compatible with the 
data. 

The random model links the rate and extent of degranu- 
lation, and can be used to fit the time dependence of exo- 
cytosis (Fig. 3). The fraction of granules that fuse at any 
calcium concentration is solely a function of one of these 
parameters, < n > ,  the average number of active fusion 
complexes at a docking site. Submaximal extents of fusion 
are observed because a fraction of granules containing no 
active fusion complexes will always exist when active fu- 
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Figure 8. Cortical granule exocytosis observed in intact sea ur- 
chin eggs. Sea urchin eggs were perfused with a 1:1,000 dilution of 
sperm in artificial seawater at t = 0 s. (A-C) The subcortical 
space, normally occupied by cortical granules in the unfertilized 
egg, was imaged using differential interference video contrast mi- 
croscopy at 40, 70, and 100 s after perfusion. The bar in C is 5 ixm. 
The Kaplan-Meier survival data (O; mean _+ SD) for sperm-triggered 
cortical granule exocytosis is shown in D. The solid line in D is a sur- 
vival curve based on the random model (S = e <n>(O - P) (t + At) _ 1)) 
with < n >  = 4.5,p = 0.029, and At = -48.6 s to allow for nonzero 
starting times. 

sion complexes are randomly distributed. In  the random 
model, the maximal rate of exocytosis is directly propor- 
tional to the average number  of active fusion complexes: 
as [Ca2+]i . increases < n > ,  the maximal rate of exocytosis 
will increase. Since the extent of exocytosis is an asymp- 
totic function of < n >  and the maximal rate is a linear 
function of < n > ,  they need not plateau at the same value 
of < n > .  This differential dependence on < n >  can explain 
the difference in the calcium dependence of rate and ex- 
tent observed in sea urchin eggs (61) and chromaffin cells 
(3). Since < n >  does plateau at >1 mM calcium, the maxi- 
mal rate should also plateau at these concentrations. A 
plateau in the apparent  maximal rate has been observed at 
>1 mM calcium in preliminary experiments (data not 
shown). 

The random model does have limitations. In essence, 
the random model shifts the burden of explaining incom- 
plete exocytosis to that of explaining incomplete conver- 
sion of inactive to active complexes. The nature  of the cou- 
pling between calcium sensors and fusion complexes is not  
intrinsic to the model, nor  is the assembly, activation, and 
other unknown aspects of producing a Poisson distribution 
of active fusion complexes. We can only speculate on is- 
sues such as the number  and nature  of calcium-binding 
sites, cooperativity between these sites, and the molecular 
mechanism for producing and maintaining Poisson-gener- 
ated fusion complex heterogeneity. The origin of this be- 
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havior is under investigation. Fusion complexes which do 
not contact a target membrane may not be functional (55), 
and the model yields only the average number of func- 
tional complexes per granule. Thus, the number of 'func- 
tional' complexes may differ from the total number of 
complexes. Changes in the probability that a fusion com- 
plex initiates the fusion process have not been incorpo- 
rated in this version of the model, nor have potential rate 
limiting steps, such as time dependent delivery of calcium 
or time dependent activation of fusion complexes. Indeed, 
there is evidence that fusion complexes are not "instanta- 
neously" activated (61). This can be seen in the discrep- 
ancy between the initial time course of exocytosis and the 
initial time course generated using the random model (see 
Figs. 3 and 8). Finally, it is known that in vitro, granules 
adjacent to granules that have already fused are more 
likely to fuse themselves (45). This behavior might result 
from a local modification of n and p values on neighboring 
granules. This version of the model has not been modified 
to account for this. 

Alternative Hypotheses 

One might speculate that a granule-docking site contains a 
single fusion complex, but that the NEM-sensitive site re- 
sides on a factor required to assemble that complex in re- 
sponse to an increase in the calcium concentration. Be- 
cause fusion complex assembly is thought to require ATP 
and other soluble proteins and factors (5, 44), and our as- 
say was conducted in the absence of ATP, GTP, and all 
other soluble factors and proteins, this seems unlikely. 
Furthermore, cortical granule exocytosis in vitro has been 
observed within tens of milliseconds after calcium delivery 
(54); as it is thought in other systems (2), it is likely that 
only preassembled fusion complexes are functional. 

