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Chest X-ray image contains sufficient information that finds wide-spread applications in diverse disease
diagnosis and decision making to assist the medical experts. This paper has proposed an intelligent
approach to detect Covid-19 from the chest X-ray image using the hybridization of deep convolutional
neural network (CNN) and discrete wavelet transform (DWT) features. At first, the X-ray image is
enhanced and segmented through preprocessing tasks, and then deep CNN and DWT features are
extracted. The optimum features are extracted from these hybridized features through minimum redun-
dancy and maximum relevance (mRMR) along with recursive feature elimination (RFE). Finally, the ran-
dom forest-based bagging approach is used for doing the detection task. An extensive experiment is
performed, and the results confirm that our approach gives satisfactory performance compare to the
existing methods with an overall accuracy of more than 98.5%.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coronavirus or Covid-19 is a viral disease caused by Severe
Acute Respiratory Syndrome (SARS). Covid-19 is 87.99% like the
bat-SL-CoVZC45 virus and 96% similar to a bat coronavirus (Li,
2019). That is why it is believed that this virus is transferred to
humans via bat species. Coronaviruses are a group of related
viruses that cause diseases among mammals and birds. Human
coronaviruses were found in 1960 and later 2003 as SARS-CoV,
2004 HCoV NL63, 2005 HKU1, 2012 MERS-CoV, and recently
2019 SERS-CoV-2 (Geller et al., 2012). The outer layer of these
viruses is ~80 nm and the spikes are ~20 nm long. This virus was
first identified in Wuhan city, the capital of the Hubei province
of China. Anyone can get affected through close contact with the
affected people. TheWorld Health Organization (WHO) has already
declared Covid-19 as a pandemic concerning the threat to public
health (Yoo, 2019). The typical Covid-19 clinical syndromes are
high fever, cough, sore throat, headache, fatigue, shortness of
breath, muscle pain, etc. (Singhal, 2020).

A real-time reverse transcription-polymerase chain reaction
(RT-PCR) is the most common standard test technique used in
the diagnosis of Covid-19. But radiological image analysis through
computed tomography (CT) and X-ray plays a vital role to assist the
diagnosis properly due to the low sensitivity of RT-PCR (Kanne
et al., 2020; Xie et al., 2020). In RT-PCR diagnosis the target ORF1ab
gene is not enough sensitive in case of low viral load and due to
SARS-CoV-2 rapid mutation (Pei et al., 2020). This will increase
the false-negative result with low sensitivity. For this reason, it is
clinically recommended to re-examine the suspicious results with
another established method. The fusion of deep features has been
proposed in reference (Wang et al., 2020) for the detection of
Covid-19 using the CT image dataset. By this time, CT is considered
as the established method for screening tools with RT-PCR to
detect Covid-19 pneumonia (Gao et al., 2020). However, studies
have found that the significant lung diseases had observed about
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10 days after the onset of symptoms from the CT scan, though it is
normal within 2 days (Bernheim, et al., 2020; Pan, et al., 2019).
Moreover, X-ray imaging is the widespread modality for its avail-
ability, quick response, and cost-effective nature. The transporta-
tion medium of an X-ray digital image is also very flexible from
the point of acquisition to analysis. Recently, X-ray imaging using
deep learning methods for Covid-19 detection is a widely used
mechanism to eliminate the limitations of insufficient test kits,
waiting time of test results, and test cost by RT-PCR.

The state-of-the-art technique is persistently focusing on the
use of deep learning applications in the detection of chest respira-
tory abnormalities using radiological imaging. The epidemic out-
break of Covid-19 finds the need for multiclass chest disease
detection with higher accuracy. The main challenge of this
research is to propose an automatic extraction of optimum features
and a classification model for Pneumonia including Covid-19 and
normal chest. However, the multiclass classification is more crucial
in this experiment as the overlapping features may lead to a con-
fusing result. Exploratory analysis in this work has finally achieved
the optimum feature vector with promising classification. Most of
the existing works for Covid-19 detection aim to address binary
classification task separating Covid and non-Covid cases. Therefore,
one of the main focuses of this research is to deal with multiclass
scenarios including Covid-19 along with different types of Pneu-
monia. The experiment has found that the syndromes are likely
to be more obvious in chest X-ray than other modalities.

