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Abstract

Background: Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment
strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components
could alter curing of glues through bulk changes or specifically through altered enzyme activity.

Methodology/Principal Findings: GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings
were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds
were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing
enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves
trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links
glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to
silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant
concentrations of silicone polymer constituents.

Conclusions/Significance: Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties.
Altered curing of natural glues has potential in fouling management.
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Introduction

For the management of biological fouling, foul-release coatings

are an alternative to broad spectrum biocides. Weak attachment of

organisms on foul-release surfaces facilitates cleaning. For all

but continuous use and high speed ships, periodic grooming

or cleaning is required to maintain performance [1].

Existing commercial foul release coatings are based upon silicone

polymers.

Weak attachment on silicone foul-release coatings is attributed

to a combination of physical and chemical properties of the

polymer. Physical properties include elastic modulus, coating

thickness, and Baier’s ‘‘bioadhesive minimum’’ or ‘‘theta surface’’

(critical surface tension, a property of surface energy, between 20–

27 mN m21)[2–6], while chemical properties may include

catalysts (e.g. organotins, organobismuths, etc.), silicone oils, and

free silicone components that migrate to the surface of the polymer

[7–9]. Surface-associated components of silicone coatings have the

potential to interfere with cross-linking of biological glues [9].

Silicon is incorporated into the adhesive plaque of barnacles

grown on silicone coatings, suggesting release and uptake of

uncross-linked PDMS [7,8]. Biochemical mechanisms that might

alter adhesive curing are the focus of this report.

At the biochemical level, natural marine glues are complex,

multicomponent systems [10]. Marine glues displace water, form

bonds with the substrate, and are stabilized by cross-linking [11].

Enzymes and/or specific cofactors such as metal ions are essential

to curing [12–15]. Disruption of this complex assembly alters glue

properties [15–17].

Potential mechanisms for altering glue properties include perturba-

tion of: spatial and temporal activation of components, presentation of

adhesive motifs, assembly, and enzymatic cross-linking of structural

proteins. Alteration of curing enzyme activity, specifically and non-

specifically, are potential mechanisms. Analogous to synthetic

adhesives, we hypothesize that natural glues are sensitive to catalyst

activity levels. Hence, we suspect that compounds associated with

silicones can alter enzyme activity, glue curing and glue properties.

Barnacles are a major target of fouling management. At the

biochemical level, barnacle glue curing has similarities to blood clotting

[15]. Curing involves proteolytic activation of enzymes and structural

precursors, transglutaminase cross-linking, and assembly of fibrous

proteins. Proteolytic activation of structural proteins maximizes the
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potential for bonding interactions with other proteins and with the

surface. Domains exhibiting compatible adhesive motifs [18–20]

become available to present to surfaces following activation.

Transglutaminase [15] and other kinds of cross-linking [12,21,22]

stabilize the glue. Thus, adhesion and curing involve at least two

enzymatic steps. Because the curing involves rearrangement of

structural proteins and cross-linking of the proteins for stability,

alteration of enzyme activities could change the properties of the glue.

We tested the hypothesis that compounds associated with silicone

polymer surfaces alter the activity of enzymes that participate in glue

curing. Three sets of experiments were conducted. First, coupled gas

chromatography-mass spectrometry was used to determine the

presence of compounds on silicone surfaces. Next, we determined if

surface-associated compounds altered trypsin-like serine protease

and transglutaminase activity in curing barnacle glue. Finally,

changes in the activities of commercial trypsin and transglutaminase

were quantified in the presence of: A) 30 second methanol rinses of

silicone surfaces and compounds transferred to cotton swabs during

gentle rubbing of polymer surfaces; and B) individual components of

silicone polymers alone and in combination. Results show that

compounds associated with silicone surfaces alter transglutaminase

activity in curing glue and trypsin and transglutaminase activity in

purified enzymes.

Materials and Methods

Methanol rinses of commercial silicone films: GC-MS
Dow Corning Silastic T2H and International VeridianH were

analyzed using coupled gas chromatography-mass spectrometry.

These two silicones were chosen since they are used experimentally

and were readily available in a leached state. Silicones were

prepared on 7.6615.260.64 cm glass panels as described by Holm

et al. [23]. After preparation, T2H and VeridianH coated panels

were conditioned in flowing seawater until barnacles would settle on

the surfaces in the laboratory. Soaking for 5 days (T2H) and 35 days

(VeridianH) respectively was required. After this, the panels were

used as barnacle growth substrates for approximately 2K years.

After this 2K year interval, the panels were used in this study.

Chemical analyses were conducted at the Institute for

Chemistry and Biology of the Marine Environment (ICBM;

Oldenburg, Germany). A 30 second, 30 ml methanol rinse was

used to obtain compounds from the silicone surfaces. Eluates were

analyzed undiluted by coupled gas chromatography-mass spec-

trometry. A WCOT VF-5ms capillary column (Varian, USA)

(30 m60.25 mm60.25 mm film thickness) was mounted on a

Varian 3900 gas chromatograph equipped with a Saturn 2100 T

(Varian, USA) ion trap mass selective detector. Samples were

injected in splitless mode with an inlet pressure of 72 kPa. The

injection port and the interface were held at 260uC. The gas

chromatograph was held at 70uC for 1 min and ramped at 15uC
min21 to 150uC, 20uC min21 to 250uC and held at this

temperature for 2 min. Finally, the column was cleaned at

320uC for 1 min. Helium was used as the carrier gas. The mass

selective detector was operated in scan mode (m/z 10–650). The

electron impact ion-spectra of silicone eluate components were

compared with entries in the NIST mass spectral library (NIST V.