By invoking schemes involving a single preassembled 
fusion complex at a docking site, it may be possible to ex- 
plain some of the individual calcium-dependent behaviors 
associated with exocytosis. First, it is known that calcium 
increases the rate of fusion (10, 54) and NEM decreases 
the fusion rate (45). By invoking an intrinsic, time-depen- 
dent inactivation process, one can explain both submaximal 
extents of fusion and the shift in calcium dose-response 
observed with NEM treatment. However, there is no evi- 
dence for time-dependent inactivation in this system (45; 
Kaplan, D., P.S. Blank, M.S. Cho, I. Steinberg, and J. Zim- 
merberg. Biophys. J. 66:A284 [Abstr.].). Second, if pro- 
gressive NEM treatment on a single fusion complex pro- 
gressively shifts its calcium-binding constant until the 
complex is destroyed, one can explain why mild treatment 
with inhibitors shifts the calcium dependence of exocytosis 
and extensive treatment with inhibitors decreases the frac- 
tion of granules that fuse. However, in this scheme, the 
calcium dependence of rate and extent should be identical, 
contrary to our data (extent plateaus at ~100 IxM, while 
rate plateaus at >1 mM calcium). Finally, any scheme hav- 
ing a single fusion machine per granule would require a 
cellular mechanism to enforce a one-granule-one-fusion 
complex distribution. No such mechanism has been de- 
scribed, and seems improbable when one considers the on- 
togeny of these large cortical granules. 

In Vivo Application 

The primary physiological role of cortical granule exocyto- 
sis is to prevent polyspermy (24), thus it is important that 
most of an egg's 15,000 cortical granules fuse within the 
first minute after sperm entry. An egg takes 9-10 s for 
50% of the granules to fuse (35) in response to a calcium 
concentration estimated to reach between 150 and 170 p~M 
(36). If we set random model parameters < n >  = 4.5 and p 
= 0.03, 98.7% granule fusion will occur by 3 min with an 
apparent half-time of ~10 seconds, and at a maximum rate 
of ~2,000 granules fusing per second. An < n >  value of 4.5 
requires that the calcium concentration at docking site 
reach ~100 IxM, which is comparable to values reached at 
synapses (1, 33, 43). A maximum rate of 2,000 granules 
fusing per second is comparable to exocytotic rates ob- 
served in neuronal ceils using capacitance techniques (3, 
18). In the sea urchin egg, as in neuronal cells (6, 20, 42), 
calcium-triggered exocytosis is followed by endocytosis 
(59). Interestingly, docking sites that were occupied by 
cortical granules before fusion are not invaded by other 
exocytotic organelles located deeper in the cytoplasm 
when observed by differential interference contrast micros- 
copy during the first few minutes after fertilization (see 
Fig. 8). This suggests that organelle access to the subcorti- 
cal space is limited, consistent with the recent finding that 
newly formed endosomes occupy this space (59). 

Spare Receptor System 

It is well known that fractional occupation of receptors by 
ligand need not correspond directly to fractional biological 
response (41, 46), as in cells having spare receptors (29). 
This behavior has been reconstituted and studied in vitro 
(40). Activation of a single surface receptor may invoke 
maximal response despite the fact that most surface recep- 
tors are free to bind ligand. Apparently, this behavior can 
also be invoked in intracellular receptor-mediated sys- 
tems, such as calcium-triggered exocytosis. Spare receptor 
mechanisms allow low affinity sites to mediate responses 
to low concentrations of ligand. More importantly, spare 
receptor systems may bring about a sharper dose response 
transition, comparable to cooperative ligand-binding tran- 
sitions (30, 37). Thus, a biological switch with a sharp tran- 
sition may be implemented by spare receptor system or 
strong positive cooperativity. 

The calcium dependence of exocytosis has been studied 
in different cell types, as models for synaptic release (3, 9, 
11, 18, 19, 21, 22, 27, 50, 57). We suggest that the rate and 
extent of calcium-triggered exocytosis at synapses may 
also be a function of the number, distribution, and efficacy 
of fusion complexes at docking sites, in addition to the 
speed, amplitude, and duration of calcium delivery to the 
exocytotic calcium sensor. It would be remarkable if Pois- 
son analysis, which was essential for constructing the vesic- 
ular hypothesis for synaptic release (26), would now allow 
for the interpretation of its calcium dependence. 
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