In this study, an automatic feature extraction technique is used
without the need for manual feature extraction. This method has
proposed a hybrid feature extraction module where early diagnosis
is possible. It can remove the limitations of obscuring features in
chest X-ray using the combinations of local textural features and
deep neural network features. Moreover, the preprocessing tech-
niques play a vital role to dig the potential details. The result shows
better accuracy through the utilization of minimum redundancy
and maximum relevance (mRMR) features and recursive feature
elimination (RFE) techniques. The adaptive boosting technique of
ensemble classifiers shows a minimum classification error. The
key findings of this research are given below:

i) A preprocessing approach is proposed to improve the early
detection of Covid-19 from the chest X-ray.

ii) A hybrid feature extraction mechanism is developed through
a pre-trained deep CNN model and the wavelet transform
operation.

iii) These features are optimized using the mRMR and RFE tech-
niques to increase accuracy.

iv) An adaptive boosting technique is utilized for final classifica-
tion in reducing the classification error compared to other
methods.

The remaining parts of this article are structured as follows:
Section 2 presents related works. Section 3 describes the research
materials and methods. Experimental results are presented and
discussed in Section 4. Finally, Section 5 concludes the paper.
2. Related works

Applications using machine learning methods have already
gained an adjunct position as a clinical tool. The automatic diagno-
sis of disease conditions using artificial intelligence is becoming a
popular research area for achieving automated, fast, and reliable
results. Deep learning technology has already been used in pneu-
monia detection (Rajpurkar, et al., 1711) using an X-ray image
and confirmed a promising result. They had used CheXNet with a
121-dense layer of CNN and pre-trained on the publicly available
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data repository of ChestX-ray14. Recently, the rapid spread of the
epidemic Covid-19 has increased the necessitates for developing
expert tools. The machine vision-based automated system can
assist the clinicians with a minimum level of radiological expertise.
A deep learning model was developed at an earlier stage by Hem-
dan et al. (Hemdan et al., 2003) to detect Covid-19 from chest X-
ray. Their COVID X-Net model used a combination of VGG19 and
Dense-Net and obtained a good classification result with an F1-
score of 0.91 for Covid-19 cases. Later, Wang and Wong (Wang
and Wong, 2003) found a classification accuracy of 92.4% from
the limited number of chest X-ray images using their developed
COVID-Net. Ioannis et al. (Apostolopoulos and Mpesiana, 2020)
obtained an accuracy of 96.78% using the transfer learning model.
They had introduced a multiclass (Covid-19, Pneumonia, Normal)
approach and find better results using VGG19 and MobileNet V2.
Narin et al. (Narin et al., 2003) proposed a three-CNN-based pre-
trained model to detect Covid-19 from the X-ray image. They
achieved an accuracy of 98% using 5-fold cross-validation. Sethy
et al. (Sethy and Behera, 2020) classified Covid-19 from the X-ray
with an accuracy of 95.38% using ResNet50 features and a support
vector machine classifier. Asif et al. (Asif et al., 2020) obtained a
classification accuracy of 98% to detect Covid-19 from chest X-
ray using deep CNN. Mangal et al. (Mangal, et al., 2004) proposed
a computer-aided system to detect Covid-19 using X-ray and
obtained an accuracy of around 90.5%. Going through the literature
it is found that redundant features lead to higher false positive (FP)
and false-negative (FN) rates. In the multiclass model, it is very
crucial to deal with relevant features in the feature vector. More-
over, the hybridization of features frommultiple domains will help
improve the robustness and accuracy of the system. Besides, pre-
processing before feature extraction is absent in most of the exist-
ing systems. The current paper tries to fill these gaps.
3. Research methodology

The proposed system utilizes a machine vision approach to
detect Covid-19 cases from the Chest X-ray images. It takes the
input chest X-ray images of three classes as Covid-19, non-COVID
pneumonia, and normal. Non-COVID pneumonia also comprises
two subclasses of viral pneumonia and bacterial pneumonia cases.
The main contribution of this research is to detect the Covid-19
class from the rest classes using a chest X-ray image. The work-
flow diagram of the proposed system is shown in Fig. 1.