2005). To account for background organosiloxane contaminants,

blank samples of methanol were run after every 5 analyses to

identify and subtract system specific siloxane peaks.

Methanol rinses of commercial silicone films: enzyme
assays

In addition to T2H and VeridianH silicone we included RTV-

11H, a commercial silicone used experimentally, and Intersleek

425H, a commercial foul-release coating, in our enzyme analyses.

IntersleekH and RTV-11H silicones were prepared as draw downs

on epoxy-primed 468 inch (10.2620.3 cm) marine grade

aluminum panels (Q-panel, USA), and conditioned in flowing

seawater for 7 days after preparation. IntersleekH and RTVH
silicones were then used intermittently as barnacle growth

substrates and for barnacle reattachment studies, and were

immersed in seawater for a period of approximately 11 months.

After this 11-month interval, panels were used in this study.

For enzyme assays, silicone substrates were rinsed thoroughly

with deionized water and dried in air prior to methanol rinses. A

30 second, 60 ml methanol rinse was used to obtain compounds

from the silicone surfaces. Ten 60 ml rinses were recovered with a

glass Pasteur pipette for each silicone, combined in a glass test

tube, and air dried in a fume hood. The residual was resuspended

in 10 ml 100% methanol for the assays described in this section.

Residues were agitated gently to aid redissolution. Two controls

were implemented to ensure that the 10 ml HPLC grade methanol

used to resuspend residuals did not impact enzymatic activity.

First, for all assays, 10 ml methanol was incubated with enzyme

substrate. Absorbance values from these samples served as the

basis for statistical comparisons. Second, a set of trypsin and

transglutaminase assays were carried out with curing barnacle

glue, with one set of samples containing 10 ml 100% methanol,

and a second set with methanol replaced by 10 ml deionized water.

These assays were run as described below, with the exception of

3 ml curing glue used in trypsin assays. Assays were run in a paired

design, with glue from the same barnacle used for the methanol

and the deionized water sample.

Rearing of barnacles Amphibalanus ( = Balanus) amphitrite [24] and

collection of curing glue were conducted as described in Dickinson

et al. [15]. Trypsin and transglutaminase were assayed with

enzyme specific substrates. Enzyme assays were conducted with

curing barnacle glue, and with commercially available purified

enzymes. Assays with curing glue enabled determination of

variability among individual barnacles. Assays with purified

enzymes provided precise control of reaction conditions, including

concentration of the enzyme, substrate, and cofactors.

Trypsin assays were conducted using a BAPNA (Na-benzoyl-

DL-arginine 4-nitroanilide; Acros Organics #227740010) sub-

strate. BAPNA was prepared at 0.044% (w/v) by first dissolving

BAPNA in DMSO (dimethylsulfoxide: 1% v/v) and then adding

50 mM Tris buffer, pH 8.0. Reaction conditions (pH, incubation

temperature, buffer concentration) followed Dougherty [25] who

optimized reaction conditions for general protease activity in

curing glue from the barnacle Chthamalus fragilis.

Trypsin assays with curing barnacle glue were conducted by

first adding 800 ml BAPNA solution directly to test tubes

containing surface eluate resuspended in 10 ml methanol, or

10 ml methanol only (control). 6 ml unpolymerized glue was added

to each tube, vortexed, and incubated at 37uC for 1 hr. Each

silicone and the methanol control was tested with glue from the

same barnacle. Following incubation, all samples were centrifuged

at 9000 rpm for 10 min in a Fisher Scientific MicroD centrifuge

and then placed on ice. Samples were transferred to a quartz semi-

micro cuvette (Starna Cells #9-Q-10) and optical density at

405 nm (OD405), referenced to Tris buffer alone, was read on a

Hewlett Packard 8451A diode array spectrophotometer. Samples

were staggered in ,8 sample groups (each with controls) so that all

samples could be read within 10 min of centrifugation.

Assays with purified trypsin were conducted in the same manner

as described above, however, 6 ml of a purified trypsin solution was

used in place of native glue. Bovine pancreatic trypsin was used

(Sigma #T1426) and mixed to 44.68 BAEE units/ml for a total of
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PLoS ONE | www.plosone.org 2 February 2011 | Volume 6 | Issue 2 | e16487



0.268 BAEE units per assay. This trypsin activity level was chosen

to be measurable and within the range of values observed

previously for barnacle glue [17]. Maximum trypsin activity

reported was 38.25 BAEE units/ml with a mean value of 14.74

BAEE units/ml.

Transglutaminase activity assays were conducted using a

transglutaminase assay kit (Sigma-Aldrich #CS1070), and fol-

lowed the manufacturer’s directions including those for use with

an inhibitor. Assays were based on the reaction of transglutamin-

ase with a cadaverine coated 96-well plate. For assays with native

barnacle glue and with purified transglutaminase, 45 ml deionized

water was added to test tubes containing silicone eluate

resuspended in 10 ml methanol or 10 ml methanol only (control).