Whenever any input is given to the system, it will be processed
into a gray level and then resized the image to a fixed size of
224 � 224 pixels. The next step is to normalize the intensities
and remove the noise using the anisotropic diffusion technique.
The region of interest is then enhanced by the histogram equaliza-
tion technique, which is a common technique for enhancing low-
contrast images through histogram stretching using cumulative
distribution function mapping. A watershed algorithm has been
utilized for region segmentation. This segmented image is passed
for feature extraction using DWT and CNN techniques. Features
from both methods generate a fusion vector, which is optimized
through mRMR and RFE techniques. Finally, this optimized vector
is used for Covid-19 detection.
3.1. Dataset preparation

The dataset is prepared from several publicly available chest X-
ray data sources: Academic torrent repository of confirmed Covid-
19 cases of X-ray data by Cohen et al. (Cohen et al., 2003), Kaggle
Covid-19 X-ray data (‘‘Covid-19 X rays, 2020), Chest X-ray data
of pneumonia (viral and bacterial), and normal cases by Kermany
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Fig. 1. Overview of the proposed detection method.
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et al. (Kermany, 2018). Fig. 2 exhibits some sample chest X-rays
from our experimental dataset.

The reliability of this neural network-based computer-aided
diagnosis (CAD) system for Covid-19 depends on a large number
of input data for training. The data preparation is explained below.

As it is difficult to get huge labeled data, so, we have used the
data augmentation technique, such as zooming, searing, flipping,
rotating, changing the brightness, color, and shape in horizontal
and vertical positions. After augmentation, this experiment uses
a total of 4809 chest X-ray images including 790 confirmed
Covid-19 cases, 1215 viral pneumonia cases, 1304 bacterial pneu-
monia cases, and 1500 normal cases. Our prepared datasets are
available at https://github.com/rafid909/Chest-X-ray.
3.2. Data preprocessing

Data preprocessing is one of the vital parts of medical image
analysis as it helps in the extraction of effective features. An aniso-
tropic diffusion along with histogram equalization is used for
denoising and brightness uniformity for the resized image of
Fig. 2. Sample dataset; (a) Covid-19, (b) Viral Pneumon
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224 � 224 pixels. After that, the watershed technique is applied
to segment out the effective region in the X-ray image. The details
of these preprocessing steps are given below.

3.2.1. Anisotropic diffusion and histogram equalization
Anisotropic diffusion, an iterative process, enhances the quality

of X-ray images Iðx; y; tÞ by removing unnecessary noise and arti-
facts (Septiana and Lin, 2014), 2014);(Kamalaveni et al., 2015)
through a space-variant diffusion filter or coefficient cd x; y; tð Þ.
Here, x and y are the image x-axis and y-axis coordinates, respec-
tively, and t is the iteration step. The diffusion coefficient acts as
the function of the local image gradient which is inversely propor-
tional to the magnitude of the gradient. For instance, the gradient
magnitude is weak within the inner region and strong close to the
boundary. Therefore, it acts as a heat equation to smoothen the
inner region and remove noise. It stops the diffusion across the
boundary and preserves the edge. For image gradient rIðx; y; tÞ
the partial differential equation (PDE) of anisotropic diffusion can
be shown by Equation (1), which is governed by the two edge-
stopping functions of the diffusion coefficient given in Equation
(2) and Equation (3) according to Perona and Malik (Perona and
Malik, 1990).

@Iðx; y; tÞ
@t

¼ div ½cdðx; y; tÞrIðx; y; tÞ� ð1Þ

cd1 ðx; yÞ ¼ exp � rIðx; y; tÞ
K

� �2( )
ð2Þ

cd2 ðx; yÞ ¼
1

1þ rIðx;y;tÞ
K

h i2 ð3Þ

K is a sensitivity constant, cd1 ðx; yÞ and cd2 ðx; yÞ indicate the two
functions of the diffusion coefficient.

For a better perception clinician needs to enhance the visual
quality of the image. In an X-ray image, the anisotropic diffusion
is used for smoothing fine details and remove the undesirable
low contrast and brightness. In addition, the histogram equaliza-
tion technique can be used to overcome the low contrast problem
(Salem et al., 2019). It will work as an efficient contrast enhance-
ment technique in medical imaging operations. In an automatic
detection system, more potential features can be attained using
the effective presentation of enhanced images. An input Covid-19
chest X-ray image is shown in Fig. 3(a). Fig. 3(b) and (c) show
the images after anisotropic diffusion and histogram equalization,
respectively.