The solutions were mixed gently and then transferred to

cadaverine coated plate wells. For assays with native transgluta-

minase, 1 ml of unpolymerized glue was added to each well,

whereas for assays with purified transglutaminase, 5 ml of a 20

milliunits ml21 purified transglutaminase solution was added for a

total of 0.1 milliunits used (transglutaminase from guinea pig liver,

Sigma #T5398, was diluted from a 2 unit ml21 stock solution

which contained 10 mM DTT and 1 mM EDTA). As in trypsin

assays, this activity level was chosen to be measurable and in the

range of values observed previously for barnacle glue [17]. A 0.1

milliunits transglutaminase solution yielded an average OD450

value of 0.45, whereas the maximum OD450 for barnacle glue was

0.52 and mean OD450 was 0.28. Wells were mixed gently by

tapping on the plate and incubated at room temperature for 3–

5 min before adding assay buffer. At the completion of the assay,

OD450 was read on a SpectraMax M2 plate reading spectropho-

tometer (Molecular Devices). For assays with curing glue, glue

from the same individual barnacle was used to test each silicone

and the methanol control.

Mechanical removal of compounds on silicone films:
GC-MS

After speaking with a scientist from the coatings industry

regarding detection of surface-available compounds on silicone

coatings, we changed techniques to eliminate exposure of the

silicone film to methanol. A 2 cm2 silicone surface was rubbed

gently for 15 seconds with a cotton swab and then the swab was

eluted with methanol. We used eight model polysiloxane

formulations described previously [26]. Each combination of the

following variables was prepared: low or high molecular weight

oligomers, low or high concentration of cross-linker and, with or

without added silicone oil. The model polysiloxane coatings were

prepared in 24 well polystyrene plates modified with epoxy-primed

marine grade aluminum discs, as described previously [27]. These

coatings were conditioned in deionized water for 14 days prior to

their use in the assays described here.

Cotton swabs used to sorp compounds from model polysilox-

anes were first cleaned by dripping approximately 1 ml of 100%

methanol over the entire surface of the cotton swab until the

methanol dripped off. Cotton swabs were then placed on clean

aluminum foil and air dried overnight before use. Each silicone

formulation was swabbed in triplicate with: 1) a cleaned and dried

cotton swab; and 2) a cleaned cotton swab that had been pre-

wetted with approximately 500 ml of 100% methanol. To swab

silicones, the dry or wetted cotton swab was rubbed over the entire

surface of the silicone-coated well by pressing down lightly with a

circular motion for 15 seconds. For GC/Mass spec analysis the tip

of the cotton swab was cut off and placed in a 1 ml borosilicate

glass autosampler vial (Wheaton #223682) and sealed with

parafilm. Before use, vials were cleaned with methanol and then

baked in a muffle furnace at 500uC for 1 hr. Samples were sent

overnight mail to the University of New South Wales for analysis.

For GC-MS analysis, cotton swabs were eluted by adding 1 ml

of 100% methanol directly to the glass vials containing the cotton

swab tips. Cotton swabs were left in methanol for 30 min. Elutions

of dry swabs were concentrated 3 times by drying the eluate

completely on a SpeedVacH and then resuspending the residual in

330 ml methanol. Eluates of methanol wetted swabs were analyzed

without concentration. Swabs were analyzed by coupled gas

chromatography-mass spectrometry. A HP5-MS capillary column

(Hewlett Packard, USA; 30 m60.25 mm60.25 mm) was mounted

on an Agilent 6890N gas chromatograph interfaced to a HP5973N

mass selective detector operated in electron impact mode at

70 eV. Samples were injected and run as described above.

Mechanical removal of compounds on silicone films:
enzyme assays

Enzyme assays were conducted on compounds from model

polysiloxane coatings obtained by rubbing with cleaned and dried

cotton swabs as described above. Wetted cotton swabs were not

included in enzyme assays. Compounds sorped to the cotton swabs

were eluted by placing it at the opening of a glass test tube and

slowly dripping 100% methanol onto the swab until 200 ml ran off

into the tube. The same procedure was used to generate controls

from cleaned and dried cotton swabs. Enzyme assays with cotton

swab eluates were conducted with purified enzymes only. All

eluates were dried completely in a fume hood. Residues were

resuspended directly in enzyme assay buffer. This change was

made due to concern that addition of methanol might alter

enzyme activity.

For trypsin assays, BAPNA (Na-benzoyl-DL-arginine 4-nitroa-

nilide) substrate was used and prepared at 0.044% (w/v) by first

dissolving BAPNA in DMSO (dimethylsulfoxide: 1% v/v) and

then adding HPLC water. A trypsin solution was made at 0.45 mg

ml21 in 1 mM HCl using bovine pancreatic trypsin (Sigma

#T1426). This solution was then diluted to 3.0 mg ml21 (42.9

BAEE units/ml) in seawater for use in assays and kept on ice at all

times. Seawater served as the assay buffer. For assays, 90 ml of the

3.0 mg ml21 trypsin solution (3.86 BAEE units total) was added

directly to each test tube containing dried cotton swab eluates.