3.2.2. Segmentation using watershed technique
Watershed (Zheng et al., 2008) is a kind of transformation that

works on grayscale image for segmenting different regions on the
ia, (c) Bacterial Pneumonia, (d) Normal chest X-ray.

https://github.com/rafid909/Chest-X-ray


Fig. 3. Image enhancement; (a) Covid-19 chest X-ray, (b) Anisotropic diffusion, (c) Histogram Equalization.
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basis of the geological watershed to separate adjacent drainage
basins. It performs like a topographic map where the luminance
of each point representing its height, and then find out the lines
that pass along the tops of ridges. In medical image segmentation,
the watershed algorithm provides a complete division that sepa-
rated meaningful feature regions for diagnosis, hence here this
algorithm is used as the non-trivial task of separating the
fracture-lung regions. Fig. 4 illustrates the outputs of the water-
shed segmentation technique of a Covid-19 X-ray image.
3.3. Feature extraction

This section demonstrates the feature extraction process. Here,
two feature extractors namely, discrete wavelet transform (DWT)
and convolutional neural network (CNN) are used for feature
extraction. As the region of interest varies in different x-ray
images, DWT is used in this experiment to find the spatial relation-
ship among pixels for better textural features. These DWT features
are combined with deep CNN features for more effective outcomes.
3.3.1. Discrete wavelet transform
Wavelet transform is a powerful tool in medical image decom-

position to extract the discriminative features for textural feature
analysis. To find the effective DWT features, here we have per-
formed a three-level decomposition task. At each level, it generates
a low-resolution image and three detailed images (Wang et al.,
2019). So, from three decomposed levels, it produces a total of nine
detailed images. After analyzing these images, it is found that the
Fig. 4. Outcomes of watershed segmentation technique: (a) Segme
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textural information is more obvious in the middle (2nd-level)
detail coefficients. So, this experiment has no attempt to decom-
pose more than three-levels as we consider only the coefficients
from the second level. Fig. 5 demonstrates the three-level decom-
position of the segmented image. The structural and gray-level co-
occurrence matrix (GLCM) features are selected from these three
decomposed coefficients. Some discriminatory statistical features
such as the mean, standard deviation, variance, kurtosis, skewness,
and GLCM features namely energy, entropy, correlation, contrast,
homogeneity are extracted. These features are calculated from four
different orientations 00, 450, 900, 1350 for each of the three detail
coefficients. It generates a total of 120 wavelet features.
3.3.2. Convolutional neural networks
For feature extraction, a pre-trained ResNet 50 model is used.

This model can handle the gradient disappearance and degradation
problem of general CNN by using the residual blocks (Lu et al.,
2020). The performance of CNN has improved by the depth of pro-
posed residual blocks. The CNN architecture is a sequence of con-
voluted layers followed by pooling layers and ending with a fully
connected neural network (Mostafiz et al., 2020). The convolu-
tional layers have formed with some learnable filters. Such convo-
lution filters are applied as feature extractors and the features are
used to perform classification. Here, we have used the widely used
benchmarked ResNet 50 CNN architecture whose self-explanatory
schematic diagram is shown in Fig. 6 indicating layers, configura-
tions, and parameters. It contains a total of 49 convolution (conv)
layers and a fully connected (FC) layer. There is a max-pooling after
nted lung, (b) Infected regions, (c) Features in the lung region.



Fig. 5. DWT: (a) 1st level decomposition, (b) 2nd level decomposition, (c) 3rd level decomposition.

Fig. 6. The schematic architecture of the CNN used in this experiment.
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the first convolution and an average pooling after the last convolu-
tion or before the FC. The FC layer is accounted for the feature
extraction.

ReLU (Rectified Linear Unit) activation function (Nair and
Hinton, 2010) is used in each convolutional layer. A dropout layer
(Hawkins, 2004) has been added to prevent the overfitting prob-
lem. A total of 1024 CNN features are extracted from the FC layer
for an input image.
3.4. Feature hybridization and selection

120 wavelet-based feature vectors and 1024 deep CNN feature
vectors are fused to generate the hybridized feature vector of size
(120 + 1024 = ) 1144. Feature optimization is then used to achieve
more interpretable features in the feature vector. After optimiza-
tion, the feature vector size becomes 100. This has improved the
classification accuracy as well as computational cost. The objective
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is to select the most relevant features and eliminate the irrelevant
and redundant features (Mostafiz et al., 2019, 2020; Rashed-Al-
Mahfuz et al., 2019). We have investigated two pragmatic feature
optimization algorithms: i) Minimal-redundancy-maximal-rele
vance (mRMR) (Peng et al., 2005) and ii) Double input symmetrical
relevance (DISR) (Meyer et al., 2008).

The mRMR algorithm optimizes the mutual dependencies
among the selected features. Mutual dependencies of two vari-
able � and y can be calculated using Equation (4) from their prob-
abilistic density function p xð Þ; p yð Þ and x; yð Þ.