Note that the trypsin activity level was higher than in previous

assays to enhance sensitivity. Tubes were mixed and 80 ml from

each tube was transferred to a multiwell plate. 170 ml BAPNA

solution was added to each well, the plate was incubated at 37uC,

and OD405 was read every 5 min for 15 min. Activity was

calculated as mMoles substrate hydrolyzed/ml/min.

Transglutaminase activity assays were conducted using a

transglutaminase assay kit (Sigma-Aldrich #CS1070), and gener-

ally followed the manufacturer’s directions. In these assays, 50 ml

of 2 milliunits ml21 purified transglutaminase solution (0.1

milliunits total; diluted from a 2 unit ml21 stock solution which

contained 10 mM DTT and 1 mM EDTA) was added directly to

each test tube containing dried cotton swab eluates. Tubes were

mixed and 50 ml from each tube was transferred to cadaverine

coated plate wells.

Effects of silicone components on enzyme activities
Enzyme assays were conducted with five components of model

polysiloxane coatings: silicone oil (viscosity 40–50 cSt: Gelest

DES-T15); low molecular weight PDMS oligomers (700–800 cSt:

Gelest DMS-S27); medium molecular weight PDMS oligomers

(1000 cSt: Dow Corning 200 Fluid, Sample #321275); and high

molecular weight PDMS oligomers (5000 cSt: Gelest DMS-S35).

Purified trypsin and transglutaminase activity was tested with

Silicones Alter Enzyme Activities
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silicone components alone and in combination. In order to

determine the quantity of each component to test in enzyme

assays, the mass of silicone eluted from a model polysiloxane

coating was empirically tested. Silicone made from low molecular

weight oligomers, low cross-linker, with no oil, was swabbed with

an unmodified dry cotton swab, and compounds taken up by the

swab were eluted as described previously into a pre-weighed

microfuge tube. After methanol had evaporated, the tube was

weighed again and the mass of silicone calculated. This procedure

was replicated 5 times. Approximately 0.15 mg silicone was eluted

(mean 6 SEM: 0.1460.04), and this quantity was used for testing

of silicone components. To ensure that the measured mass was not

derived from the cotton swab itself, 10 unmodified cotton swabs

were eluted directly into pre-weighed microfuge tubes and

weighed after methanol had evaporated. For each tube, initial

mass was identical to mass after methanol had evaporated,

confirming that the cotton swab did not contribute to measured

silicone mass.

Silicone components were prepared for assays by placing a

droplet of each component into a pre-weighed microfuge tube,

calculating the mass of the component, dissolving it in 500 ml

100% methanol, then transferring a volume corresponding to

0.15 mg to a glass test tube. For combinations of components,

volume was divided accordingly as to have a total of 0.15 mg

silicone in the test tube. Methanol containing silicone components

was dried completely within a fume hood, and the residual was

resuspended directly in assay buffer. Trypsin and transglutaminase

assays were conducted as described in the mechanical removal

section above.

Statistical analysis
Statistical analyses were conducted using GraphPad Prism

version 5.0, with calculations based on raw absorbance values. For

assays with native barnacle glue, data were compared using paired

t-tests (two-tailed), because glue from the same barnacle was tested

with treatment and control. For assays with purified enzymes

statistical analyses were by one-way analysis of variance (AN-

OVA). If assumptions of normality and equality of variance, tested

using the Kolmogorov and Smirnov method and Bartlett’s test

respectively, were met by log transforming data, parametric

ANOVA was used and treatments groups were compared to the

control group using a Dunnet’s method post-hoc test. If

assumptions of normality and equality of variance could not be

met after log transforming data, non-parametric Kruskal-Wallis

analysis was used and treatment groups were compared to the

control group using a Dunn’s method post-hoc test. Statistical

analyses of enzyme activity with model polysiloxane coating

components were conducted separately for components tested

individually and when components were tested in combination.

Results

Methanol rinses of commercial silicone films: GC-MS
We used coupled gas chromatography-mass spectrometry to

assess T2H and VeridianH silicones for surface-associated com-

pounds. T2H and VeridianH had been conditioned in flowing

seawater until they were not toxic to barnacle larvae, and then

immersed in seawater at two month intervals as barnacle growth

substrates. Each substrate was exposed to seawater for a total time

of approximately 1K years prior to their use in this study. Thirty

second, 30 ml methanol rinses of these silicones contained

organosiloxanes and probably cyclic siloxanes. Tentative identifi-

cations of compounds are shown in figures 1 and 2. In Silastic T2H
rinses, 7 major GC peaks were identified as siloxanes (Figure 1). As

shown in Figure 2, 4 major GC peaks were identified as siloxanes

for VeridianH. With the exception of dimethyl flouromethyl

phenylsilane, which might be derived from the catalyst, all

compounds that could be identified from VeridianH rinses were

also present in T2H rinses. The silicone conjugated Estra-1,3,5(10)-

trien-17-one derivative, identified for both T2H and VeridianH,

was not part of the original coating formulations (Coatings

Industry representatives, personal communication).