I x; yð Þ ¼
ZZ

pðx; yÞ log pðx; yÞ
pðxÞpðyÞdxdy ð4Þ

The maximal relevance DðS; cÞ approximates using Equation (5),
where the mean of all mutual dependencies is xi, c is the class, and
S is the feature set. Therefore, minimal redundancies can be added
using function RðSÞ denoted by Equation (6).
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maxD S; cð Þ ¼ 1
jSj

X
xi�S

Iðxi; cÞ ð5Þ
minR Sð Þ ¼ 1

jSj2
X
xixj�S

Iðxi; xjÞ ð6Þ

Equations (5) and (6) can be expressed as Eq. (7) to obtain a
good subset of features by optimizing the relevance and
redundancy.

maxU D;Rð Þ;U ¼ D� R ð7Þ
Recursive feature elimination (RFE) finds the near-optimal fea-

ture from U of Equation (7).
On the other hand, DISR is a mutual information-based feature

selection technique. It selects the most relevant features by utiliz-
ing the feature-selection criteria given in Equation (8)

FDISR ¼ argmax
xi2xs

X
xj2xs

IðXi;j; TÞ
HðXi;j; TÞ

8<
:

9=
; ð8Þ

Where T is the desired class, S is a feature set, I is the mutual
information and H is the information entropy, and Xi;j is the feature
variable.
Table 1
Confusion matrix obtained for a 2-class scenario for the test images.

Actual Class Predicted Class
Covid-19 Non-COVID

Covid-19 (Total = 237) (TP) 235 (FN) 2
Non-COVID (Total = 1206) (FP) 6 (TN) 1200
3.5. Ensemble (RF) classifier

Random Forest (RF) constructs the classifier using a decision
tree (DT) based ensemble technique (Breiman, Oct. 2001). RF is
comparatively faster and gives promising accuracy and can handle
large data sets through decision trees. The RF classifier in this
experiment has used the bagging technique of bootstrap aggrega-
tion (Ko et al., 2011). The algorithm works in this experiment as
follows:

� Randomly choose a subset of K features from the given data m;
where K � m.

� Calculate the node d among K features to find the best split
point as a threshold node. At node d the training data Kd is split
into the right subset Kr and left subset Kl.

� Recursively splits the nodes for obtaining further best split
nodes.

� Continues until a single node is achieved.
� Repeating n times means to create an RF classifier with n num-
ber of trees.

The candidate is selected as a threshold node that maximizes
the information gain. The entropy estimation is calculated using
Equation (9) to measure the information gain. The formation of
the RF classifier follows two conditions to complete the training
and to stop the iterations.

DE ¼ � Klj j
Kdj j E Klð Þ � Krj j

Kdj j E Krð Þ ð9Þ

Analysis of the proposed model has found that the maximum
depth 20 and the set of trees 100 will produce the best perfor-
mance in terms of classification accuracy and computational cost
for all cases. The output class of the input test image ci is obtained
by maximizing the value of P cið jKÞ through Equation (10).

P cið jKÞ ¼ 1
T

XT
t¼1

P cið jKtÞ ð10Þ

Where T is the total number of trees.
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4. Results and analysis

This experiment detects and classifies the Covid-19 chest X-ray
in two different scenarios. In the first scenario, only the Covid-19
X-ray is classified from non-COVID classes, which means it is a
two-class scenario. The non-COVID class comprises all the chest
X-rays of viral pneumonia, bacterial pneumonia, normal chest. Sec-
ondly, the experiment also performs the classification of X-ray
image based on four classes: Covid-19, viral pneumonia, bacterial
pneumonia, normal chest. The total dataset is divided randomly
for training and testing at a ratio of 7:3.

For medical image analysis, only accuracy measurement is not
enough, so, the method is assessed on recall, precision, F-score
also. The performance metrics are shown in Eqs. (11)–(14), which
are derived from the confusion matrix consisting of True Positive
(TP), True Negative (TN), False Positive (FP), and False Negative
(FN). In the equations, TP is the prediction of positive class as pos-
itive; TN is the prediction of negative class as negative; FP is the
prediction of negative class as positive; FN is the prediction of pos-
itive class as negative.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð11Þ

Precision ¼ TP
TP þ FP

ð12Þ

Recall ¼ TP
TP þ FN

ð13Þ

F1� score ¼ 2� Recall� Precision
Recallþ Precision

ð14Þ

Tables 1 and Table 2 show the confusion matrices for the 2-class
and the 4-class classification of the test images using the fusion of
features of DWT and CNN along with mRMR and RFE optimiza-
tions. The classification is performed using the Random Forest
(RF) based bagging approach.