Methanol rinses of commercial silicone films: enzyme
assays

The effect of the residue of silicone rinses on barnacle glue

trypsin and transglutaminase activity is shown in Figures 3 and 4.

The impact of residues was dependent on the source of curing

glue. HPLC grade methanol control assays showed that neither

trypsin nor transglutaminase activity varied significantly in glue

assays with methanol versus glue assays with deionized water

substituted for methanol (paired t-tests: trypsin: p = 0.162, n = 7

barnacles; transglutaminase: p = 0.161, n = 8 barnacles).

When tested with curing barnacle glue, group mean trypsin

activity did not differ significantly from methanol controls for any

of the silicones tested (paired t-tests; Figure 3). In contrast,

barnacle glue transglutaminase activity differed significantly from

methanol controls for T2H and IntersleekH (paired t-tests: p,0.05;

Figure 4), with activity dependent upon silicone source. Individuals

tested with residues from T2H showed only promotion of activity

and those tested with residues from IntersleekH showed only

inhibition. Transglutaminase activity was dependent on the

individual barnacle producing the glue when tested with

VeridianH and RTV-11H residues, resulting in both promotion

and inhibition of activity observed.

The effect of silicone residues on purified trypsin and

transglutaminase is shown in Figure 5. Trypsin activity varied

significantly among silicone residue and methanol control groups

(Kruskal Wallis One-way ANOVA on ranks: p = 0.0004). The

activity of RTV-11H residues differed significantly from the

methanol control (Dunn’s method post-hoc analysis: p,0.05).

Transglutaminase activity varied significantly among silicone

residue and methanol controls (One-way ANOVA: p,0.0001).

Assumptions of normality and equality of variance were met after

log transforming OD450 values (normality tested with Kolmogorov

and Smirnov method, p.0.05 for each group; equality of variance

tested with Bartlett’s test, p = 0.4198). Post-hoc analysis showed

that all silicone residues inhibited enzymatic activity and each

differed significantly from the methanol control (Dunnet’s method

post-hoc analysis: p,0.05).

Mechanical removal of compounds on silicone films:
GC-MS

The mechanical removal method involved gently rubbing

model polysiloxane films with a cotton swab. These 8 films had

been conditioned in deionized water for 14 days prior to assays. As

detailed in Table 1, multiple poly(dimethylsiloxanes) with similar

mass-to-charge fragments were identified for all samples, including

dry and methanol wetted swabs. Amino-substituted polysilaxanes

were identified only for wetted swab samples of the four surfaces

containing silicone oil.

Mechanical removal of compounds on silicone films:
enzyme assays

Eight model polysiloxanes were rubbed with methanol cleaned,

dry cotton swabs. Sorped compounds were eluted from swabs with

methanol, dried and resuspended in enzyme assay buffer. Controls

Silicones Alter Enzyme Activities
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Figure 1. Gas chromatogram and tentative peak assignment (NIST database) for compounds present on Dow Corning Silastic T2H
silicone. Samples were obtained by 30 second, 30 ml methanol rinses. Panels had been conditioned in flowing seawater and then used as barnacle
growth substrates, immersed in seawater, for an approximate total of 1K years before use in this analysis.
doi:10.1371/journal.pone.0016487.g001

Figure 2. Gas chromatogram and tentative peak assignment (NIST database) for compounds present on International Paints
VeridianH silicone. Samples were obtained by 30 second, 30 ml methanol rinses. Panels had been conditioned in flowing seawater and then used as
barnacle growth substrate, immersed in seawater for an approximate total of 1K years before use in this analysis.
doi:10.1371/journal.pone.0016487.g002
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were methanol cleaned and dried cotton swabs eluted with

methanol, dried, and then resuspended in assay buffer. All model

polysiloxane coating residues inhibited trypsin activity as com-

pared to controls (Figure 6). In each case, the percent change from

control was greater in coatings with silicone oil. Transglutaminase

activity was inhibited as compared to controls for each of the

silicones that did not contain silicone oil (Figure 6). Three of four

model silicones with silicone oil showed a 34 to 57% promotion of

transglutaminase activity as compared to controls. Variation

between replicates was less than 27% for all enzyme assays.

Effects of silicone components on enzyme activities
The components of model polysiloxane coatings that alter

enzyme activity were determined using commercial trypsin and

transglutaminase (Figure 7). Components were tested individually

and in combination, and included silicone oil, and low, medium

and high molecular weight PDMS oligomers. The controls for

these assays were purified enzymes incubated without silicone

components. Non-parametric analyses were employed for these

comparisons, since data did not meet assumptions of normality

and equality.

When tested with individual silicone components, trypsin

activity was not significantly different than controls (Kruskal

Wallis One-way ANOVA on ranks). When tested in combination,

however, trypsin activity varied significantly among test and

control groups (Kruskal Wallis One-way ANOVA on ranks:

p = 0.0171). Activity of the oil plus medium molecular weight

PDMS (1000 cSt) group differed significantly from that of the

control (Dunn’s method post-hoc analysis: p,0.05).

Whether tested with individual components or with combina-

tions, transglutaminase activity differed between test and control

groups (Kruskal Wallis One-way ANOVA on ranks: p = 0.0005

and p = 0.0018 respectively). Activity with all four components

differed significantly from the control when tested individually

(Dunn’s method post-hoc analysis: p,0.05). The oil plus low

molecular weight PDMS and all components combined groups

differed significantly from the control (Dunn’s method post-hoc

analysis: p,0.05).

Discussion

Weak attachment on silicone foul-release coatings results from a

combination of physical and chemical properties of the polymer.

This report focused on chemical interactions of silicone polymers

with curing glue. We tested the hypothesis that compounds

associated with silicone polymer surfaces alter the activity of

enzymes involved in barnacle glue curing. Three specific questions

were addressed: 1) are compounds available at the surface of

silicones; 2) if compounds are available, do they alter barnacle glue

enzyme activities, and; 3) which components of silicone polymers

alter enzymatic activity. GC-MS identified surface-associated

siloxanes on all silicones, including those with long-term exposure

to seawater. Surface-associated compounds significantly altered

transglutaminase activity in curing barnacle glue. Statistically

significant changes in trypsin and, to a greater extent, transglu-

taminase activity occurred when specific polysiloxane components

were tested alone and in combination.

In our glue curing model [15], trypsin activity activates pro-

forms of structural proteins, enabling them to rearrange and

present domains with compatible motifs [18–20,28] to the surface.

Transglutaminase cross-linking locks the polymers in place [15].

Phenyloxidase activity has also been observed and may be

involved in glue curing [12] although its function unclear [21].

In this coordinated process, modification of enzymatic rates

occurring through specific or non-specific interactions would alter

the ability of glue to make adhesive bonds.

GC-MS showed compounds are available at the silicone

surface, enabling them to interact with the structural proteins

and enzymes in glues. Silicone components are routinely found at

the surface of PDMS coatings, and interfere with contact angle

measurements [29]. Consistent with this, Meyer et al. [9] showed

the presence of surface-active eluates from silicone coatings based

on contact angle anomalies. Assays were performed with 12

diagnostic fluids with chemistry mimicking that of amino acids

found in bioadhesive proteins. Results of contact angle measure-

ments suggest residues have the potential to alter the curing of

biological glues [9]. Our 30-second methanol rinses of commercial

polymers exposed to seawater for over a year, showed a variety of

siloxanes available at the surface. Similar results were obtained

when model polysiloxane coatings were rubbed briefly with a dry

cotton swab. GC peaks were assigned primarily to cyclic siloxanes

of different ring size. Surface-associated siloxanes could either be

unreacted reagents or degradation products of high molecular

weight siloxanes.

Silioxanes identified by GC-MS could alter activity of enzymes

through specific or non-specific interactions. Some ways silicone

oligomers and oils may alter enzyme activity include: interaction

with the enzyme active site; encapsulation of the enzyme [30];

altering protein tertiary or quaternary structure by bulk interac-

tions; and by binding of cofactors. When a combination of

siloxanes is surface available and exposed to a complex

proteinaceous glue, interactions are likely to be complex. Due to

the highly coordinated nature of the glue curing process, slight

alterations in enzyme activity could have major impacts on curing.

In addition to cyclic siloxanes, GC-MS identified other

compounds that might interact with curing glues. For example,

GC-MS analysis of commercial polymers revealed the presence of

a siliconized estradione, as shown in figures 1 and 2. The

estradione-silicone hybrid was not part of the original coating

formulations (Coatings Industry representative, personal commu-

nication), and was likely derived through microbial metabolism.

This result suggests that organisms can partially metabolize

surface-available siloxanes and generate novel compounds with

unknown bioactivity, stability, fates, and effects. The open

electrometric nature of silicone coatings enables uptake of such

compounds from the surface or external seawater into the coating

[31].

Lightly rubbing silicone surfaces with cotton swabs was a

mechanical method to test for compounds available at the silicone

surface. The amount of compound was greater than what a

barnacle would encounter instantaneously, because the amount

represents what would be found in two square centimeters.

Quantitative genetics data on glue phenotypes, however, shows

that the glues are modified in a silicone polymer dependent fashion

that is not based upon physical aspects of the silicones [23],

Figure 3. Effect of silicone rinses on barnacle glue trypsin activity. 30 second, 60 ml methanol rinses were conducted, 10 rinses were pooled,
dried completely, and residual was resuspended in 10 ml 100% methanol before adding assay buffer. Each individual barnacle was tested with all four
silicones. Individual data, expressed as percent change in OD405 from control, and group mean (6 SEM) are shown. The control is barnacle glue
incubated with 10 ml 100% methanol and assay buffer only, without silicone residual.
doi:10.1371/journal.pone.0016487.g003
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suggesting the concentration of available compounds is sufficient

to interact with glue. The types of compounds identified with the

mechanical method were similar to those identified from methanol

rinses. The actual concentration of compounds that would be

available to interact with curing glue under natural conditions is

currently unknown. Silicon has been found incorporated into the

adhesive plaque of barnacles grown on silicone coatings [7,8],

however, indicating that compounds can partition into and

interact with biological glues under environmental conditions.

Our transglutaminase assays with uncured glue showed clear

interaction with available components. For fouling organisms such

as barnacles, the relevant elution solvent is a proteinaceous glue.