Table 1 shows the binary class scenario where only 2 covid pos-
itive cases are identified as non-covid among 237 Covid-19 posi-
tive samples; i.e. the false positive (FP) rate is almost minimum.
For 1206 non-covid cases only 6 are miss classified as covid posi-
tive. This little number of non-covid cases overlapped with covid
positive cases (FP) because of the highly correlated features of
covid and pneumonia chest X-ray. In a multiclass scenario (four-
classes), 233 covid positive cases are identified correctly using
the same number of samples as binary classification. Viral pneu-
monia cases are sometimes overlapped with covid cases but no
covid positive cases are predicted as the normal chest. The wrong
prediction rate has been decreased which is resulted from the effi-
cient optimization of the feature vector with ensemble
classification.

Based on the confusion matrices, the performance measures
such as accuracy, precision, Recall, F-score of our proposed
methodology for the 2-class and 4-class scenarios are shown in
Table 3.

To obtain the meaningful feature extraction scheme proposed
method fused the textural features and the deep CNN features.
The textural feature is formed using both the statistical features



Table 2
Confusion matrix for a 4-class scenario for the test images.

Actual class Predict class
Covid-19 Viral Pneumonia Bacterial Pneumonia Normal

Covid-19(Total = 237) 233 3 1 0
Viral Pneumonia(Total = 365) 2 357 4 2
Bacterial Pneumonia(Total = 391) 1 3 386 1
Normal(Total = 450) 2 0 2 445

Table 3
Performance measures of our proposed method.

Predict classes Accuracy Precision Recall F1-score

2-class 0.9945 0.9751 0.9917 0.9833
4-class 0.9848 0.9789 0.9872 0.9829

R. Mostafiz, Mohammad Shorif Uddin, Nur-A- Alam et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 3226–3235
and GLCM features. Textural features are extracted from the 2nd
level sub-bands of wavelets in different directions. The wavelet
transforms on preprocessed chest X-ray shows better evaluation
result than normal wavelet features. Table 4 shows the compara-
tive performance of textural feature-based classification for both
binary (Covid-19 vs non-COVID) class and multiple class (4-
classes: Covid-19, viral pneumonia, bacterial pneumonia, normal
chest).

Table 4 shows the comparative performance using the features
from the single method either CNN or DWT to the fused features
(i.e. features from both CNN and DWT). This table confirms the
superiority of the fused method.

This experiment attempted different pre-trained CNNmodels to
find the best-suited one. Current studies have used many pre-
Table 4
Comparison using textural properties.

Methods Predict classes Accuracy

DWT Only 2-class 0.8426
4-class 0.8153

CNN Only 2-class 0.9782
4-class 0.9618

DWT + CNN 2-class 0.9945
4-class 0.9848

Table 5
Comparative performance of the features from different CNN models fused with the DWT

Methods Predict classes Accuracy

ResNet50 2-class 0.9945
4-class 0.9848

VGG19 2-class 0.9627
4-class 0.9489

MobileNet v2 2-class 0.9413
4-class 0.9153

DenseNet201 2-class 0.9241
4-class 0.8947

Inception 2-class 0.9084
4-class 0.8796

Xception 2-class 0.9046
4-class 0.8759

Table 6
Comparative performance of feature optimization approaches.

Methods Predict classes Accuracy

DISR + RFE 2-class 0.9879
4-class 0.9791

mRMR + RFE 2-class 0.9945
4-class 0.9848
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trained CNN models for the automatic diagnosis of chest X-rays.
The exploratory analysis has been performed on those models rec-
ommended by various existing literature and find the comparative
result tabulated in Table 5. The performance metrics are obtained
using the combination of wavelet features and the CNN features.
Working on the training and test data the fine-tuned ResNet50 per-
forms better as a pre-trained model. All the CNN models use a uni-
form benchmark dataset in training. The test dataset is also
identical to examine the performance of all those models. To eval-
uate each of the fine-tuned models, we have just change the clas-
sifier head and train the layers of the desired model. However, this
study has also computed the performance of a few scratch models,
but the performance peak is not good as fine-tuned models as well.

The performance result from Table 5 makes it clear that the pre-
trained ResNet50 produces a comparatively better result with the
combination of the wavelet domain. Using the fine-tuned pre-
trained ResNet50 model both the binary classes and multiple
classes classification show promising performance working on fea-
ture fusion. Two feature selection approaches minimum Redun-
dancy - Maximum Relevance (mRMR) and Double Input
Symmetrical Relevance (DISR) are applied separately on the final
Precision Recall F-score

0.8349 0.8541 0.8445
0.8096 0.8345 0.8219
0.9715 0.9876 0.9794
0.9448 0.9809 0.9625
0.9751 0.9917 0.9833
0.9789 0.9872 0.9829

features.