GC-MS studies using proteinaceous glue as a solvent will shed

light on the composition and concentrations of compounds

available to interact with curing glues.

The interaction of surface-available compounds with enzymes

in curing glue was demonstrated using curing barnacle glue and

purified, commercially available forms of the enzymes. The effect

of silicone residues on enzymatic activity was less dramatic and

consistent when tested with limited quantities of native enzymes

than when purified enzymes were used. Trypsin and transgluta-

minase activity was found in all barnacle glue samples assayed.

The lower activity, as compared to that of purified enzymes,

resulted in decreased sensitivity and a decreased ability to

discriminate between treatments.

Two additional factors contributed to decreased analytical

precision with curing barnacle glue. First, mixing with reagents is

difficult since curing begins immediately upon release by the

barnacle. Second, barnacle glue contains a large number of

components [15,18,19,25,28]. The ideal assay would measure the

interaction of glues with the surface as they are released.

Silicone compounds may interact with many glue components

including structural proteins, non-proteinaceous components,

cofactors, and cells. This complex set of interactions results in

variable enzymatic responses. In the presence of silicone residue

barnacle glue enzymatic activity varied depending on the

individual barnacle, particularly for transglutaminase. This

response is consistent with classic studies of barnacle isozymes

[32] and with heritable variation in adhesive traits of barnacles

raised on silicone coatings [23,33]. Variability in enzymatic

response reflects individual variability in the multicomponent

mixture that becomes cured glue.

Although transglutaminase activity levels were low and variable

among individuals, silicone residues significantly altered transglu-

taminase activity in curing barnacle glue. It is noteworthy that for

transglutaminase activity, a statistically significant result was

shown when inhibiting activity (IntersleekH) and promoting

activity (T2H). We hypothesize this result reflects differences in

coating formulations, and the ability of coating components to

interact with transglutaminase within a complex proteinaceous

environment. Our current model for barnacle glue curing [15]

depicts the curing mechanism as a highly interdependent process

akin to blood clotting [34–37], in which enzymatic activity can

affect both up and down stream processes. Hence, significant

alteration of enzymatic activity, either inhibition or promotion, has

the potential to alter curing and adversely effect adhesive

properties, contributing to variable but low adhesion strength of

barnacle glue on silicones.

To directly address if silicone coating components alter trypsin

and transglutaminase activity, purified enzymes were tested with

residues of silicones collected by swabbing silicone surfaces, and

with pure polysiloxane coating components. Trypsin activity was

Figure 4. Effect of silicone rinses on barnacle glue transglutaminase activity. 30 second, 60 ml methanol rinses were conducted, 10 rinses
were pooled, dried completely, and residual was resuspended in 10 ml 100% methanol before adding assay buffer. Each individual barnacle was
tested with all four silicones. Individual data, expressed as percent change in OD450 from control, and group mean (6 SEM) are shown. The control is
barnacle glue incubated with 10 ml 100% methanol and assay buffer only, without silicone residual. * Indicates a significant difference from control
(paired t-test: p,0.05).
doi:10.1371/journal.pone.0016487.g004

Figure 5. Effect of silicone rinses on purified trypsin and transglutaminase activity (from porcine and guinea pig respectively). 30
second, 60 ml methanol rinses were conducted, 10 rinses were pooled, dried completely, and residual was resuspended in 10 ml 100% methanol
before adding assay buffer. Data are expressed as percent change in OD405 (trypsin) or OD450 (transglutaminase) from control. Means and SEM are
shown. The control is purified enzyme incubated with 10 ml 100% methanol and assay buffer only, without silicone residual. * Indicates a significant
difference from control (trypsin: Dunn’s method post-hoc analysis, p,0.05; transglutaminase: Dunnet’s method post-hoc analysis, p,0.05). n = 5
replicates for trypsin, 10 replicates for transglutaminase.
doi:10.1371/journal.pone.0016487.g005
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inhibited, specifically by silicone oil plus medium molecular weight

PDMS and by residue on dry swabs from model silicone polymers.

Statistically significant promotion of activity was observed with

RTV-11H residue. For transglutaminase, statistically significant

inhibition of activity was shown for compounds from all

commercial silicones, all polysiloxane components, and specific

Table 1. Gas-chromatographic retention times of peaks with characteristic mass fragments belonging to
poly(oligomethylsiloxanes) and amino-substituted polysilaxanes in dry and wet surface swabs obtained from model polysiloxane
coatings.

Silicone sample Retention time (min)

MW CL Oil Swab 8.05 9.54 9.68 9.77 9.99 10.29 10.98 11.55 11.65 12.03 12.48

L L 2 Dry & & & & & &

L H 2 & & & & & &

H L 2 & & & & & &

H H 2 & & & & & &

L L + & & & & & &

L H + & & & & & &

H L + & & & & & &

H H + & & & & &

L L 2 Wet % & & & & & &

L H 2 % & & & & & &

H L 2 % & & & & & &

H H 2 % & & & & & &

L L + % & # ı m & & e & & &

L H + % & # ı m & & e & & &

H L + % & # ı m & & e & & &

H H + % & # ı m & & e & & &

The samples under investigation were characterized by high (H) and low (L) molecular weight (MW), polymerized with the addition of low (L) and high (H) amounts of
cross linker (CL), and with (+) or without (2) the addition of silicone oil (Oil). Different organosiloxanes with similar mass-to-charge fragments (73, 147, 221, 281, 355,
429) are denoted by (&){. Characteristic mass fragments in different polysilaxanes were % (351, 379); # (87, 115, 351, 379, 437); ı (87, 115, 277, 421); m (87, 115, 337,
481); e (87, 115, 439, 583). { As polydimethylsiloxanes of different ring size show almost identical mass fragmentation patterns the exact elucidation of repeat units (n)
was not possible.
doi:10.1371/journal.pone.0016487.t001

Figure 6. Effect of silicone eluates on purified trypsin and transglutaminase activity (from porcine and guinea pig respectively).
Elution was conducted by swabbing model polysiloxane coatings with a dry cotton swab. Compounds taken up onto the cotton swab were eluted
with methanol, methanol was then dried completely, and residual was resuspended directly in assay buffer with no additional methanol added.
Controls were clean cotton swabs that had not been in contact with polysiloxane, which were eluted, dried, and resuspended in assay buffer. Model
polysiloxane coatings were composed of low or high molecular weight (MW) oligomers, and were prepared with high or low concentration of cross-
linker (XL), with or without silicone oil. Data are expressed as percent change in OD405 (trypsin) or OD450 (transglutaminase) from control. Means and
SEM are shown. n = 2 replicates.
doi:10.1371/journal.pone.0016487.g006
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component combinations. Residues from the surfaces of model

polysiloxane coatings containing oil repeatedly promoted trans-

glutaminase activity in all but one polymer tested. This result

suggests that the amount and type of surface available compounds

differs when they have been consolidated into a polymer versus

when they are introduced free into an assay. The chemistry of

polymerization produces compounds that are not found in the

starting material, which could alter enzyme activity. Knowledge of

the direction and magnitude of these enzymatic alterations will

enable investigation of their effect on downstream biological

processes. Throughout this study, the effects of silicone compounds

were shown to be more dramatic and consistent for transgluta-

minase than for trypsin. The difference in enzyme alteration may

be due to the nature of the enzyme itself and its susceptibility to the

specific compounds tested, or due to the sensitivity of the

enzymatic assays.

Conclusions
Barnacles exhibit low adhesive strength [38] and frequently

produce atypical soft, thick glue when grown on silicone polymers

[8,39]. On silicone, barnacle glue is a hydrated viscoelastic gel,

varying with distance to the substrate [40]. Data presented here

showed that all four silicone components tested were capable of

altering the activity of purified transglutaminase; purified trypsin

activity was altered only when medium molecular weight PDMS

was combined with silicone oil. Surface available silicone

compounds are capable of altering transglutaminase activity in

curing glue, as shown for two of four silicones polymers tested.

Silicone compounds may also interact with other proteins and

non-proteinaceous components of barnacle glue, altering curing.

Adhesive strength and glue morphology are complex phenotypes

[23,33]. As for synthetic adhesives, changes in catalytic activity can

affect curing, adhesive strength, and morphology of natural glues.

It is common knowledge that after extended exposure to seawater,

silicone substrates gradually loose their foul-release properties.

Adhesive strength increases and the proportion of barnacles

producing thick, gummy glue, a heritable trait [23] is low as

compared to newly polymerized silicones (Orihuela, personal

observation). Within the context of physical and chemical changes

that occur as polymers age, diminished foul-release properties could

be partially due to a reduction in the levels and types of silicone

surface-associated compounds. This reduction would in turn decrease

interference with glue curing. Foul-release properties may be lost as

surface-associated diffusible components fall below a threshold level.

The interaction of compounds available at the surface of silicone

polymers with curing glues is one of many mechanisms that make

silicone foul-release coatings effective. Compounds that comprise

silicone polymers and are surface-available alter two pervasive and

biologically important enzymes: trypsin-like serine protease and

transglutaminase. Work is currently ongoing to determine how broadly

trypsin and transglutaminase are employed in marine biological

adhesion. The role of exoproteases in the growth of bacterial biofilms is

already well established [41–43]. The mechanisms described here can

potentially be employed in fouling control measures. It would be

prudent to investigate the impacts of silicone oligomers and oils on

other biological [44] and environmental [45] processes.
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Figure 7. Effect of silicone oil and PDMS oligomers on purified trypsin and transglutaminase activity from porcine and guinea pig,
respectively. Silicone oil (viscosity 40–50 cSt) and low, medium and high molecular weight PDMS oligomers (viscosity 700–800, 1000, and 5000 cSt
respectively) were tested alone and in combination. Components were dissolved in methanol, the methanol was then dried completely, and residual
was resuspended directly in assay buffer. Data are expressed as percent change in OD405 (trypsin) or OD450 (transglutaminase) from control. Means
and SEM are shown. The control is purified enzyme incubated with assay buffer only, without silicone components. * Indicates a significant difference
from control (Dunn’s method post-hoc analysis: p,0.05). n = 10 replicates for individual components, 5 replicates for combinations.
doi:10.1371/journal.pone.0016487.g007
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