Precision Recall F-score

0.9751 0.9917 0.9833
0.9789 0.9872 0.9829
0.9468 0.9785 0.9623
0.9347 0.9782 0.9561
0.9334 0.9504 0.9418
0.9081 0.9244 0.9162
0.9114 0.9394 0.9252
0.8837 0.9091 0.8965
0.8978 0.9214 0.9095
0.8693 0.8934 0.8812
0.8951 0.9167 0.9058
0.8639 0.8922 0.8778

Precision Recall F1-score

0.9668 0.9885 0.9776
0.9647 0.9819 0.9732
0.9751 0.9917 0.9833
0.9789 0.9872 0.9829



Fig. 8. Performance graphs of 5-fold cross-validation.
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fused feature vector (wavelet features + CNN features using
ResNet50) along with recurrent feature elimination (RFE) tech-
nique. The feature selection scheme performs to select the most
relevant features and eliminate the redundant features to increase
the computation speed and classification performance. By this
elimination, the feature dimension becomes more concise with rel-
evant features and obtain better efficiency with less computation
required. Table 6 shows the comparative results of mRMR + RFE
and DSIR + RFE feature optimizations. This table confirms that
mRMR + RFE shows better performance than the DSIR
optimization.

This experiment has used a Random Forest classifier (RF) as the
ensemble of multiple decision trees. RF classifier performs better
than the SVM and CNN classifier used in this experiment in terms
of performance metrics and computational complexities. Besides,
for the overlapping and categorical data, the RF classifier outper-
forms other models. Table 7 confirms that the Random Forest clas-
sifier shows the best performance. The classification has performed
after the feature selection process of mRMR and RFE technique.

The visual performance of some tricky cases, as well as one nor-
mal case of chest X-ray images, are shown in Fig. 7. Fig. 7(a) shows
a chest X-ray image of a Covid-19 case which is easily detected by
both the proposed model and the radiologist as the main critical
factor of leverage areas of lung can interpret by auditing opacities,
which is the result of a decrease in the ratio of gas to soft tissue in
the lung. In Fig. 7(b), the radiologist becomes confused to detect
Covid-19 in the chest X-ray, but the proposed model correctly
detects it as a Covid-19 class. The transparent design is responsible
to gain and interpret the insight infection of Covid-19 is performed
by the CAD system but difficult for human experts. However, in
Fig. 7(c), both the proposed model and human experts are wrongly
predicted as pneumonia but the actual class is Covid-19. The poor
quality of X-ray leads to the wrong prediction. In some cases, due
Table 7
Comparison of performance of different classifiers used in this experiment.

Methods Predict classes A

KNN(K-Nearest Neighbor) 2-class 0
4-class 0

CNN(Convolutional Neural Network) 2-class 0
4-class 0

SVM(Support Vector Machine) 2-class 0
4-class 0

RF(Random Forest) 2-class 0
4-class 0

Fig. 7. Evaluated by the radiologist and proposed model: (a) Predicted Covid-19 by the pr
wrongly detected by the radiologist as normal chest; (c) Predict as viral pneumonia by
bacterial pneumonia by the proposed model but actual class is a normal chest.

3233
to poor-quality X-rays, the proposed system shows misdetection,
such as Fig. 7(d). In Fig. 7(d) the normal chest image is detected
as bacterial pneumonia.

The 5-fold cross-validation has been performed to obtain a
more embodied experimental result. It estimates the model behav-
ior towards the independent data and also useful to minimize the
overfitting problem in supervised learning. The performance is
measured by averaging the values reported in each fold. In Fig. 8,
the accuracy of each fold is shown for 2-class and 4-class scenarios.

Fig. 8 symbolizes that the peak accuracy is 99.85% for binary
classification and 98.91% for multi-class classification. The RF
works for classification in each fold based on the selective features
of the mRMR technique. As the main motive of this research is to
detect Covid-19 from chest X-ray, the performance is measured
in two different criteria. The misdetection rate has been minimized
by handling the imbalanced data using RFE with mRMR in the
ccuracy Precision Recall F-score

.9674 0.9453 0.9696 0.9573

.9518 0.9282 0.9538 0.9408

.9852 0.9697 0.9826 0.9761

.9746 0.9534 0.9787 0.9658

.9911 0.9634 0.9847 0.9739

.9801 0.9582 0.9821 0.9701

.9945 0.9751 0.9917 0.9833

.9848 0.9789 0.9872 0.9829

oposed model and the radiologist; (b) Predicted Covid-19 by the proposed model but
both proposed model and the radiologist but actual class is Covid-19; (d) Predict



Table 8
Comparison of the proposed Covid-19 diagnosis with the existing techniques.

Study Dataset Method Result

Hemdan et al. (Pan et al., 2019) 25 Covid-19 (+);25 Normal X-ray. VGG19 + MobileNet v2. Covid-19 and Pneumonia.
Accuracy = 90%

Wang and Wong et. al. (Rajpurkar
et al., 1711)

358 Covid-19 (+); 5538 Pneumonia (viral + bacterial);
8066 normal chests.

COVID-Net Covid-19, Pneumonia, and Normal.
Accuracy = 93.3%

Iaonnis et. al. (Hemdan et al., 2003) 224 Covid-19 (+); 714 Pneumonia (400 bacterial + 314
viral); 504 normal chests.

MobileNet v2. Covid-19, Pneumonia, and Normal.
Accuracy = 96.78%

Narin et. al. (Wang and Wong, 2003) 50 Covid-19 (+); 50 normal chests. Deep CNN (ResNet50) Covid-19 and Normal.
Accuracy = 98%

Sethy and Behera et. al.
(Apostolopoulos and Mpesiana,
2020)

25 Covid-19 (+); 25 normal chests. ResNet50 + SVM Covid-19 and Normal.
Accuracy = 95.38%

Asif et. al. (Narin et al., 2003) 309 Covid-19 (+); 2000 Pneumonia; 1000 normal
chests.

DenseNet121 Covid-19, Pneumonia, and Normal.
Accuracy = 98%

Mangal et. al. (Sethy and Behera,
2020)

261 Covid-19 (+); 4200 Pneumonia; 2750 normal
chests.

COVID-Net Covid-19, Pneumonia, and Normal.
Accuracy = 90.50%

Kumar et al (Kumar, 2020) 62 Covid-19 (+); 4200 Pneumonia; 5610 normal chests. ResNet152 + RF classifier Covid-19, Pneumonia, and Normal.
Accuracy = 97.3%

Ozturk et. al. (Ozturk et al., 2020) 125 Covid-19 (+); 500 Pneumonia; 500 normal chests. DarkCovidNet Covid-19 and Non-Covid
Accuracy = 98.08%

Sarhan et. al. (Sarhan, 2020) 88 Covid-19 (+); 88 non– COVID. Wavelet + SVM Covid-19 and Non-
CovidAccuracy = 94.5%

Proposed Method 790 Covid-19 (+); 1215 viral Pneumonia; 1304 bacterial
Pneumonia; 1500 normal chests.

Wavelet + pre-trained
ResNet50 + RF classifier

Covid-19 and Non-Covid.
Accuracy = 99.45%
Covid-19, Viral pneumonia
bacterial pneumonia, Normal.
Accuracy = 98.48%
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ensemble RF classifier. Thus, the proposed method has achieved
superior performance than the existing techniques using a com-
paratively larger dataset. The comparative analysis of the proposed
technique is presented in Table 8 with the recently developed
techniques.

5. Conclusions

This work has designed an intelligent model for Covid-19
detection with high accuracy and low complexity. Proper fea-
ture extraction and selection show the satisfactory outcome in
Covid-19 classification using the chest X-rays. It resolved some
problems in dealing with the large number of feature sets in
distinguishing Covid-19 from other similar cases through
hybridization of features from CNN and DWT. The mutual
information-based feature selection is the strength of this
methodology. An ensemble RF classifier shows better perfor-
mance for the overlapping and unbalanced data like X-ray
images. The system has obtained an accuracy of over 98.5%
and outperforms the existing techniques. It shows the possi-
bilities of cost-effective, rapid, and automatic diagnosis of
coronavirus using the chest X-ray. Scopes are available for
investigation of the risk and survival predictions which help
treatment strategies and hospitalization management. Though
there are many positive sides of the X-ray based detection
mechanism, however, there is a limitation of the X-ray based
system is the usual radiation hazard compare to the standard
RT-PCR technique. In the future, we will investigate the
hybridization of other features to improve accuracy by reduc-
ing the fewer false-negative and false-positive results.
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